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The d-electrons of the central ion play an important role at the development of the 
properties of complex compounds. In this paper, all the strong field configurations arising 
from ¿"-configurations (n = l , . . . 1 0 ) in the complex field of D\k symmetry have been 
calculated. The irreducible representations and the multiplicity of the splitting products 
of these terms have been established. 

§ 1. Introduction 

B E T H E [1] investigated the splitting of terms of ions in crystals for the 
first time. He founded the „crystal field method" in 1929 which is also appli-
cable for the theoretical treatment of complex ions. SCHLAPP and P E N N E Y 
[2] have used this theory for the calculation of magnetic susceptibilities of 
crystals containing paramagnetic ions, while FINKELSTEIN and VAN VLECK [3] 
employed it for the interpretation of the spectrum of chrome alaun in crys-
talline state. On applying B E T H E ' S crystal field method for electrostatic com-
plexes it is usual to start from the model outlined below. According to the 
basic assumption of the method the complex ion consists of a central ion 
being surrounded by the coordination zone. The central ion is a core sur-
rounded by ¿-electrons while the coordination zone is a point charge system 
or point dipole system having a well-defined geometric shape. 

In the approximation suitable for the model one usually considers the 
interactions among the individual parts. These are as follows: (i) the inter-
action of the outer electrons of the central ion and (ii) the influence of the 
coordination zone (complex field) on the outer electrons of the central ion. 
These interactions can be conceived as representing perturbations. In such 
calculations the final aim is to determine the wave functions and energy 

i * 



4 F . J . G I L D E A N D M . I . BÄN 

levels of the electrons considered. According to the relative size of the inter-
actions considered1 one can take steps in two different manners. 

1. Weak field case. When the influence of the complex field on the 
outer electrons of the central ion is less than the interaction of these elec-
trons among themselves; there exists a weak field. In such a case, in the 
first approximation disregarding the influence of the complex field only the 
interactions of the electrons will be taken into account. Thus, in this approxi-
mation, the model is reduced to the problem of the spectroscopic gaseous 
ion. Then the corresponding R U S S E L — S A U N D E R S terms are obtained as ener-
gies. In the second approximation, due to the perturbation caused by the 
complex field, the R U S S E L — S A U N D E R S terms split. 

2. Strong field case. Whenever the influence of the complex field is 
greater than the mutual interaction of the outer electrons of the central ion; 
there exists a strong field. As then the complex field is strong the state of 
the outer electrons of the central ion is modified already before affecting the 
mutual interaction of the electrons. Hence the strong complex field comple-
tely or partly removes the degeneracy of the terms. The mutual interactions 
of the outer electrons must be investigated taking into account the splitting 
mentioned above. The configurations obtained in this manner split in the 
complex field. 

ILSE and HARTMANN [4] were in 1951 the first to apply for complex 
ions the weak field approximation of B E T H E ' S theory. Since this time many 
authors [5] have dealt with similar problems. 

For the interpretation of spectra of transition metal complexes the strong 
field approximation was applied by O R G E L [6]. Subsequently TANABE and 
SUGANO [7] and ORGEL [8] have elaborated the theory for octahedral com-
plexes of du configurations completely. JJQRGENSEN [9] has supplied the size 
of the splittings of all the iT-terms in strong fields of Oi, symmetry. Kiss 
[10] was one of the first who applied these results for the interpretation of 
spectra. Since then they are used by numerous other authors for the inter-
pretation of spectroscopic [11], [15] and magnetic [12] phenomena. 

In most cases Oh symmetry has been assumed, though this means the 
extreme simplification of the problem considered. Actually, however, a lower 
symmetry exists. Sometimes already at the beginning the symmetry is not 
cubic [3], [6], [13], in other cases owing to the JAHN—TELLER effect distortion 
takes place. Thus e.g. JORGENSEN [14] has stated that a complex of d4 and 
d0 configurations having six identical ligands with cubic symmetry cannot 
be stable and therefore the cubic symmetry distorts to tetragonal and in the 
case of d1 configuration to rhombic. Considering that the complex compounds 
which are in the centre of spectroscopic interest have lower Symmetries than 

1 At this point we have to draw attention to the circumstance that we ought still 
to examine how, owing to the effect of the complex field, the core changes and how this 
modified core influences the state of the outer electrons. With regard to these problems 
which appear only in the course of numerical calculations and even then cause changes 
only in the radial part of the wave functions of the electrons considered, nevertheless, we 
ought only to deal with these problems if we want to calculate the integrals occurring in 
the course of the calculation explicitly. 
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Oh, it seems to be necessary to determine the splittings caused by strong 
fields of lower .symmetries. Such calculations were hitherto only carried out 
for the case of DV l symmetry [15], however, only the splittings of some 
strong field configurations for ¿° electron configuration were determined. 
Under these circumstances it seems necessary to extend these examinations 
to the other important cases. Therefore, in this paper, to investigate the 
splitting of dn configurations {n = \, 2,.. .10) in complex fields having Dih 
symmetry the strong field approximation will be applied. 

§ 2. The classification of energy terms corresponding to the symmetry 
properties of the complex 

It is known that there exist five d wave functions independent linearly 
of one another, the linear combinations of which belonging to each irreducible 
representation of the point group D i h will be determined. Accordingly, the 
five-dimensional space of the ¿/-functions breaks up into sub-spaces being 
invariant under the operations of the Du, group. Let us designate with T,i 
the representation of the D^i group which is valid in the five-dimensional 
reducible space, it will be broken up into irreducible representations as 
follows: 

r,i = Ai,,Bi,j-{-Bn,,-}- E,j. (1) 

In Table I the character system of D4h group is given. In this, the irreducible 
representations are denoted as usual {e.g. [16]). 

In the case of a complex field having D4A symmetry one ¿-electron, in 
accordance with ( 1 ) , can stay in four different states. According to the PAULI 
exclusion principle, two electrons can stay in the states represented by wave 
functions2 denoted by a\u,b\,j and 62i/ and four electrons can stay in e,,. 

In the case of d'1 configurations, apart from the case n = 1, a many-
electron problem has to be dealt with. Thus, to consider the interactions of 
¿-electrons we have to start from many-electron wave functions which can 
be represented in the usual way as products of one-electron functions. In 
making these products, of course, the PAULI principle is to be considered 
and corresponding with the strong field approximation not the original 
¿-functions but the functions suitable for (1) are used. In this manner, the 
possible configurations of the strong field (strong field configurations) can 
be obtained. The spaces of the functions belonging to each configuration of 
the strong field are generally reducible. Since the ¿-functions contain the 
coordinates on even power, the reducible spaces can have irreducible com-
ponents (splitting products or sub-levels) of g type only. The same holds for 
spaces spanned by linear combinations or products of functions of ¿-type, 
respectively. These reducible spaces are to be reduced according to D+h-

In the first place, the number of the functions belonging to each con-
figuration, i. e. the total sum of degeneracy numbers should be determined. 

2 In the following the wave function belonging to a F representation will be corres-
pondingly denoted by •/ and this •/ will be called the function of F or y function as well. 
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In a state belonging to a /-dimensional irreducible representation 2 j elec-
trons can stay. If the number of the filled states is k the total sum of dege-
neracy numbers is given by the formula 

— ( 2 ) 

{ 2 j - k ) \ - k \ 

Whenever wave functions of different irreducible representations take part in 
a given configuration the total sum of the degeneracy numbers is the pro-
duct of the degeneracy numbers of the states belonging to each configura-
tion. The dimension of the space of the functions belonging to each con-
figuration corresponds to the total sum of degeneracy numbers of the con-
figuration involved. If one knows the total sum of the degeneracy numbers 
the number and the multiplicity of states belonging to a given configuration 
may be calculated. To determine the irreducible representations to which 
these states belong the reduction mentioned above must be carried out in 
the space of the configurations. To accomplish this the trace system of the 
representations attained in the reducible space is required. If there is a con-

Table I 

A , „ E C2 2 C4 2 G 2 Ci' i i C , 2 iCA 2 i Ci 2/ C " 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 — 1 —1 — 1 —-1 — 1 
1 1 1 — 1 —1 1 1 1 1 — I 

A2„ 1 1 1 - 1 — 1 —1 —1 — 1 1 1 

B u , 
1 1 —1 1 — 1 1 1 — 1 1 — 1 

1 1 — 1 1 — 1 — 1 — 1 1 1 1 

B,:, 1 1 I — I I I 1 I — i 1 
1 1 —1 —1 1 —1 — 1 1 1 —1 

E , 2 _ 2 0 0 0 2 —2 0 0 0 
u 

0 
2 _ 2 0 0 0 —2 2 0 0 0 
6 6 2 —2 —2 6 6 2 —2 —2 

figuration which comprises only the functions of one-dimensional irreducible 
representations the traces wanted are given by a product. The factors of this 
product are the square or the double of the characters if the filling number 
is 2 or 1, respectively. If, in turn, there are configurations comprising wave 
functions of multi-dimensional irreducible representations too the question is 
much more complicated. There appear configurations containing (eg) and (e,,f ; 
their traces are equal, on the other hand, as the degeneracy number of the 
state e„ is 4 the corresponding traces are the double of the characters of 
representation Ea. Similarly there occur configurations containing (e g f too. 
In order to determine the traces of the representation belonging to these 
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configurations antisymmetrized functions of type (e,]f should be formed. Since 
j = 2, k = 2, according to (2) the number of the functions is 6. The traces 
of the representation obtained in the space of these six functions may be 
got by studying the behaviour of these functions under the symmetry ope-
rations of the Du, group (Table I, last row). 

The reductions can be performed by means of traces obtained by the 
above consideration. If these reductions are known, in most cases it can 
directly be established to which irreducible representations the already coun-
ted terms- arising from the splitting belong and their multiplicities may also 
be calculated. In cases, when a configuration breaks up into functions of 
irreducible representations of various kinds in the above procedure there 
remains uncertainty. Under these circumstances, B E T H E ' S method is used for 
establishing the multiplicities. The essence of this method is that the con-
figurations containing the functions of multi-dimensional irreducible repre-
sentations split into configurations composed of functions of pure one-dimen-
sional representations by diminishing the symmetry. The multiplicity is given 
directly. In addition the irreducible representation of the group of lower sym-
metry, to which the state of multiplicity already known belongs, can be 
determined. One or two irreducible representations correspond to this repre-
sentation in £>4/, symmetry. Nevertheless, this method was also unsuccessful. 
For this reason B E T H E ' S method has been developped by diminishing the 
symmetry in several different ways. Then the alternatives obtained in different 
manners were compared. However, we succeeded in obtaining perfect results 
by making use of the above reduction. 

B E T H E ' S procedure outlined previously can be meglected on applying 
the following — though rather lengthy, but far more direct — considerations. 
After determining the terms arising from the reduction new functions which 
span the subspaces invariant under the symmetry operations of D4h group in 
the space of the configuration should be formed. If these new functions are 
known the multiplicities wanted are afforded directly. 

§ 3. Summary of results 

In the manner described in § 2 the terms3 arising from the splitting of 
the configurations i / 1 — d n have been determined. The splitting products are 
the same in configurations dn and dw~n. The splitting of the configurations 
d} and ds, respectively, is given by (1). The dw configuration [(ef/)4 (oi!;)'-
(bi,,)- (fe,)2] consists of a single term Mii;. The other results are listed in 
Tables II, III, IV and V. The division of the Tables is as follows. In the 
first column, one can find the possible strong field configurations of the dn 

electron configurations. In the second one, the total sum of degeneracy num-
bers of each configuration is denoted. In the third, the number of the split-
ting products grouped according to their irreducible representations and their 
multiplicities are given. In the last column, the strong field configurations of 

3 Hereafter referred as to "splitting products" or "sub-levels". 



10 F . J . G I L D E A N D M. I. BÄN 

Table 11* 

d-
Total 
sum 

of d. n. 

2'J 

1 3 

B 1 u 

1 3 

Bo„ 

3 1 3 
ds 

(e„)-

< V 2 

( V 2 

( % ) (¡>Uj) 

K , ) (*„) 
( \ , ) ft,) 
(Ö,(/) ft,) 

6 

1 
1 
1 
4 
4 
4 
8 

1 1 
1 1 

1 1 
1 1 
1 1 
1 1 

V ( V 2 (e<y>4 

W ft,)4 

(<%) ( V ( b , > 
(b,,,)2 ( V ft,)4 

fti9)2 ( V (**,) ft,)4 

fti„) ( V 2 ( V ^ / 
(«!,)- (*,„) (Ö,,,)2 ft,)3 

(«I,)2 ( V 2 <ö?</) ft/)8 

Table 111** 

d3 
Total 
sum 

of d. n. 

A iff B la E, 
d1 

d3 
Total 
sum 

of d. n. 2 4 2 4 2 4 2 4 2 4 
d1 

ft,):l 4 1 K ) 2 (Kr 1 ( " J 1 ft,) 
2 1 ( V ft^ft,,)4 

(%)Hb,„) 2 1 ( V 2 (Öo(/) ft,)* 

( V 2 <%) 2 1 ft,,,) ft>,,)2 ft,)4 

(Kj)- (»!„) 2 1 (%r-(b.2lJ)(e,)+ 

(b-2ä)2 ft,„) 2 1 («!,;) ( V 2 ft/ 
(biu)- (bh) 2 1 

.4 1 (bhj)Hb.2lJ)He,f 
4 1 < V " ( ö 2 / ft/ 

V ft) 4 1 («i7)2 ft,/ ft/ 

ft,,)'2 ft.,,) 12 1 1 1 1 1 (a,,,) ft,/ ft,/ ft/ 

ft,,)2 ft,„) 12 1 1 1 1 1 ft,/ ft,,,) ft2/ ft,)2' 
(e;)Hb2u) 12 1 1 1 1 1 («I,)2 ft./ ft*,) ft,)2 

K,) ( V ( h ) 8 2 1 ft.,,) (bu,) (b-2,) ft,)4 

ft,)ft,„) ft,,,) 16 2 1 

ft,)(%) (b.2tJ) 16 2 1 (öl.) ft,/ fto„) ft,)3 

ft,,) (blq)(b2ll) 16 2 1 ( V 2 (bu,) (b:>,,) ft„):! 

* In the third column the numbers 1 and 3 mean the multiplicities of the terms. 
** In the third column the numbers 2 and 4 mean the multiplicities of the terms. 
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Table IV* 

Total 
sum: 

of d. n. 

B hi 

ft,)3 K , ) 
(e„)3 (büß 
(e,)3 (b,,) 
K , ) 2 (éI(/)2 

(«i,)2 ( V 
( / % ) - (b-2J-

(«„)2 (ô1(/)2 

(i,)2 C o , / 
K ) 2 (b-i,) 
(bu)2 (a,7) (ô2i/ 

(ô2</)2 («„,) (ft,,,) 

«i7)2 fc,) №„) 
( % ) 2 (*,) ("_,,) 
( V 2 (*„) ( % ) 
( V 2 ft,) (ô2(/) 
( V 2 <e„) (aU/) 

(b,,)1 fc,) 
(e,,)2 ( % ) (ft„) 
(e„)2 ( % ) ( V 
(e,)2 (bh) (b2lj) 

(hh)(b ,,)(€,) 

1 
1 
1 
6 

6 

6 

4 
4 
4 
8 

24 
24 
24 
32 

1 1 
1 1 
1 2 1 

1 
1 
1 

1 1 

1 1 
1 1 
1 1 

1 1 

1 1 
1 2 1 
1 1 

1 
1 
1 

1 1 

1 2 1 
1 1 
1 1 

K,)2 (V2 (b,„ï-
1 1 <*„) (aU/) (ft,,/ (b.2ljr-
1 1 (*,,) K , > 2 (bu) (ô,v)2 

1 i («„) K , ) 2 ( V 
( V 4 (ôo,,)2 

(e(/)4 (Ö!,)2 

( g 4 («17)2 

(e,)1 (6,7)2 (Ô2(/)2 
(a,,)2 (b,;l)-

(e„ï2 (%)2 (\)2 

ft,)4 ( V ( ¿ g 
(î'7)4 ( V 
ft)4 (a,„) (",„) 
ft,)3 < V (b.2l/)-
ft,)3 ( V 2 

ft/' («„;) 
ft,)3 ft,7P (&.,,) 
ft,)3 <«i„) (*.,,)-
ft,)3 (a l 7)2 (ö,7) 
ft,)2 («,„) <«.,,) (&>„)* 
ft,)2 ( % ) (Ö,,)2 

ft)2 ftls)2 (6,,) 

2 3 1 (e,,y< {ahJ) ( f t „ ; ) ( f t 2 , , ) 

the corresponding dw~n configurations are displayed. The splitting products 
of the strong field configurations are, of course, equal regarding their 
numbers and multiplicities to the splitting products of the R U S S E L — S A U N -
DERS terms. 

§ 4. Some generalizing remarks 

Considering the even character of the functions used the above results 
are directly transmissible by omitting the suffix g to the cases of complex 
fields possessing symmetries D4 , Cm and Do,?. too. The above considerations 

* In the third column the numbers 1, 3 and 5 mean the multiplicities of the terms. 
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Table V* 

d5 
Total 
sum 

of d. n. 

BiU E, 
d5 

Total 
sum 

of d. n. 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 

ft,)4 ft.,) 2 1 

ft,)4 ( V 2 1 

ft/ (h<j) 2 1 

ft,,)3 (%)2 4 1 

ft/ ft,,/ 4 1 

ft/ ( V 2 4 1 

ft,/ ft,/ fto,) 2 1 

ft/2 ( V 2 ( V 2 1 

V V < V 2 1 

ft/- ft,,,)2 ft,) 4 1 

ft,) 4 1 

V ( V 2 ft) 4 1 

ft,)2 ftl/ ft1;,> 12 1 1 1 1 1 

ft/ ft,,,)2 ft/ 12 1 1 1 1 1 

ft/ ft,,/ ft,„) 12 1 1 1 1 1 

ft,)2 ft,/ ft_,„) 12 1 1 1 1 1 

ft,)2 ft/2 ft,„) 12 I 1 1 I 1 

ft/ ft,,/ ft,„) 12 1 1 1 1 1 

ft,,,)2
 (K,) (b2rj) ft) 16 2 1 

ft,/ ft,,) ft/ ft,) 16 2 1 

(ft.,,)2 ft/ ft/ ft,) 16 2 1 

ft,)2 ft,„) ft,„) ft/ 48 3 3 1 2 1 .2 1 2 1 

ft/ ft,„) ft,„) 16 2 1 

ft,,)3 ( % ) ft,„) 16 2 1 

ft,)* ft,,) ft/ 16 2 1 

naturally do not depend on the concrete form of the function system used in 
a given approximation, in the course of the calculations group theoretical 
considerations were adapted everywhere. Thus the results obtained are quite 
exact. For the explanation of the spectra of diamagnetic and anomalously 
paramagnetic complexes this method of strong field approximation can be 
used with good lesults. According to PAULINO the diamagnetic complexes 
are covalent, hence according to the statement of STEVENS [17] the strong 

* In the third column the numbers 2, 4 and 6 mean the multiplicities of the terms. 



I " - T E R M S IN TETRAGONAL F I E L D S 11 

field model can be regarded to be formally equivalent to the covalent model. 
Consequently the given results can be used in a wide circle of complexes. 

The authors are very thankful to Professor Dr. A. Kiss for having sug-
gested the problem and for his helpful advice. Thanks are due also to 
Dr. J. 1. HORVATH for several illuminating discussions and for the revision of 
the manuscript. 
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