On the compositions of (α, β) -derivations of rings, and applications to von Neumann algebras

MATEJ BREŠAR

Introduction

There are two motivations for this research. The first one is an old and wellknown result of E. POSNER [12]:

Theorem A. Let R be a prime ring of characteristic not 2. If the composition of derivations d, g of R is a derivation, then either d=0 or g=0.

A number of authors have proved extensions of this theorem; we refer the reader to some ring-theoretic results [3, 5, 9] and to some results from analysis [4, 10, 11].

The other motivation comes from the theory of von Neumann algebras. In a series of papers A. B. Thaheem and some other authors have studied the identity $\alpha + \alpha^{-1} = \beta + \beta^{-1}$ where α and β are automorphisms of a von Neumann algebra. This identity plays an important role in the Tomita—Takesaki theory (see, e.g., [6, 7, 8]). In [13 and 14] and in a joint paper with AWAMI [18], THAHEEM has given various proofs of the following theorem.

Theorem B. Let R be a von Neumann algebra and α , β be *-automorphisms of R satisfying $\alpha + \alpha^{-1} = \beta + \beta^{-1}$. If α and β commute then there exists a central projection p in R such that $\alpha(p) = \beta(p) = p$, $\alpha = \beta$ on pR, and $\alpha = \beta^{-1}$ on (1-p)R.

For other results concerning the identity $\alpha + \alpha^{-1} = \beta + \beta^{-1}$ we refer to some recent papers [1, 15, 16, 17] where further references can be found.

It is our aim in this paper to extend Theorem A to more general mappings on more general rings, so that the special case of this extension gives a generalization of Theorem B. In particular, our research can be viewed as a new, more elementary

Received March 5, 1991.

Matej Brešar

approach to the study of the identity $\alpha + \alpha^{-1} = \beta + \beta^{-1}$. In a subsequent paper we hope to consider this identity without assuming the commutativity of α and β .

Let R be a ring and α , β be automorphisms of R. An additive mapping d of R into itself is called an (α, β) -derivation if

$$d(xy) = \alpha(x) d(y) + d(x) \beta(y)$$
 for all $x, y \in R$.

An (α, β) -derivation *d* is said to be inner if there exists $a \in R$ such that $d(x) = \alpha(x)a - a\beta(x)$ for all $x \in R$. Of course, derivations are (1,1)-derivations where 1 is the identity on R. We will study the case where the composition of an (α, β) -derivation *d* and *a* (γ, δ) -derivation *g* is an $(\alpha\gamma, \beta\delta)$ -derivation. We will first generalize Theorem A by proving that if *R* is prime of characteristic not 2 and *g* commutes with both γ and δ , then either d=0 or g=0 (Corollary 1). An abbreviated version of our main theorem reads as follows.

Theorem 1. Let R be a 2-torsion free semiprime ring, d be an (α, β) -derivation of R, and g be a (γ, δ) -derivation of R. Suppose that d commutes with both α and β , and that g commutes with both γ and δ . If dg is an $(\alpha\gamma, \beta\delta)$ -derivation then there exist ideals U and V of R such that $U \oplus V$ is an essential ideal of R, d=0 on V and g=0on U. Moreover, if the annihilator of any ideal in R is a direct summand (in particular, if R is a von Neumann algebra), then $U \oplus V = R$.

As an immediate consequence of Theorem 1 we obtain that the decomposition of Theorem B holds in arbitrary semiprime ring in which the annihilator of any ideal is a direct summand (Corollary 2). Moreover, the assumption that α and δ preserve adjoints is removed (in fact, we do not work in rings with involution).

Preliminaries

١

Throughout, R will represent an associative ring. Recall that R is prime if aRb=0 implies that a=0 or b=0. R is said to be semiprime if aRa=0 implies that a=0. Equivalently, R is semiprime if it has no nonzero nilpotent ideals. Every C^* -algebra is semiprime (for $0 \neq aa^*a \in aRa$ if $a \neq 0$). A von Neumann algebra is prime if and only if it is a factor (i.e., its center consists of scalar multiples of the identity).

Let R be semiprime. Suppose that aRb=0 for some $a, b \in R$. Then we also have (bRa)R(bRa)=0, abRab=0, baRba=0, and therefore bRa=0, ab=0, ba=0since R is semiprime. Note that the left and right and two-sided annihilators of an ideal U in R coincide. It will be denoted by Ann (U). Note also that $U \cap Ann(U) =$ = 0 and $U \oplus Ann(U)$ is an essential ideal (i.e., $(U \oplus Ann(U)) \cap I \neq 0$ for every nonzero ideal I of R). We will be especially concerned with semiprime rings R in which the annihilator of any ideal is a direct summand; that is, $\operatorname{Ann}(U) \oplus \operatorname{Ann}(\operatorname{Ann}(U)) = R$ for any ideal U of R. Every von Neumann algebra has this property; namely, the annihilator of any ideal in a von Neumann algebra R is σ -weakly closed, therefore it is of the form pR for some central projection p in R. More generally, the same is true for Baer *-rings, and, therefore, for AW^* -algebras (see, e.g., [2]).

The results

Lemma 1. Let R be a 2-torsion free semiprime ring, d be an (α, β) -derivation of R and g be a (γ, δ) -derviation of R. Suppose that the composition dg is an $(\alpha\gamma, \beta\delta)$ derivation, and suppose that g commutes with both γ and δ . Then $g(x)R(\alpha^{-1}d)(y)=0$ for all $x, y \in R$.

Proof. We have h=dg is a $(\alpha\gamma, \beta\delta)$ -derivation. Consequently $(\beta^{-1}d)(g\delta^{-1}) = =\beta^{-1}h\delta^{-1}$; that is, the composition of a $(\beta^{-1}\alpha, 1)$ -derivation $\beta^{-1}d$ and a $(\gamma\delta^{-1}, 1)$ -derivation $g\delta^{-1}$ is a $((\beta^{-1}\alpha)(\gamma\delta^{-1}), 1)$ -derivation $\beta^{-1}h\delta^{-1}$. We will show that $g\delta^{-1}$ commutes with $\gamma\delta^{-1}$. Note that this implies that there is no loss of generality in assuming $\beta=1$ and $\delta=1$.

Thus, let us prove that $g\delta^{-1}$ and $\gamma\delta^{-1}$ commute. Since g commutes with γ and δ , it suffices to show that $g\gamma\delta^{-1}=g\delta^{-1}\gamma$. By the definition of (γ, δ) -derivations we have

$$\begin{aligned} (\gamma g)(xy) &= \gamma^2(x)(\gamma g)(y) + (\gamma g)(x)(\gamma \delta)(y), \\ (g\gamma)(xy) &= \gamma^2(x)(g\gamma)(y) + (g\gamma)(x)(\delta\gamma)(y). \end{aligned}$$

Since we have assumed that $yg=g\gamma$ the relations imply that $(g\gamma)(x)(\gamma\delta-\delta\gamma)(y)=0$ for all $x, y \in R$; but γ is onto, so we also have $g(x)(\gamma\delta-\delta\gamma)(y)=0$ for all $x, y \in R$. Substituting xz for x it follows easily that $g(x)R(\gamma\delta-\delta\gamma)(y)=0$ for all $x, y \in R$. In particular, $g((\gamma\delta-\delta\gamma)(x))R(\gamma\delta-\delta\gamma)(g(x))=0$ for every x in R. Since g commutes with $\gamma\delta-\delta\gamma$, and since R is semiprime, it follows that $g\gamma\delta=g\delta\gamma$. Multiplying this relation from the right and from the left by δ^{-1} we arrive at $g\delta^{-1}\gamma=g\gamma\delta^{-1}$.

Now, we may assume that $\beta = \delta = 1$. A direct computation shows that

$$(dg)(xy) = (\alpha\gamma)(x)(dg)(y) + (d\gamma)(x)g(y) + (\alpha g)(x)d(y) + (dg)(x)y$$

On the other hand, since dg is an $(\alpha y, 1)$ -derivation, we have

$$(dg)(xy) = (\alpha \gamma)(x)(dg)(y) + (dg)(x)y.$$

Comparing the two expressions so obtained for (dg)(xy), we see that

(1)
$$(d\gamma)(x)g(y) + (\alpha g)(x)d(y) = 0 \text{ for all } x, y \in \mathbb{R}.$$

Replacing y by yz in (1) we obtain

$$(d\gamma)(x)\gamma(y)g(z)+(d\gamma)(x)g(y)z+(\alpha g)(x)\alpha(y)d(z)+(\alpha g)(x)d(y)z=0.$$

By (1) this relation reduces to

(2) $(d\gamma)(x)\gamma(y)g(z)+(\alpha g)(x)\alpha(y)d(z)=0 \text{ for all } x, y, z\in R.$

Replacing y by g(y) in (2) and using the assumption that g commutes with y, we then get

 $(d\gamma)(x)g(\gamma(y))g(z)+(\alpha g)(x)(\alpha g)(y)d(z)=0.$

On the other hand, using (1) twice we obtain

$$\{(d\gamma)(x)g(\gamma(y))\}g(z) = -(\alpha g)(x)\{(d\gamma)(y)g(z)\} = (\alpha g)(x)(\alpha g)(y)d(z).$$

Comparing the last two relations we get $2(ag)(x)(\alpha g)(y)d(z)=0$ for all $x, y, z \in \mathbb{R}$. Since R is 2-torsion free we then have

$$0 = \alpha^{-1}((\alpha g)(x)(\alpha g)(y)(d)(z)) = g(x)g(y)(\alpha^{-1}d)(z).$$

Thus $g(x)g(y)(\alpha^{-1}d)(z)=0$ for all x, y, $z \in R$. Replacing x by xu it follows at once that $g(x)Rg(y)(\alpha^{-1}d)(z)=0$; similarly we see that $g(x)Rg(y)R(\alpha^{-1}d)(z)=0$. The semiprimeness of R then yields $g(y)R(\alpha^{-1}d)(z)=0$ and so the lemma is proved.

As an immediate consequence of Lemma 1 we obtain the following generalization of Posner's theorem.

Corollary 1. Let R be a prime ring of characteristic not 2, d be an (α, β) -derivation of R, and g be an (γ, δ) -derivation of R. Suppose that g commutes with both γ and δ . If the composition dg is an $(\alpha\gamma, \beta\delta)$ -derivation then either d=0 or g=0.

Example. The assumption that g commutes with both γ and δ is not superfluous. Moreover, the following simple example shows that it cannot be replaced by the assumption that d commutes with both α and β . Suppose that a prime ring with unit element 1 contains elements a and b such that $a^2=0$, $b^2=1$, ab+ba=0, and a, b do not lie in the center of R (for example, in the ring of 2×2 matrices the elements

$$a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

satisfy these conditions). Define the inner automorphism γ by $\gamma(x)=bxb$ and the $(\gamma, 1)$ -derivation g by $g(x)=\gamma(x)ba-bax; g\neq 0$ since $g(x)a=-baxa\neq 0$ for some $x\in R$ by the primeness of R. If d is the inner derivation, d(x)=ax-xa, then dg=0.

We need two easy lemmas.

Lemma 2. Let R be any ring and Θ be an automorphism of R. If Θ maps an ideal W onto itself then Θ maps Ann (W) onto itself.

Proof. Given $w \in W$, $u \in Ann(W)$ we have $0 = \Theta(uw) = \Theta(u)\Theta(w)$ and similarly, $\Theta(w)\Theta(u)=0$. By assumption, $\Theta(w)$ is an arbitrary element in W, so it follows that $\Theta(u)\in Ann(W)$. Thus Θ maps Ann(W) into itself. Analogously, Θ^{-1} maps Ann(W) into itself, which means that Θ is onto on Ann(W).

Lemma 3. Let R be a semiprime ring, and let d be an (α, β) -derivation of R which commutes with both α and β . If d maps R into an ideal W of R, then d is zero on Ann (W).

Proof. Given $w \in W$, $u \in \operatorname{Ann}(W)$ we have $u(\alpha^{-1}d)(w) = ud(\alpha^{-1}(w)) \in \operatorname{Ann}(W)W = 0$. Thus $\alpha(u)d(w) = \alpha(u(\alpha^{-1}d)(w)) = 0$. Hence $d(u)\beta(w) = \alpha(u)d(w) + d(u)\beta(w) = d(uw) = 0$. But then also $0 = \beta^{-1}(d(u)\beta(w)) = d(\beta^{-1}(u))w$. That is, $d(\beta^{-1}(u)) \in \operatorname{Ann}(W)$ for any $u \in \operatorname{Ann}(W)$. However, by assumption $d(\beta^{-1}(u))$ lies in W, so we are forced to conclude that $d(\beta^{-1}(u)) = 0$. Since d and β^{-1} commute, d(u) = 0 as well.

We now have enough information to prove the main theorem of this paper.

Theorem 1. Let R be a 2-torsion free semiprime ring, d be an (α, β) -derivation of R, and g be an (γ, δ) -derivation of R. Suppose that d commutes with both α and β , and that g commutes with both γ and δ . If the composition dg is an $(\alpha\gamma, \beta\delta)$ -derivation, then there exist ideals U and V of R such that:

(i) $U \cap V = 0$ and $U \oplus V$ is an essential ideal of R. Moreover, if the annihilator of any ideal in R is a direct summand (in particular, if R is a von Neumann algebra), then $U \oplus V = R$,

(ii) If Θ is any automorphism of R which commutes with d then Θ maps U onto U and V onto V,

(iii) d maps R into U and d is zero on V,

(iv) g maps R into V and d is zero on U. In particular, dg=gd=0.

Proof. Let U_0 be the ideal of R generated by all d(x), $x \in R$. Let $V = \operatorname{Ann}(U_0)$ and $U = \operatorname{Ann}(V)$. Thus (i) holds. If an automorphism Θ of R commutes with d, then $\Theta(xd(y)z) = \Theta(x)d(\Theta(y))\Theta(z) \in U_0$ for all $x, y, z \in R$. Similarly, $\Theta(xd(y)) \in U_0$, $\Theta(d(y)z) \in U_0$ and $\Theta(d(y)) \in U_0$. Thus U_0 is invariant under Θ . Likewise U_0 is invariant under Θ^{-1} . Hence Θ maps U_0 onto itself. From Lemma 2 it follows that Θ maps V onto V, and therefore also U onto U. Thus (ii) is proved. Since d maps R into $U_0 \subseteq U$, (iii) follows immediately from Lemma 3. It remains to prove (iv). In view of Lemma 3 it suffices to show that g(x) lies in v for every $x \in R$. By Lemma 1, since d and α^{-1} commute, we have g(x)Rd(y)=0 for all $x, y \in R$. Thus $g(x) \in$ $\in \operatorname{Ann}(U_0) = V$. Combining (iii) and (iv) we see that dg = gd = 0. The proof of the theorem is complete. Let R be any ring. Suppose that automorphisms α and β of R satisfy $\alpha + \alpha^{-1} = = \beta + \beta^{-1}$ and $\alpha\beta = \beta\alpha$. Multiply the first relation by α , and observe that the relation which we obtain can be written in the form $(\alpha - \beta)(\alpha - \beta^{-1}) = 0$. That is, the composition of the (α, β) -derivation $\alpha - \beta$ and the (α, β^{-1}) -derivation $\alpha - \beta^{-1}$ is equal to zero. Note that all the requirements of Theorem 1 are fulfilled. Thus we have

Corollary 2. Let R be a 2-torsion free semiprime ring. Suppose that automorphisms α and β of R satisfy $\alpha + \alpha^{-1} = \beta + \beta^{-1}$. If α and β commute then there exist ideals U and V of R such that:

(i) $U \cap V = 0$ and $U \oplus V$ is an essential ideal. Moreover, if the annihilator of any ideal in R is a direct summand (in particular, if R is a von Neumann algebra) then $U \oplus V = R$,

(ii) α and β map U onto U and V onto V, (iii) $\alpha = \beta$ on V,

(iv) $\alpha = \beta^{-1}$ on U.

We conclude this paper with the following direct consequence of Corollary 2.

Corollary 3. Let R be a prime ring of characteristic not 2. Suppose that automorphisms α , β of R satisfy $\alpha + \alpha^{-1} = \beta + \beta^{-1}$. If α and β commute then either $\alpha = \beta$ or $\alpha = \beta^{-1}$.

We leave as an open question whether or not the assumption that α and β commute can be removed in Corollary 3 (it certainly cannot be removed in the case *R* is semiprime, as Thaheem [17] has shown).

References

- C. J. K. BATTY, On certain pairs of automorphisms of C*-algebras, J. Austral. Math. Soc. (Series A), 46 (1989), 197-211.
- [2] S. K. BERBERIAN, Baer *-rings, Springer-Verlag (Berlin/New York, 1972).
- [3] J. BERGEN, I. N. HERSTEIN and J. KERR, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259-267.
- [4] M. BREŠAR, On the distance of the composition of two derivations to the generalized derivations, *Glasgow Math. J.*, 33 (1991), 89-93.
- [5] M. BREŠAR and J. VUKMAN, Orthogonal derivations and an extension of a theorem of Posner, Rad. Mat., 5 (1989), 237-246.
- [6] A. VAN DAELE, A new approach to the Tomita—Takesaki theory of generalized Hilbert algebras, J. Funct. Anal., 15 (1974), 387–393.
- [7] U. HAAGERUP and H. HANCHE-OLSEN, Tomita—Takesaki theory for Jordan algebras, J. Operator Theory, 11 (1984), 343—364.
- [8] U. HAAGERUP and C. F. SKAU, Geometric aspects of the Tomita—Takesaki theory. II, Math. Scand., 48 (1981), 241—252.
- [9] C. LANSKI, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math., 134 (1988), 275---297.

374

- [10] M. MATHIEU, Properties of the product of two derivations of a C*-algebra, Canad. Math. Bull., 32 (1989), 490-497.
- [11] M. MATHIEU, More properties of the product of two derivations of a C*-algebra, Bull. Austral. Math. Soc., 42 (1990), 115-120.
- [12] E. POSNER, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
- [13] A. B. THAHEEM, On a decomposition of a von Neumann algebra, Rend. Sem. Mat. Univ. Padova, 65 (1981), 1-7.
- [14] A. B. THAHEEM, On the operator equation $\alpha + \alpha^{-1} = \beta + \beta^{-1}$, Internat. J. Math. & Math. Sci., 9 (1986), 767-770.
- [15] A. B. THAHEEM, On certain decompositional properties of von Neumann algebras, Glasgow Math. J., 29 (1987), 177-179.
- [16] A. B. THAHEEM, On the operator equation $\alpha + \alpha^{-1} = \beta + \beta^{-1}$. II, Rad. Mat., 4 (1988), 343-349.
- [17] A. B. THAHEEM, On pairs of automorphisms of von Neumann algebras, Internat. J. Math. & Math. Sci., 12 (1989), 285-290.
- [18] A. B. THAHEEM and M. AWAMI, A short proof of a decomposition theorem of a von Neumann algebra, Proc. Amer. Math. Soc., 92 (1984), 81-82.

UNIVERSITY OF MARIBOR DEPARTMENT OF MATHEMATICS PF, KOROŠKA 160 62 000 MARIBOR SLOVENIA