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Abstract. In this paper we study a non-homogeneous eigenvalue problem involving
variable growth conditions and a sign-changing potential. We prove that any A > 0
sufficiently small is an eigenvalue of the nonhomogeneous eigenvalue problem

—div(a(|Vu|)Vu) = AV(x)|[u|7™"2y, inQ,
u=20, on 0Q).

The proofs of the main results are based on Ekeland’s variational principle.
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1 Introduction

Let O C RN(N > 3) be a bounded domain with smooth boundary 9Q). We assume that the
function a : (0,c0) — R is such that the mapping ¢ : R — R defined by

_Ja(|t))t, fort#0,
o) = {O, fort =0,

is an odd, increasing homeomorphism from R onto R. We also suppose throughout this

paper that A > 0, V is an indefinite sign-changing weight and g : Q) — (1, o) is a continuous

function. In this note we study the following nonlinear eigenvalue problem:
—div(a(|Vu|)Vu) = AV(x)|u]1™)~2u, inQ, )
u=20, on dQ).

The interest in analyzing this kind of problems is motivated by some recent advances in

the study of eigenvalue problems involving non-homogeneous operators in the divergence
form. We refer especially to the results in [5,6,11,13-16,18].
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Mihdilescu and Radulescu, in [13], studied the same nonhomogeneous eigenvalue prob-
lem in the particular case when V(x) = 1. The authors proved, under the assumption
1 < infyeqg(x) < po, that there exists Ay > 0 such that any A € (0,Ap) is an eigenvalue
for problem (P).

In order to go further we introduce the functional space setting where problem (P) will
be discussed. In this context we notice that the operator in the divergence form is not ho-
mogeneous and thus, we introduce an Orlicz-Sobolev space setting for problems of this type.
Orlicz-Sobolev spaces have been used in the last decades to model various phenomena. Chen,
Levine and Rao [3] proposed a framework for image restoration based on a variable exponent
Laplacian. A second application which uses variable exponent type Laplace operators is
modelling electrorheological fluids [9]. On the other hand, the presence of the continuous
functions s and g as exponents appeals to a suitable variable exponent Lebesgue space setting.
In the following, we give a brief description of the Orlicz-Sobolev spaces and of the variable
exponent Lebesgue spaces.

We first recall some basic facts about Orlicz spaces. Define

0 :/Otcp(s)ds, (1) :/Ot<p1(s)ds, Vi € R

We observe that ® is a Young function, that is, ®(0) = 0, ® is convex, and lim;_,o (t) = +o0.

Furthermore, since ®(0) = 0 if and only if f = 0, lim;_,o % =0, and lim;_eo % = +o0, then

® is called an N-function. The function ®* is called the complementary function of ® and it
satisfies

®*(t) = sup{st — P(s) : s > 0}, vt > 0.
We also observe that ®* is also an N-function and the following Young’s inequality holds true:
st < D(s) + D*(t), Vs, t > 0.

The Orlicz spaces Lo(Q)) defined by the N-function ® (see [1,2,4]) is the space of measurable
functions u : 3 — R such that

||, = sup {/Q uovdx : /()@*(\v])dx < 1} < +o00.

Then (Lo (Q), || - ||, ) is a reflexive Banach space whose norm is equivalent to the Luxemburg

norm
||u||q>:inf{y>0:/ cp(”)dxgl}.
o \p

For Orlicz spaces, Holder’s inequality reads as follows (see [17]):
/qudx <2lulliyllolle, Vi € Lo(Q), Yo € Lot (Q).

We denote by W} Lo (Q) the corresponding Orlicz-Sobolev space for problem (P), equipped
with the norm

[ull = [Vullo

(see [8]). The space W} Lo (Q) is also a Banach space.
Throughout this paper we assume that

tp(t)

t(t)

1 < liminf <limsup —— < o0 (1.1)
B o) Ty ()
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and the function [0, +c0) > t — ®(y/t ) is convex. Due to assumption (1.1), we may define
the numbers

tP(t) 0 t(t)
o = inf and =su .
P 2o () S EI0
Note that for a(|t|) = [t|P=2,p > 1, one has py = p° = p.
On the other hand, the following relations hold true:
Hu||p0 < / O(|Vul|)dx < |[ul|F°, Yu e W&I@(Q) with [Ju]| <1, (1.2)
Q
[P0 < / PO(|Vul)dx < HuH”O, Yu e W&L¢(Q) with |lu| > 1 (1.3)
Q

(see [12, Lemma 1]).
Let us now introduce the Orlicz-Sobolev conjugate @, of ®, which is given by

t p-1
o7t = / @ M(ls)ds, (1.4)
0 s N
(see [1]), where we suppose that
. Lo~1(s) . E~1(s)
%13(} A= ds < +o0 and tlgglo A SN?ds = 0. (1.5)

In the case ®(t) = %Mp, (1.5) holds if and only if p < N.

2 The main result and proof of the theorem

We say that A € R is an eigenvalue of problem (P) if there exists u € W!Lo(Q)\{0} such that
/ a(|Vu) VuVodx — A/ V() )™ 2updx = 0,
o) o)

for all v € W{Lqe(Q)). We point out that if A is an eigenvalue of problem (P), then the corre-
sponding eigenfunction v € WiLe(€Q)\{0} is a weak solution of problem (P).
Our main result is given by the following theorem.

Theorem 2.1. Suppose that (1.5) and the following conditions hold:
H(q,s): 1<g(x) <po<p’<s(x), Vx € Q.

,q+

H(®): lim I "

H(V): V € LW(Q) and there exists a measurable set Qg C Q) of positive measure such that
V(x) >0, Vx € Q.

Then there exists Ay > 0 such that any A € (0, Ag) is an eigenvalue of the problem (P).

Proof. In order to formulate the variational problem (P), let us introduce the functionals
F, G, ¢x : W} Lo(Q) — R defined by

|u|7) dx

F(u) :/Qd>(|Vu|)dx, G(u) :/Q‘;((;‘))



and
pr(u) = F(u) — AG(u).
s(x)q(x)

Denote by s'(x) the conjugate exponent of the function s(x) and put a(x) := ; a0 From

H(q,s), we have s'(x)g(x) < a(x), Vx € O, a(x) < Ssi_q;, Vx € Q. Thus, by relation (1.5),
condition H(®) and Theorem 2.2 in [7], we deduce that W!Ly(Q) is compactly embedded
—t

B + S

in L (Q)). That fact combined with the continuous embedding of L#(Q) in L*™)(Q))
ensures that W} Lo (Q) is compactly embedded in L**) (Q)). In an analogous way, we can show
that the embedding X < L¥(*)4()(Q) is compact.

The proof is divided into the following four steps.
Step 1. We will show that ¢, € C}(W!Lo(Q), R).

Firstly, by Lemma 3.4 in [7] we deduce that F is a C! convex functional, with Fréchet
derivative given by

(F'(1),0) = / a(|Vu|)VuVodx.
0
Therefore, we only need to prove that G € Cl(W&LQ(Q),R), that is, we show that for all
he W&L@(Q),
lim G(u+th) — G(u)
t10 t
and dG : WiLo(Q) — (W} Le(Q)))* is continuous, where we denote by (WiLe(Q))* the dual
space of WiLe(Q), (-, ) is the pairing between (W!Lo(Q))* and WiLe(Q).
For all i € W} Lo (Q)), we have

= (dG(u),h),

lim G(u+th) — G(u) _
t10 t

dtG(u + th)

t=0

dx
t=0

= (dG(u), h).

The differentiation under the integral is allowed for ¢ close to zero. Indeed, for |t| < 1,
using Holder’s inequality and condition H(q, s), we have

/]V(x)]u—i—th\q(")’z(u—i—th)h]dxg / V(%) + th) 7D~ ||dx
(@) Q
< / [V ()| (Ja] =+ [1]) 70 ||
QO

-1
< 3|V|s(x)“u| + |hHZ(x) |h|tx(x)
< + oo,

where i = + if ||u| + ]th(x) >Tlandi= —if |Ju| + ]th(x) < 1. Since WiLo(Q) — L¥¥(Q)),
WiLe(Q) < L19)(Q) and V € LW (Q).
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On the other hand, since W} Ly (Q) is continuously embedded in L*)(Q) it follows that
there exists positive constants ¢ such that |l < c1/|h]|. Therefore, by condition H(q, s), we
have

|<dc<u»lw\::\/;rv<xﬂurﬂ“2uhdx

< [Vl
Q

1 gt 1
< [ = il
< (S_ +q+_1+“_> Vs

|u|q(x)—1‘7

q(
1 ' 1 g1
(S M “> Vs [l oy 1Pl

1 q+ 1 qi—l
<a (4 g o ) kbl I,

q(x) |h|“(x)
x)—1

IN

for any h € Wi Lo (Q).

Thus there exists ¢, = ¢ (& + qf—il +-1) [V ]sx) ]u\zl(;)l such that
[(dG(u), h)| < ca|]].

Using the linearity of dG(u) and the above inequality we deduce that dG(u) € (WiLa(Q))*

_9(x)
Note that map LY (Q) > u s |u|7®-2y ¢ Lﬂqu(Q) is continuous. For the Fréchet
differentiability, we conclude that G is Fréchet differentiable. Furthermore,

(G'(u),v) =/QV(x)\u|‘7(x)’2uvdx,

forall u,v € W& Lo (Q2). The Step 1 is completed.

It is clear that (1, A) is a solution of (P) if and only if F/(u) = AG'(u) in (WiLa(Q2))*.
Step 2. There exists Ag > 0 such that for any A € (0,A¢) there exist 7,4 > 0 such that
@r(u) > a >0 for any u € WlLe(Q) with [Jul| = 7.

Since the embedding W} Le(Q) — L¥®1)(Q) is continuous, we can find a constant
c3 > 0 such that

’u|s’(x)q(x) < C3||MH, Yu € W&L@(Q) (2.1)

Let us fix T € (0,1) such that T < % Then relation (2.1) implies [u[y(y)sx) < 1, for all
u € WlLo(Q) with ||u]| = 7. Thus,

| VGl < Vg [fuft?
QO

s/ (x) < |V|S(x)|u|z(x)s/(x)/ (22)

for all u € WiLo(Q) with |Ju]| = 7.
Combining (2.1) and (2.2), we obtain

[ Ve < o Vi Jul”, @3
Q

for all u € W}Lo(Q) with |ju]| = p.
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Taking into account relations (1.2) and (2.3) we deduce that for any u € WjLe(Q) with
|lu|| = T < 1, we have

V(x)
q(x)

‘u|q(X)

oa(u) = /Qq)(Wu\)dx—/\/Q

0 )ch_ -
> full? —q—E\V!smHqu

- 0_ — )\qu
= 7! (Tp 9 _qE’V’s(x)>'

Putting
po=q -
Ao = - 2 4 :
C3 ’V‘s(x)
then for any A € (0,A¢) and u € X with [|u|| = 1, there exists 2 = T, such that

pr(u) >a>0.

Step 3. There exists & € W} Lo(Q) such that ¢ > 0, & # 0 and ¢, (t¢) < 0, for t > 0 small
enough.

In fact, assumption H(q, s) implies g(x) < po, Vx € Qp. In the sequel, we use the notation
qo = info, q(x) and g4 = supq, q(x). Thus, there exists &g > 0 such that g, + o9 < po.

Since g € C(Q)y), there exists an open set ()1 C Q) such that

‘q(x) - qa’ < €, Vx € ().

Thus, we deduce
q(x) < qq + eo, Vx € Q). (2.4)

Take & € C () such that Oy C supp(), &(x) =1forx € Oy and 0 < ¢ < 1in Q.
We also point out that there exists fp € (0,1) such that for any ¢ € (0, ty) we have

[EIVE] = eligl < 1. (2.5)

Using (1.3), (2.4) and (2.5), for all t € (0,1), we get the estimate

oA(t8) = [ @(tVE])x -

x)g]1e)

t JC
<tlele - [ vl
<o — 5 [ at v<x>\¢w<x>
o /O

Ato €0
< tho po _ / Vix q(x)
el == | Vel

0

L ) ) Ao, V(@)pl1)

Then, for any t < t/07% 0 with 0 < T < min {1 7 H HE } we conclude that

PaA(t) <0
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By Step 2, we have

inf > 0. 2.6
UE$I§(J(O) GD/\(U) 2.6)

On the other hand, by Step 3, there exists & € W{ Lo (Q)) such that ¢, (t&) < 0 for t > 0
small enough. Using (2.3), it follows that
0 - —
(1) = [[ull?”” = Ac] [Vl llull”,  Vu € By(0).

Thus,

—o0 < cy:= inf ¢@,(v) <O0.
vEB,(0)

Now let ¢ be such that 0 < & < inf,c3p (o) ¢a(v) — infyep,(0) a(v). Then, by applying
Ekeland’s variational principle to the functional

¢r:Bp(0) = R,

there exists u; € B,(0) such that

pa(ue) < inf _@,(0) +¢
vEB,(0)

pa(ite) < pa(u) Fellu—uell,  u £

Since

Uug) < inf v)+e< inf v)+e< inf v),
@ () s @A (0) o) @A (0) vt ) @A (0)

we deduce that u. € B,(0).

Now, we define T) : B,(0) — R by
Ta(u) = @a(u) + eflu — ul].

It is clear that u, is a minimum of T,. Therefore, for small t > 0 and v € B;(0), we have

Dh(ue +t0) = Th(ue)
t — 4
which implies that
@ (ue + t0) — @) ()
t

+el|o]| > 0.

As t — 0, we have
(dop(ue),v) +¢€llv]| >0, Yo € B1(0).

Hence, ||¢), (u¢)[|x+ < e. We deduce that there exists a sequence {u,}: ; C B,(0) such that

n=1

or(un) —cy and ¢\ (u,) — 0. (2.7)

It is clear that {u,}% ; is bounded in W}Le(Q2). Since W} Le(Q) is reflexive, there exists a
subsequence, still denoted by {u, }?°_;, and u € W}!Le(Q) such that {u,}5°_; converges weakly
to u in WiLe(Q).
Step 4. We will show that 1, — u in W} Lo (Q).

Claim:

lim [ V(x)|un|7 20, (1, — u)dx = 0.
n—oo /O
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In fact, from the Holder type inequality, we have

/ V (x) |14 |19 200,, (1 — 1) dx
0

< ‘V|s(x) |un|q(x)72”n(“n —u)

s'(x)

s [ = ey
q(x)—1

+-1
< Ve (14 Tl 1) fon = g

< ‘V|s(x) |un|q(x)_2un

Since W} Lo (Q) is continuously embedded in L1*) (Q)) and {u,, }* is bounded in W} Lo (Q),
so {u,} is bounded in L1*)(Q)). On the other hand, since the embedding WiLe(Q) —
L*¥)(Q)) is compact, we deduce that |u, — ul «(x) — 0 as n — +oo. Hence, the proof of the
claim is complete.

Moreover, since d@, (1,) — 0 and {u,} is bounded in W}La(Q2), we have

[(dpa(un), un — u)]
< [{doa(un), un)| + [{da (), u)|
< Nl da(un) [lw Lo ()« 11nll + 1d@r () | w2y N4l

that is,
im (dep(un), up —u) =0.

n—r—40o0

Using the previous claim and the last relation we deduce that

HLHEOO Qa(\Vun\)VunV(un —u)dx =0. (2.8)

From (2.8) and the fact that u,, — u in W Le(Q) it follows that

nimw<F/(u”)’ u, —u) = 0. (2.9)
Next, we show that u, — u in WiLe(Q). Since {u,} converges weakly to u in WL (Q)
it follows that {||u,||} is a bounded sequence of real numbers. That fact and relations (1.2)
and (1.3) yield that the sequence {F(u,)} is bounded. Then, up to a subsequence, we deduce
that F(u,) — c. The function F being convex, from Mazur’s lemma, it is also weakly lower

semi-continuous. Hence
F(u) < liminf F(u,) = c. (2.10)

n—00
On the other hand, since F is convex, we have
F(u) > F(un) + (F'(tn), 1 — tp). (2.11)
Furthermore, relations (2.9), (2.10) and (2.11) imply
F(u) =c.

Taking into account that {2} converges weakly to u in W}Ly(Q)) and using the above
method we find

c=F(u) §F<u”+u>.

: (2.12)
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We assume by contradiction that {u,} does not converge to u in W}Lqe(Q)). Furthermore,
we deduce that {2} does not converge to 1 in WjLo(Q). It follows that there exist ¢ > 0
and a subsequence {u,, } of {u,} such that

Thus, relations (1.2), (1.3) and (2.13) imply that there exists e; > 0

tn — W H >e  Vk> 1 (2.13)

F(””z_ ”) >e,  Vk>1 (2.14)

Moreover, from hypotheses (1.1) we deduce that we can apply Lemma 2.1 in [10] in order

to obtain . | | | |
t+s t—s
_ > el )
2[@(#])—1—(1)(]5])} _<I>< 5 >_|_q><2 ), Vt,s € R

The above inequality yields

%[F(u) +F@)] > (2 0) +F(50), Yo e Wile(0). (215)
Hence, from (2.14) and (2.16), we have
[+ P B ) s B s, vz (2.16)

Letting k — oo in the above inequality we have

Up, +u>

c—¢€ ZlimsupF( 5

k—o0
and that is a contradiction with (2.12). We conclude that u, — u in W}Lo(Q). Thus, in view

of (2.7), we obtain
pr(u) =cy <0 and ¢)(u)=0. (2.17)

The proof is complete. O
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