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“The structure of the complexes formed by cobaltous
.chloride with absolute organic solvents, according to
.an analysis of light-absorption curves plotted in the
| visible spectrum

By_GEO:iGE VARsANYI

Introduction. -

According to Hantzseh, also Donnan and Basett, as well as
Dirking, the blue colour of cobalt complexes is related to a coordi-
nation number of four, viz., there is no blue cobalt complex with
a cobrdination number of six, The two complexes can be described
Ty the formulae CoCl.L, and CoClLL, respectively, as chlorine is
situated in the covrdination belt of the complex.

On the basis of research performed earlier in the Iustitute of
Inorganic Chemistry of the University of Szeged, the view expres:
-sed above had to be rejected. My own research appears to substan-
tiate this rejection, as the existence of blue cobaltous chloride com-

-plexes with a codrdination number of six can be regarded: as pro-
ven, on the basis of spcctrophotometrlc aualysis of anhydrous co-
baltous chloride in various organic solvents and the appllca’flon of
Buitable methods of ecalculatjon,

In order to 1nvest1nate the problem, I have observed the vi-
gible-light absor'ptwn of anhydrous cobaltous chloride in methvg
-ethyl-, propyl-, butyﬂ and amylaleohol, as well as pyridine. A cou-
siderable part of my Iinvestigation consists of the measurements
performed on cobaltous chloride dissolved in a. mixture of pyridine
2nd ethylalcohol, the alechol of the highest dipolemoment, and those
‘performed in the two latter solvents both pure and mixted in the

. presence of excess chlorine,

In obtaining my data I have used the Konig—Martens—Griin-
baum. photomieter.

I have plotted the absorpttlon specirum of the solutmn
-of anhydrous . cobaltous chloride in ethylalecohol at a - con-
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centration of 0,00966 moles, in pyridine at the same concentration
(Fig. 1., curves 1. and 2.), also in a mixed solvent of ethylatcohol
znd pyridine, containing 0,25, 0,5, 0,75, 1, 1,b 2, 3, 5, §, 10, 15, 20,
30, 50, and 80% of pyridine,

Method of calculation.

It a solution contains a mixture of two compOunds the extine-
tion-curve of the mixture can be computed for each wave-length,
provided the relative concentration of the two compounds is known:

C &+ CoEy=¢ : (1)
] As we are dealing \v1th molar extinetion coefficients, ¢, +
+e,=1.

> S 4] < ‘

(o] -

Q P 3 \K\Q\ measured; 1. CoCl,Ae,
ol 2 Coll, Py,

3 CoCl,4e,Py

calculated:4. COC’; AeaPy
5. COCQAEZP}/I
s | 6. CoClyAe Py,

700 féﬁﬁl o] _Amu

The experimentally obtained extinctions of the curve plotted
for a mixture of solvents containing 0,25% pyridine greatly differed
from the calculated values, and particularly at 6240 A, as well as
other wawve-lengths the solution absorbed to an extent unparalleled

@by the spectra of either the pure alcoholic or the pure pyridinic
solution at any wave-length. (Curve 3.) As I was convinced by a
control experiment that in a 0,3% pyridine-alcoho] mixture the
extinction decreased near the maximum, two facts became plain.
One is the presence of a well-defined intermediate (CoCl,Ae, Py,),
the other is that the mixture with the most stable intermediate
contains no more than 0.25% of pyridine, because the main strue-
tural characteristic of ihe intermediate was. its ]arge extinction,
which decreased after 0,25%.

If there is only one intermediate present, it should be pos-
sible to compute the curves for cobaltous chloride dissolved in all
other mixtures from the curves of the intermediate and the pure
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.pyridinic solution. I have calculated the extinctions of 14 curves in
8 loei of each and I have compared them with the experimental
results. This showed that on increasing the concentration of pyridine
the curves diverged systematically from the calculated data, so
there must be a second, possﬂoly also & third intermediate. This
fact excludes the possibility of.the codrdination number being four,
as no meaning can be attached to the existence of two intermediates
in a codrdination of four. .

Let us suppose that there is only one intermediate at some gi-
ven concenfration ratio. If its curve were known, the curves to the
left of it could be computed by the means of its left limiting curve,
‘and those to the right of it by means of the right one. Applymg
equation (1) four times:

L aXH(1—Xx)e=0¢, Unknowns : £;,&, Xandy.
x4 (1—x)&=¢ .

gy+(1—y)a=r¢ i o :
CaYFH(l—y)a=s ' . (1)

g and €& are the extinctions of the left limiting curve at wa-
-velengths of 4 and A respectively, x is the proportion in which
the compound represented by the left limiting curve is present ird
the solution represented by the immediately adjacent curve, &, and
AL are the extinctions of the sought intermediate, also at wave-
length of 1 and A’ respectively, & and’ & are the extinctions of the
curve adjacent to the left limiting one, y is the proportion in which.
the ecompound represented by the right limiting curve is present
in the solution represented by the imediately adjacent curve, e, and
¢’, are the extinctions of this adjacent curve at wavelengths of A
and X respectively.

As a result of this ca]cula,tlon I obtamed a eurve which didn’t
resemble any among the series of curves, and when I tried to verify
the. other curves by means of computation from the curve of the
supposed intermediate, I found again great incongruences. There-
fore it is plain that there must be more than two intermediates
between the pure alcoholic and the pure pyridinie complex.

The extinctions now had to be examined in three different
loei, but still the number of equation was too small compared with
the number of unknowns. I had to select at random a curve betweei
those of the two intermediates and unse its extinctions as data at
the three wavelengths. The set-up of the system of equationg is
'comple‘rely analogous with that of system (I): .

& X+ (1 —x)e,=s, Unknowns: &,¢, &/, &,8.,87, X, y and z.
&x—+(1—x) & =¢ ~

g x+(1—x)eg/ =¢g

&yt (l—y)e=g ' S

gy +(1—y)g=2 (1)
& (1 =y)ey—ey

g2+ (1 —2)g,=x¢,

gzt (1—z)e =¢;

ezt (l—z)e) =g
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By computation I obtained the two curves (curves 4. and 5.).
which fitted the series exactly. One fitted between the curves of the
solutions containing 1,5 and 2% of pyridine respectively, the other
hetween those of the solutions containing 8§ and 10%. Having made
conirol calculations for the other curves by using as limiting cur-
ves in each case two of the curves of the three intermediates and
the pure pyridiné solution, I obtained remarkably good congruen-
cies with the experimental idata. On a scale of log e the incon-
gruency nowhere surpassed 0,02.

Computation of the real extinction curves of the mtermedzates

"+ I have obtained, on a purely theoretical basis, most valuablo
data pertaining it the three intermediates in & mixture of ethyl-
alcohol and pyridine without excess chlorine. I found the starting
point for these calculations in Bjerrum’s ,,Metal ammine formation
in agueous solution®. The reaction-equations he starts from deseribe
a process whereby a central nucleus puts on a radical, after which
fresh radicals are added to a preformed centra|1 grouping:

M+LZML
 ML+L2ZML,

MLy_. +LZ MLy

The equilibrium econstants for these equations can be statéd
as follows: R

__ ML}
Ko =ML
K2=__‘[A_4E‘i

"~ MTI[T™
Koeeo IMLs[ -
Y= MLy, (]

» By th means of the equilibrium constants the avarage number
of radicals bound per molecule can be stated:
~ _ [ML]4-2[ML,]+ ... 4N[MLy
[M]+[ML]+[ML:»]-I- - +[MLy]
However :
[ML]—K,[M][L]
[ML,]=K;[ML][L]=K,K,[M][L]?

ML =Ka ML J[L=KK, . . . K [M][L]"

Introducing these quantities and simplifying numerator and
denominator by [M], we obtarin-

, 1+Y L] +K,K3[L] —}—K, KQA . Ky[L]¥ :

The mutual relations of the equllibrium constants can be cha-

racterized by consideration of statistical probability. Let N be the

number. of the radicals which can be put on, and n the quantity
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of radieals bound in a single complex, then we find that the proba-
Lility of the complex putting on ancther radical is proportional
to N—n, and the probability of it releasing one is proportional to n.
The equilibrium constants, then, are respectively proportional to
. the following quantities: . '
1 2 N—n N—n-1 N—I N

N_’N_]""'n_*_l’ n ,...,'2 ,.T
Hence the ratio of the two equilibrium constants can be writ-

ten as:
o K. N—n41nti @)
K.+1 n N—n v '

Actually, Bjerrum states this expression has to be multiplied
in every case by a factor of k% the nvumerical value of which de-
pends upon the mechanism, of the reaction.

In my case this function proved to be acceptable because al-
though it is a process not putting -on, but of exthanging radicals,
still, as the pyridine molecule has a greater dipole moment, the re-
sistence of the alcohol molecules can be expressed by the factor k™

As the first intermediate was found below 0,25%, the second
between 1,5 and 2%, and the third between 8 and 10%, the condi-
tions are tulfilled if and only ‘if k=1,68.

On the basis of the obtained data the equilibrium constame
themselves could be calculated:

K,=116,7, K,=155, K;=2442, K,=03244

Now the actual absorption curve of the intermediates can be
calculated, considering alsc the presence of all five complexes in
the solution. The proportion in which each complex ig represenied
in the solution with' a stable intermediate can be calculated from °
the following ‘system of equatlons

; [M L] P K _J[A_A_Iﬂ]__ — K [M LZ] __K _[_M_I:-J___ — K
MIL] — ™ IMLJIL] T MLL) T ML) "
(M]+[ML]+[ML;] + [MLg}+[ML,]=Coc, (L)

In te case of the individual intermediates: _
CoCl,Ae,Py, CoCLAe,Py, CoCl:AePy,

CoClLAe, 0,2203 00109  + 0,0001
CoCl,Ae,Py 05719 02113 0,0109, o
CoCl,Ae,Py, 0,1971 0,5448 0,1984 .
CoCl,AePy, 0,0107 0,2212 0,5719
CoCl,Py, 0,0001 0,0119 0,2190

1,0001 1,0001 1,0003

Relative to a certam wavelength the following system of equa-
tions can be set up:
0,2203¢&,4-0,5719¢, +0,1971 &,-+0,0107 ¢,+-0,0001 £,=z¢,
0,0109%,+0,2112¢, +0,5448¢,40,2212¢,+0,01195,=¢,
0,0001 &,-} 0,0209 ¢, +0,1984¢,-}-0,5719¢,+ 0,2190 5, =¢,
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g, being the extinctiom of the pure aleohol solution, &, the ex-
tinetion of the first intermediate, ¢, that of the second one, s, that
of the third one, ¢, that of the pure pyrldlne solution. € ¢,.2, are
the three unknown quantities: the actual extinctions of the inter-
mediates at the wavelength considered.

All in all, by means of equation system (II) I have only drawn
the limits of those solvent coneentration ratio at which the inter-
mediates are sbable, all other results have been discarded later. This
caleulus can be applied to any solvent concentration ratio but as
in that case the concentration of free radicals is unknown, the
avarage number of bound radicals has to be computed from equa-
tion (2), the knowledge of Wh_lch enables us to caleulate [L]

e [U=Crp—Co¥

After this it is possible to compute from equation system (III)
in what proportion .the individual complexes' are represented at
the concerned concentration ratio. What’s more, -the extinetions
can be computed from equation (1).

I performed this calenlus for some loci on some curves,.aud
obtained quite as satisfactory a congruency ~with experimental
data as when I had calenlated on the basis of the presence of only
two' intermediates. This is as it should pe, as the curves obtained
from equation systemy (II) were equilibrium curves, so that I had -
taken into account the presence of every complex indirectly, even
though I hadn’t done so directly.

The case of one or iwo intermediates, .

The actual absorption curve of a single intermediate cannot
be computed on a purely theoretical basis. This is the reason why: -

Though the ,equilibrium. curve” of the intermediate has been
computed on the basis of equation system (I) and limits of the con-
centration ratio within which the intermediate complex is stable
have been ascertained, still there are difficulties in calculating %

2N

N 5 K; k) From

and K. (K is just an abbreviation meaning V

equation (3):
K, . K K
K =4k,; 5—1—(——2K2k K; K,=2Kk; K,;= % .
Substituing this into the formula expressing the avarage num-
ber of bound radicals relative to the solution in which the i.ater-
mediate is stable:!
- 2Kk{L[+2K*[L]?

T 2Kk [L]F R
We now have one equation with three unknowns. The -.umber
of unknowns can be reduced by one if we narrow the concentration
interval experimentally until the last experimental surve coincides
with the curve compiited on.the basis of equation system \I) So we
determine [L] experimentally:

[L] = CI’y - CCu
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We still have two unknowns, k and K, but K can be computed
from (4):

le[L12=1+Kf[L12K= m' )

‘% however can be nowise .expressed by fhe means of a singie
equation containing [L] without obtaining an identity:

ML) _ ML K
L) — =25 vy T2k
_[[AA/?_]’I]EL— =K* According to (5): M{L;J=[M] °

Therefore, in the solution, in which the single intermediate
is stable, the concentrations of the two limit compounds are equal.

Approaching to the problem from another angle, let us express
[ML] as a function of radical concentration:

[ML1=2 Kk[MT (L] . g ' (6)

[L] =Cx—cy, where only complex ML, can exist, i.e. the
pure pyridine solvent.expressed in molar concentration, x is vol. %

divided by 100, that 1s, a. real fraction, ¢ is the concentration of:

cobaltous chloride, ¥ is the avarage number of bOund radicals
Because:
[ML]+[M]+[ML2]=[ML]+2[M].=C

[ML]=2Kk(Cx—cy) =ML

Kkc(Cx—cy)
1-+Kk(Cx—cy)
We know [ML] is as its maximum when the concentration

equals that of the solution containing taestable intermediate, which
we have determnid experimentally, The problem, then, is a maxi-

[ML] =

Kke(C—cy)
1+2Kk(Cx — cy)+K*k*(Cx—cy)®

The fraction can equal 0 only if either the numerator equals G,

[ML}' =

"or the denominator equals . The nominator does’ not equal oc.

Therefore ithe numerator must be 0:

, C

Y="1

¥’ can be computed from the formula expressing the avarage

which we seek: .

2Kk (Cx—cy)+2K*(Cx—cy)?

12Kk (Cx—cy)FK*(Cx—cy)?
2KkCy+2K2Cy(Cx-—cy)—2KkC 4K2C(Cx—cy).

" 142Kk (Cx—2cy)+K* [(Cx—cy)2—2 cy(Cx—cy)]+2Kkc+4K?c (Cx—cy)

mumber of bound radicals, which also containg the wvalue of k,

_C
c
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Explicating the equation for & we obtain:
2K*Ccy(Cx —cy)+K*C[(Cx—cy)*— 2cy(Cx—cy;]
2KC(Cx—2cy)+2KCcy ‘

Where function [M L] has its maximum, i.e. where the inter-
mediate is stable, the avarage number of bound radicals, y =1
The value of x has been determmed experimentally, so the for-
mula &m be simplified thus:

K +2K2CC(CX—C)+K2C[CX—C)2 2¢(Cx—0)]
— 2KC(Cx—2c)F2KCc

As k entered our formulae by splitting k? into its denomina-
torg, i.e. (+k)(Fk), its absolute value can be substitued. On the
right everthing is known, %k can be calculated.

Now it is possible to determine the equilibrium constants and
by comparing (5) and (6), the participation ratio of the individual
complexes at the solvent concentration ratio determined experi-
mentally:

ke——ro

[ML]=2k[M]
Hence:
[M]:[ML}:[ML,]==1:2k:1

We now have an equation with only one unknown for every
wavelength, by the means of which the actuat} extinetion curve of-
" the intermediate can be computed: .

1 2k 1
R T W T R

where ¢ is the extinction of one limiting curve, &, is that of the
other one and 2, is that of the equilibrium curve.

In the case of two intermediate, the problem can be solved
more easily, by determining the values of [L,] and [L.] experimen-
tally by boxing. We obtain two equations with two unknowns. After
this the computation: proceeds in a manner analogous to that used
in the case of three intermediates.

E3=—&;

-

Summary. .

I have illx;estigated the absorption spectra of anhydrous co-
baltous chloride in various organic solvents. I have proved the
existence of the complexes CoCl,Ae,, CoCl,Ae,Py, CoCl:Ae2Pys,
CoCl,AePy, Coll,Py, and' thereby the existence of a blue cobalt
complex with a codrdination number of six.

The calculus I have published is applicable in other cases too,
but one must take care to enter into the computation a number of
wavelengths which exceeds by one the expected number of inter-
mediate, to find an experimental curve between each pair pf inter-
mediates, and. the number of unknowns must be (n—l- 1)‘-’ if n is the
number of expected intermediates.

I have performed fhis work in the Institute of General and -
Physical Chemistry at the University of Szeged.
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The Reaction of Aryl-thio-glycolic acid chlorldes
with sodium azide

By Jozser Kiss and ELEMER VINKLER

The rcaction between acid chlorides and sodinmazide is known
since a long time in the literature! The formed’ azide decomposes:
readily with evolution of nitrogen and rearranges into the corres-
ponding isocyanate. This raction procéeds very easily particuliarly
in the case of the aliphatic acid-azides. The isocyanate compounds
reaet readily, e.g. with water and yield primary. amino- -compounds.
on evolving carbon dioxyde.

According to the as yet not published results of E. Vinkler
the phenyl-thio-glyecolic acid azide (II.a.) recovered at the reaction
between phenyl-thio-glycolie acid chloride (I.a.) and sodium azide
is spontaneously converted into phenyl thiomethyl isocyanate (III.
a.). This compound could be separated in the form of a solution
which can readily be distilled. In consequence of its great: reacti--
vity it reacts with various agents, e. g. with water and is converted
into N, N’-big-(phenyl-thiomethyl)-carbamide (V.a.). If it is allowed
to stand in an open wvessel for several days the isocyanate yields.
the same carbamide derivative. ‘

The purpose of this paper is to study to what am extent the
various aryl radicals exert an influence on the reactivity of the
isocyanate . synthesized from aryl-thiomethyl-glyeolic chlorides.
In the following experiments the conversion of B-naphtyl- and
p-tolyl-thio glycolic azid which had formed as intermediates was
investigated. To enable the synthesis of these substances p-methyl-
-thiophenol®? and thio-8-naphtol were prepared from the suitable
sulfochloride in phosphorus acid through reduction with potassium
Todlde in the presence of red phosphorus.

This method enabled the preparation of ’thlo -B-naphtel in a.
far better yield and under far simpler experimental conditions than



