Short Communication

EFFECTS OF pH AND NITRITE ON POTASSIUM AND PHOSPHATE UPTAKE AND GROWTH OF RICE SEEDLINGS

F. ZSOLDOS and Á. VASHEGYI

Department of Plant Physiology, József Attila University, H-6701 Szeged, P.O.B. 654, Hungary

(Received: July 1, 1990)

In most soils NO_2^- is usually negligible, but certain environmental (stress) conditions, e.g. waterlogging, some soil-applied herbicides, heavy metals, high pH, may lead to an accumulation of NO_2^- in the soil solution to concentrations which are toxic to plant roots (HAYNES and SHERLOCK, 1986; MARSCHNER, 1986). This prompted us to study the effects of factors influencing the toxicity of NO_2^- in rice seedlings.

The investigations were carried out on rice seedlings (*Oryza sativa* L. cv. Dunghan shali) grown in nutrient solution in the presence or absence of NO_2^- . The composition of nutrient solution was as follows: NaNO₂ from 0.01 to 5.0 mM, KH₂PO₄ 1.0 mM, Na₂HPO₄ 0.5 mM, CaCl₂ 0.5 mM, MgSO₄ 0.5 mM and micro nutrients as described earlier (ZSOLDOS et al., 1986). Ion uptake was followed via tracer techniques under controlled conditions. All experiments were carried out with three parallel samples (20 seedlings in each group) and the data given below are averages. The main results are as follows.

Even at a concentration of 0.1 mM, NaNO₂ inhibited K⁺ and H₂PO₄⁻ uptake and growth of seedlings (Figs 1. and 2.). The inhibitory effect of NO₂⁻ differed considerably between the nutrients and was also different for the roots and shoots. The toxic effect of NO₂⁻ was strongly influenced by the H⁺ ion concentration of the outer medium. A decrease of the pH in the external solution led to an increased inhibitory effect of NO₂⁻ on both the ion uptake and the growth of seedlings. It is noteworthy that the root hairs are unusually sensitive to NO₂⁻ treatments.

The results obtained suggest that the lower the pH in the root environment, the higher the uptake of NO_2^- by the roots, resulting in an inhibition even at low concentrations of NO_2^- which are otherwise non-toxic to the roots of seedlings.

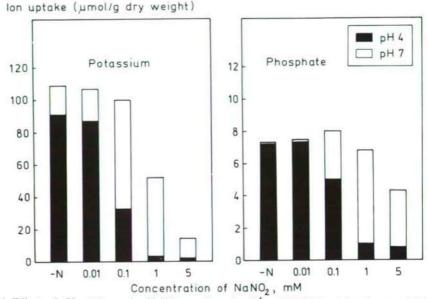


Fig. 1. Effects of pH and increasing NaNO₂ supply on the K⁺ and H₂PO₄⁻ uptake of roots of 7-day-old rice seedlings grown in 0.5 mM CaSO₄ solution in the absence of NaNO₂. Uptake solution: 1 mM K(⁸⁶Rb)Cl + 0.5 mM CaCl₂ + NaNO₂ or 0.5 mM KH₂³²PO₄ + 0.5 mM CaCl₂ + NaNO₂. Uptake time: 1 h. Each value is the mean of 3 replicates. SE did not exceed $\pm 8\%$.

Fig. 2. Effects of increasing NaNO₂ supply on dry weight of 7-day-old rice seedlings grown in nutrient solution. Otherwise as in Fig. 1.

EFFECTS OF PH AND NITRITE

References

HAYNES, R.J. and SHERLOCK, R.R. (1986): Gaseous losses of nitrogen. - In: Mineral Nitrogen in the Plant-Soil System (ed.: R.J. HAYNES). Acad. Press New York, pp. 242-302.

MARSCHNER, H. (1986): Mineral Nutrition of Higher Plants. - Acad. Press, New York, pp. 477-542.

ZSOLDOS, F., HAUNOLD, E. and VASHEGYI, Á. (1986): The effects of phosphate supply on uptake of potassium ions, 2,4-D and atrazine by wheat and maize. - Physiol. Plant. 68, 154-158.