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On the compositions of (x, g)-derivations of rings,
and applications to von Neumann algebras

. MATEJ BRESAR

Introduction

There are two motivations for this research. The first one is an old and well-
known result of E. PosNER {12]:

Theorem A. Let R be a prime ring of characteristic not 2. If the composition of
derivations d, g of R is a derivation, then either d=0 or g=0.

A number of authors have proved extensions of this theorem; we refer the
reader to some ring-theoretic results {3, 5, 9] and to some results from analysis
[4, 10, 11]. *

The other motivation comes from the theory of von Neumann algebras. In a
series of papers A. B. Thaheem and some other authors have studied the identity
a+a l=F+8"1 where « and § are automorphisms of a von Neumann algebra.
This identity plays an important role in the Tomita—Takesaki theory (see, e.g.,
[6, 7, 8]). In [13 and 14] and in a joint paper with Awami [18], THAHEEM has given
various proofs of the following theorem.

Theorem B. Let R be a von Neumann algebra and «, § be *-automorphisms of
R satisfying a+a~ =B+B"1. If a and B commute then there exists a central pro-

Jection p in R such that a(p)=p(p)=p, a=B on pR, and a=p~* on (1-p)R.

For other results concerning the identity a+a~'=+5"1 we refer to some
recent papers [1, 15, 16, 17) where further references can be found.

It is our aim in this paper to extend Theorem A to more general mappings on
more general rings, so that the special case of this extension gives a generalization
of Theorem B. In particular, our research can be viewed as a new, more elementary
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approach to the study of the identity a+a~'=pF+F~1. In a subsequent paper we
hope to consider this identity without assuming the commutativity of & and .

Let R be a ring and a, f be automorphisms of R. An additive mapping d of R
into itself is called an (o, B)-derivation if

d(xy) = a(x)d(y)+d(x)B(y) forall x,ycR.

An (a, B)-derivation d is said to be inner if there exists a€ R such that d(x)=a(x)a—
—af(x) for all xc€R. Of course, derivations are (1,1)-derivations where 1 is the
identity on R. We will study the case where the composition of an («, f)-derivation
d and a (y, §)-derivation g is an (ay, fé)-derivation. We will first generalize Theorem
A by proving that if R is prime of characteristic not 2 and g commutes with both y
and 6, then either d=0 or g=0 (Corollary 1). An abbreviated version of our main
theorem reads as follows.

. Theorem 1. Let R be a 2-torsion free semiprime ring, d be an («, f)-derivation
of R, and g be a (y, 6)-derivation of R. Suppose that d comnmutes with both o and B,
and that g commutes with both y and . If dg is an (ay, fd)-deriavtion then there exist
ideals U and V of R such that U@V is an essential ideal of R, d=0 onV and g=0
on U. Moreover, if the annihilator of any ideal in R is a direct summand (in particular,
if R is a von Neumann algebra), then U®V =R.

As an immediate consequence of Theorem 1 we obtain that the decomposition
of Theorem B holds in arbitrary semiprime ring in which the annihilator of any
ideal is a direct summand (Corollary 2). Moreover, the assumption that « and &
preserve adjoints is removed (in fact, we do not work in rings with involution).

t
AY

Preliminaries

Throughout, R will represent an associative ring. Recall that R is prime if
aRb=0 implies that a=0 or b=0. R is said to be semiprime if aRa=0- implies
that a=0. Equivalently, R is semiprime if it has no nonzero nilpotent ideals. Every
C*-algebra is semiprime (for O0=aa*a€aRa if a=#0). A von Neumann algebra is
prime if and only if it is a factor (i.e., its'center consists of scalar multiples of the
identity). : I o ) -

‘Let R be semiprime. Suppose that aRb=0 for some a, bcR. Then we also
have (bRa)R(bRa)=0, abRab=0, baRba=0, and therefore bRa=0, ab=0, ba=0
since R is semiprime. Note that the left and right and two-sided. annihilators of an
ideal U in R coincide. It will be denoted by Ann (U). Note also that UNAnn (U)=
=0 and U@®Ann (U) is an essential ideal (i.e., (U®Ann (U))NI=#0 for every
nonzero ideal I of R). We will be especially concerned with semiprime rings R in
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which the annihilator of any ideal is a direct summand; that is, Ann (U)®
@Ann (Ann (U))=R. for any ideal U of R. Every von Neumann algebra has this
property; namely, the annihilator of any ideal in a von Neumann algebra R is o-
weakly closed, therefore it is of the form pR for some central projection p in R.
More generally, the same is true for Baer *-rings, and, therefore, for AW *-algebras

(see, e.g., [2]).
The results

Lemma 1. Let R be a 2-torsion free semiprime ring, d be an (o, p)-derivation
of R and g be a (y, 0)-derviation of R. Suppose that the composition dg is an (ay, B6)-
derivation, and suppose that g commutes with both y and 8. Then g(x)R(oz“d)( y)=0
Jor all x, yeR. '

Proof. We have h=dg is a (ay, fd)-derivation. Consequently (8~1d)(gd" V)=
=B"1hé"1; that is, the composition of a (~1a, 1)-derivation §~3d and a (y6~1, 1)-
derivation g5 is a ((Ba)(y6~Y), 1)-derivation B~1h6~1. We will show that g62
commutes with yd~1. Note that this implies that there is no loss of generality in
assuming f=1 and é=1. '

Thus, let us prove that g6~ and yé~* commute. Since g commutes with-y and
é, it suffices to show that gyd—1=gd~'y. By the definition of (y, 8)-derivations we

have
(18)(xy) = Y2 (x)(78)(») + (P& (*) (¥d)(»),

(&N (xy) = Y (x)(EN () + (g X)) (»)-

Since we have assumed that yg=gy the relations imply that (gy)(x)(yd—dy)(y)=0

for all x, y€R; but y is onto, so we also have g(x)(y6—3ay)(y)=0 for all x, y€R.

Substituting xz for x it follows easily that g(x)R(y6—4dy)(y)=0 for all x, y€R.

In particular, g((yé—67)(x))R(y0—3y)(g(x))=0 for every x in R. Since g commutes

with y0 —dy, and since R is semiprime, it follows that gyd=gdy. Multiplying this

relation from the right and from the left by 6~ we arrive at gé~'y=gyd~. .
Now, we may assume that ﬁ=5=.1. A direct computation shows that

(dg) (xy) = (@) (x)(dg) () + (@) (X)g() + @) () d(y) +(dg) (x)y-

On the other hand, since dg is an (ay, 1)-derivation, we have
(dg)(xy) = (y)(x)(dg)(») + (dg)(x)y.

Comparing the two expressions so obtained for (dg)(xy), we see that

M @)(x)g(»)+(28)(x)d(y) =0 forall x,yER.
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Replacing y by yz in (1) we obtain

@ @)1 2@+ @)X 2() 2+ ()X 2(») d(2) + (28)(x) d(y) z = 0.
By (1) this relation reduces to :

e @) x)r(»)g@)+@g)(x)a(y)d(z) =0 for all x,y,zER.

Replacing y by g(») in (2) and using the assumption that g commutes with y, we then
get
(@)(x) g (7 () 8(2) + (eg) (x)(2g)(») d(2) = 0.

On the other hand, using (1) twice we obtain

{@e(r(M)} 2@ = — @) {E@(» g2} = (2g)(*)(@g)(»)d(2).

Comparing the last two relations we get 2(ag)(x)(ag)(y)d(z)=0 for all x, y, z€R.
Since R is 2-torsion free we then have

0 = a7 ((2g) () (@) () (d)(2)) = g(x)g(¥)(@™*d)(2).

Thus g(x)g(»)(@~1d)(z)=0 for all x, y, z€ R. Replacing x by xu it follows at once
that g(x)Rg(y)(¢~1d)(z)=0; similarly we see that g(x)Rg(y)R(¢~1d)(z)=0. The
semiprimeness of R then yields g(¥)R(a~'d)(z)=0 and so the lemma is proved.

As an immediate consequence of Lemma 1 we obtain the following generaliza-
tion of Posner’s theorem.

Corollary 1. Let R be a prime ring of characteristic not 2, d be an (o, f)-
derivation of R, and g be an (y, 6)-derivation of R. Suppose that g commutes with
both y and d. If the composition dg is an (ay, Bo)-derivation then either d=0 or g=0.

Example. The assumption that g commutes with both y and & is not super-
fluous. Moreover, the following simple example shows that it cannot be replaced by
the assumption that d commutes with both « and 8. Suppose that a prime ring with
unit element 1 contains elements a and b such that a?=0, b*=1, ab+ba=0, and
a, b do not lie in the center of R (for example, in the ring of 2 X2 matrices the ele-

ments
01 1 0
4=1o ol b=[o—]

satisfy these conditions). Define the inner automorphism y by y(x)=bxb and the

(y, 1)-derivation g by g(x)=y(x) ba—bax; g#0 since g(x)a=—baxa=0 for some

x€R by the primeness of R. If d is the inner derivation, d(x)=ax—xa, then dg=0.
We need two easy lemmas,

Lemma 2. Let R be any ring and © be an automorphism of R. If © maps an
ideal W onto itself then ©@ maps Ann (W) onto itself.
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Proof. Given weW, uc Ann (W) we have 0=0(uw)=0(1)O(w) and sim-
ilarly, @(w)@(u)=0. By assumption, @(w) is an_arbitrary element in W, so
it follows that @(u)CAnn (W). Thus @ maps Ann (W) into itself. Analogously,
©~ maps Ann (W) into itself, which means that @ is onto on Ann (W).

Lemma 3. Let R be a semiprime ring, and let d be an (a, f)-derivation of R
which commutes with both « and . If d maps R into an ideal W of R, then d is zero on
Ann (W).

Proof. Given weW, ucAnn(W) we have u(a~d)(w)=ud(a " (W))€
€Ann (W)W =0. Thus a(u)d(w)=o(u(a"1d)(w))=0. Hence d(u)f(w)=a(u)d(w)+
+d(u)f(w)=d(uw)=0. But then also 0=p"Yd(u)B(w))=d(B~1(u))w. That is,
d(B~*(w))€Ann (W) for any ucAnn(W). However, by assumption d(8~(u))
lies in W, so we are forced to conclude that d(ﬂ‘l(u))=0. Since d and ! commute,
d(u)=0 as well.

We now have enough information to prove the main theorem of this paper-

Theorem 1. Let R be a 2-torsion free semiprime ring, d be an (o, B)-derivation
of R, and g be an (y, d)-derivation of R. Suppose that d commutes with both « and B,
and that g commutes with both y and 4. If the composition dg is an (ay, pd)-derivation,
then there exist ideals U and V of R such that:

(i) UNV=0 and U@V is an essential ideal of R. Moreover, if the annihilator
of any ideal in R is a direct summand (in particular, if R is a von Neumann algebra),
then U@V =R, ‘

(ii) If © is any automorphism of R which commutes with d then © maps U onto
UandV ointo V,

(iii) d maps R into U and d is zero on V,

(iv) g maps R into V and d is zero on U.
In particular, dg=gd=0.

Proof. Let U, be the ideal of R generated by all d(x), x€ R. Let ¥V=Ann (U,)
and U=Ann (V). Thus (i) holds. If an automorphism & of R commutes with d,
then @(xd(y)z)=0(x)d(O(»))O(z)€U, forall x, y, z€R. Similarly, @(xd())eU,,
©(d(y)2)eU, and O(d(y))€U,. Thus U, is invariant under ©. Likewise U, is
invariant under @~. Hence @ maps U, onto itself. From Lemma 2 it follows that
© maps ¥V onto V, and therefore also U onto U. Thus (ii) is proved. Since d maps R
into U,SU, (iii) follows immediately from Lemma 3. It remains to prove (iv).
In view of Lemma 3 it suffices to show that g(x) lies in v for every x¢R. By Lemma
1, since d and a~* commute, we have g(x)Rd(y)=0 for all x, y¢ R. Thus g(x)€
€Ann (Uy)=V. Combining (iii) and (iv) we see that dg=gd=0. The proof of the
theorem is complete.
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-Let R be any ring. Suppose that automorphisms « and § of R satisfy a+a™1=
=f+p7* and af=pPa. Multiply the first relation by o, and observe that the relation
which we obtain can be written in the form (¢—pB)(x—pB~)=0. That is, the com-
position of the («, f)-derivation «—pf and the (a, f~1)-derivation a—p~* is equal
to zero. Note that all the requirements of Theorem 1 are fulfilled. Thus we have

Corollary 2. Let R be a 2-torsion free semiprime ring. Suppose that auto-
morphisms o and B of R satisfy a+a~1=p+p~1. If a and B commute then there
exist ideals U and V of R such that:

(i) UNV=0 and UV is an essential ideal. Moreover, if the annihilator of
any ideal in R is a direct summand (in particular, if R is a von Neumann algebra)
then U®V =R,

(ii) « and B map U onto U and V ontoV,

(iii) a=p onV,

(iv) a=B"1 on U.

We conclude this paper with the following direct consequence of Corollary 2.

Corollary 3. Let R be a prime ring of characteristic not 2. Suppose that
automorphisms «, B of R satisfy a+oa~*=p+p71. If a and B commute then either
a=f or a=p"L

We leave as an open question whether or not the assumption that « and f§
commute can be removed in Corollary 3 (it certainly cannot be removed in the
case R is semiprime, as Thaheem [17] has shown).
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