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Introduction 

The bands of the infrared vapour spectra of symmetric rotor show two 
kinds of rotational structures depending on the circumstances whether the 
transition moment of the vibration occur to be parallel to the main axis of 
symmetry or perpendicular to it (parallel and perpendicular bands). An asym-
metrical rotor showing a symmetry plane and at least one twofold in-plane 
axis has three kinds of band shapes accordingly whether the transition moment 
lies parallel to the rotational axis with the smallest moment of inertia or with 
the axes with mean or highest moments of inertia (A, B and C bands). With 
rotational lines of bands of polyatomic molecules thus generally with a relatively 
large moment of inertia the individual registration can only be accomplished 
with extremely high dispersion, therefore in general we have to be content 
by measuring and interpreting the envelope curves of the bands [1]. 

All of the dihalogenobenzene molecules belong to the asymmetric top, 
in fact, mixed substituted o- and m-dihalogenobenzenes do not even possess 
a single twofold axis, so that at the separation of the band A and B an 
especial consideration is required. This consideration was however found to be 
rather productive just for the determination of the direction of the transition 
moments in these molecules and by the aid of this for the assignment of the 
frequencies to the corresponding normal vibrations. 

The indirect aim of our achieved computations is to determine approxi-
mately the force constants of the individual bonds in molecules. Since, how-
ever, in first approximation the force constants were found to be proportional 
to the band forces, complementary data to the theory of the covalent bond 
can be obtained by this. 

Terms of asymmetric rotors 

One of the relatively simple approximations of the terms of asymmetric 
rotor appeared to be the graphical method on the basis of which the mole-
cule is considered to be a transition of two symmetric rotors [2]: The rota-
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tional constants of the two symmetric rotors agree with A and C, the greatest 
and smallest rotational constants of the asymmetric rotors in question, but while 
in the one it is A referring to the. principal axis of symmetry, in the other 
it is C. Consequently the first is the prolate type, the other the oblate type. 
The symmetric rotor chosen for these two boundary cases differs thus only 
in the rotational constant B from the asymmetric rotor, in so far as B=C 
in the prolate type, B = A in the oblate type, while B appears as value 
between these two in reality. Also for the asymmetric rotor it holds true that 
by giving the complete angular momentum in units of /?/2tc it becomes 
equal to ] / / ( / + 1). Further, when the molecule occupies a position where the 
rotational axis of the smallest moment of inertia is directed towards the x-axis 
and that with the greatest towards the z-axis, then, according to the quantum 
restrictions, the sum of the vector components px and pz of the angular 
momentum has to be equivalent with V j ( j + l ) or V(J+ 0 C / + 2). The 
projection of the angular momentum falling on any rotational axis expressed 
in /z/2yr-units is, also in case of the asymmetric rotor, equivalent to the 
rotational quantum number about the axis in question. When as a boundary 
case the rotational quantum number of the prolate type is designed with K 
and that of the oblate type with L, then the above quantum restrictions were 
found to be in agreement with the expression K-\-L=J or K+L=J-\-1. 
Terms of the asymmetric rotor are obtainable when, on the terms belonging 
to the identical J values of the two symmetric rotors, weighted averaging is 
achieved individually in the order of the growing term values by taking into 
consideration also the value B. This may be achieved by a summation of 
the spaces of the prolate types multiplied with x and- those of the oblate 

A B 
types multiplied with (1—x) after the sign of * = ^ — q had been introdu-
ced. The index /A-, ¿ was used for a general designation of the term, where 
thus L is equal either to ( J — K ) or to (J-K-f 1). The general term formula 
obtained by the graphical interpolation appeared to be the following: 

Tr = x[CJ(J+l) + (A-C)K*] + (l-x)[AJ(J+\) + (C-A)L% (1) 

Selection rules of the infrared spectrum of the asymmetric rotor 

The most convenient view of the selection rules for infrared spectra of 
polyatomic molecules is obtainable on the basis of symmetry conditions also 
with regard to the rotational structure of the bands. Here too we may start 
from the general rule that, with rotational axes of the molecule simultaneously 
being axes of symmetry the eingenfunction-product belonging to the ground 
and excited rotational state of the rotation around the axis lying in the direc-
tion of the transition moment has to be symmetrical and the function products 
of the rotation about the axis being perpendicular to it must be asymmetrical. 

The selection rules are very easy to survey in case of bi-indexical term-
symbols. These two indices indicate, according to an original formulation, 
the quantum numbers K and L of the prolate and oblate type, respectively, 
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as boundary cases, i.e. in due succession, those referring to the rotation 
about the axes with the smallest and the greatest moment of inertia. Thus, 
on the basis of the indices the symmetry of the rotational transitions can be 
observed directly with regard to the axis with the smallest and greatest mo-
ment of inertia, by which also a definition for the symmetry of the third axis 
is attained. If namely the rotational eigenfunction is symmetrical to two axes 
perpendicular to each other it becomes evident that it must be symmetrical 
to the third too. If it is symmetrical only with respect to the one but anti-
symmetrical to the second, it also has to be a!ntisymmetrical to the third. 
Finally, if it is antisymmetrical to both the axes designed, then it becomes 
symmetrical to the third. 

Consequently the selection rules proved to be the following: 
1. If the transition moment comes to lie in the direction of the axis with 

the smallest moment of inertia (A-band) then by applying, the index Jk,l the 
AK becomes even and AL odd. 

2. If the direction of the transition moment is the axis with the greatest 
moment of inertia (C-band) then the AK becomes odd and AL even. Finally, 
with the transition moment occurring in the direction of the axis with a mean 
magnitude of the moment of inertia (B-band) both quantum numbers vary 
with odd numbers. 

For the intensity of rotational lines of symmetric rotors likewise no 
explicit formulae can be derived for the terms. By KRAMERS and ITTMAN [3] 
a method has been elaborated for the determination of intensities which 
however was found to be extremely complicated and lengthy even for small-
J-s. Recently CROSS, HAINER and KING [4] have extended detailed computa-
tions to 7 = 1 2 for different K-s, while SCHWENDEMAN and LAURIE [5] 
expanded the accuracy of the calculations to seven valid signs with the help 
of a computing device. With polyatomic molecules of a great moment of 
inertia however, with a considerable intensity there appear also lines with 
the quantum numbers J essentially higher than 12, since, however, with the 
growth of J the complexity of computation increases rapidly, thus in the 
practice no rigourous calculation can be achieved. Numerous experiments 
have been carried out in order to elaborate approximate computation methods, 
among which the method of RANDALL, DENNISON and coworkers [6] was found 
to be the most applicable on account of its relative simplicity and smaller 
inaccuracy. In this, the formulae* [7] concerning ths symmetric rotor are: 

* AJ=+\; AK=0(Rq branch) F 
( 7 + 

( / + 1 ) ( 2 / + 1 ) 

AJ = 0; AK=Q(Qq branch) F 
JU+ 1) 

4 / = + l ; AK=±\{Rr, Rp branch) F = 
U + 2±K){J+\±K) 

( 7 + 1 ) ( 2 7 + 1 ) 

A7=0; AK=+l(Qr branch) F = 
( J + \ + K ) ( J - K ) 

JU+ i) 
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approximately accepted so that, depending on the quantum numbers K and 
L which are characteristic to the rotational state of the asymmetric rotor the 
quantum numbers K or L of the symmetric rotor are substituted into the place 
of K in the formula, i. e. in some cases the molecule may be considered 
a prolate type, in other cases an oblate type. At the values K being near to 
J the angular momentum of the rotation encloses a small angle with the axis 
of the smallest inertia and with the axis of the greatest inertia at the small 
values of K and accordingly of L being in the vicinity of J. In. this way, 
when a small angle is enclosed by the angular momentum with one of the 
axes, the neglection is generally permittable by which the two other axes of 
the ellipsoid of inertia are taken as equivalent and with this the molecule as 
a symmetric rotor. At the mean K and L values the molecule represents the 
transition of the two symmetric rotors. 

Applied branch-formulae 

By starting from (1) a special branch-formula had to be elaborated for 
each sub-branch separately. Since it is question of an asymmetric rotor, most 
of the sub-branches split into further components, (see Table 1.) 

With this, however, the discussion on all the possibilities for sub-
branches is not yet exhausted. However, by taking into consideration that with 
enough large quantum numbers J the sub-branches Pp, Pr, Qp and Pq, 
respectively appeared to be the corresponding images of the sub-branches 
Rr, Rp, Qr and Rq, respectively, we may be content in computing the half 
band-form. With the simplifying reservation all this is permitted by neg-
lecting the alteration in the rotational constants caused by the change of the 
vibrational state. This neglection has been applied in the deduction of all 
branch formulae. The form of the experimental bands shows that, with regard 
to the fundamentals this neglection is rather rough, since the bands are more 
or less asymmetrical. Since, however, the alterations in the three rotational 
constants, which was brought about with the excitation of the vibrations, are 
found to be proportional, on the whole, relative to the symmetric ones, the 
branches decline in the same direction and "as a consequence of this" the 
maximum distances in question, for example, remain unchanged. 

The five kinds of sub-branches discussed above represent the half of 
the bands A, B and C. 

Method for the computation of the intensities 

With polyatomic molecules also a value J considerably higher than 100 
has to be taken into consideration, thus a rigourous computation of intensities 
is not possible. We used at our computations the method of RANDALL, 
DENNISON and coworkers by applying further simplifications in which the 
averaging range was abandoned with applied ranges of the intensity formulae 
of prolate and oblate types touching each other. This was necessary because 
in our case only a vibration rotation spectrum with considerably more com-
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Table 1. 

JvRVpC = 2BU+ i) + (A-B)(2K+ 1) 

i = 2C(/ + 1) + (/1-C)(2K+ 1) 

^!>Bii=2(2S-C)(/+ \) + (A + C-2B)(2K+l) 
/3*'BVpC = 2(2C—B)(J 1) + (3B—A — 2C)(2K— 1) 

AZKPpBl = 2(3C-2B)(J+\) + (4B-A-3€)(2K-\) 

AZBPpBll = 2C(J+l) + (2B-A-C)(2K-i) 

z ^ , > B = 2 ( S - C ) ( / + 1 ) + ( A + C-2B)(2K+ 1) + ( C - f i ) 

JvQrpCl = (A-B)(2K+i) 

4ZQ r nCn = 4(B-Q(J + 'l) + (2C+A-3B)(2K+ l) + 2 (C-B) 
v. P 

JvBqp = 2CU+ \) + 2{B-C)K 

/¡vQqp = 2{C-B)(J+\) + {B-C)(2K+\) 

JvBl.oA = 2B(J+\) + (C-B)(2L + i) 

AZBroBX = 2A(J+\) + (C-A)(2L+\) 

= 1) + (A + C-2B)(2L+1) 

4ZBPoA = 2(2A-B)(J+1) + (3B-2A-CH2L-\) 

JZbp0BI = 2(3A-2B)(J+ 1) + (4B—3.4— C)(2L— 1) 

n = 2^4(7 + 1) + (2B—A — C)(2L — 1) 

A~vqroB = 2 ( £ - / l ) ( / + 1) + (A + C-2B)(2L + 1) + (A-B) 

= (C-B)(2 i + 1) 

II 1) + (2^4 + C-3B)(2L + 1) + 2(A — B) 

JiBio = 2A(J+l) + 2(B-A)L 

AZQio = 2(A-B)(J+l) + (B-A)(2L+l) 

plicated rotational structure has been available while RANDALL, DENNISON and 
cow. were able to determine the boundary of the transition range on the 
basis of experimental data of well separeted far infrared pure rotational 
spectra. In order to eliminate the inaccuracy arising from this a comparison 
was made of the intensities computed from the formulae of the symmetric rotor 
with the intensities of the corresponding lines in the Table of SCHWENDEMAN— 
LAURIE and by the quotient of both the correction factor q was obtained. 
By an extrapolation beyond the value J = 12 it was rendered possible that 
the expression for the intensities summarized in the formulae, with enough 
high values J, could be given as the functions of the quotient K/J (in the 
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following: 5), which holds also for the line intensities of asymmetric rotors 
computed with rigourous methods. With J being great enough, 1 and 2 may 
be neglected compared to J in the formulae and by dividing all numerators 
and denominators by / 2 and introducing the variable S more simple formulae 
are obtained. 

The value s being characteristical for every individual molecule (s re-
present the boundary value of 5 from which given prolate and oblate rotors, 

respectively, are computable.) has 
been determined in our computa-
tions after KRAMERS and ITTMAN 
with the following formula: 

lOiOK Won-' 

RpaA ir„Ai Ûr„Ai 

. - " W - - L K 

= — arc tg 
'B— C 
A—B (2) 

and for the oblate type, respec-
tively: 

2 
ST = — arc tg 1 71 5 

I A—B 
B—C (2/a) 

KfpBi Bp'pZ-RrpB ftt,6i Hr„Bi 

Rp0BT Rpn &Ü 

I ••;•--, L_ iOO- U>* 

Cr{3 

Rrpi «P„C 

Infrared band contours 
of m-difluorobenzene 

The moments of inertia and 
rotational constants of the m-di-
fluorobenzene molecule were com-
puted on the basis of the bond-
distances measured with electron 
diffraction. Tne center of gravity 
of the molecule appears in the axis' 
of symmetry in a distance of 0,96 
A from the one carbon and in a 
distance of 1,82 A from the other 
one lying likewise in the axis of 
symmetry. The smallest axis of 
inertia is perpendicular to the axis, 
of the greatest symmetry, as in all 
planar molecules, is perpendicular 

to the plane and the moment of inertia computed about this is as likewise 
in all planar molecules, the sum of the other two moments of inertia. In 
good approximation the ratio of the three rotational constants is 3 :1 ,5:1 . 
Consequently on the basis of (2):sK = 1/3 and sL = 2/3. 

The envelope curves of the sub-branches multiplied by the correction 
factor are given in Figure 1. Some branches proved to be quite weak so 
they could only be given with ordinate values augmented by 1—2 orders 
of magnitude. In the Figure theoretical band contours obtained from the 
summation of the sub-branches are also represented. 

p«rpcr OrpCl Hf„C 

l^wkUM- -
Fig.l 
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Figure 2 shows the bands computed for the spectral slit width of 2 cm-1 

and Figure 3 represents the infrared band contours measured experimentally 
by FERGUSON, COLLINS and NIELSEN [8]. It can be stated that not only the 
form of the bands but also the distance of the partial-maximums in the the 
theoretical and experimental bands are in good agreement. 

Fig. 2 

m! 1290. C3I HB3 «87 ,iSS 

Fig. 3 

Infrared band contours of o- and m-bromofluorobenzene 

The only symmetry element of the mixed substituted dihalogenobenzenes 
in ortho and meta position is the plane of the molecule. Thus, among the 
three axes of inertia only one can be distinguished on the basis of symmetry 
conditions, i.e., the one being perpendicular to the plane of the molecule and 
consequently the C-bands in the spectra were found to be typical ones. Those 
bands, however, whose the corresponding transition moment lies within the 
plane of the molecule appear more or less as the transitions of the A and 
B bands. The aim of our work is to carry out an approximate determination 
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of the angle enclosed by the transition moment and the axis with the minimum 
moment of inertia from the form of such "hybrid" bands. The component of 
the vibration moment in any direction of the axis can be obtained by multiply-
ing the moment with the cosine of the angle enclosed by the axis in question, 

so in general the vibration moment 
within the plane shows a component in 
both the axis -A and B. Since, how-
ever, the square of the transition moment 
occurs in the formulae of the intensi-
ties, the contours of the hybrid bands 
corresponding to the transition are de-
ducible from the bands A and B when 
the two bands after having them multi-
plied with the square of the cosine of 
the angle enclosed by the given axis 
and the transition moment are summed. 
We accomplished these computations 
for three remarkable cases with the 
transition moment enclosing the angles 
of 30°, 45° and 60° with axes of the 
smallest moment of inertia. The aver-
aging was carried out in the first case 

\ 

• . 

j i r - ^ -

Fig. 4 

Fig. 5 
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on the bands A and B with the weight 3:1, in the second case 1:1, in the 
third case 1:3. 

First the direction of the axis with the smallest moment of inertia has 
to be established: Let us place the molecule into an arbitrary system of co-
ordinates with the center of gravity of the molecule being in the origin. Let 
be the angle enclosed by the axis with the smallest moment of inertia and 

1 ( 
\
 0

 J 

H w 
W 

Maí' fül*' 

v y Í-J JJtm* 

^ f A Í v / • M w W 

. Fig- 7 

the x-axis of the adopted co-ordinate, system. (Figure 4.). Any i-th mass 
point is the directional angle <pi referred to the x-axis of the adopted co-
ordinate system. In this case the distance of the /-th mass point from the 
axis with the smallest moment of inertia becomes u sin (<pi -f- §). From here 
the smallest moment of inertia is 

(3) 

Let us search the angle at which the moment of inertia becomes minimum. 
On differentiating (3) and putting it equal to 0 we get: 

t g2£ = - - t 
^ m i / f sin 2(fi 
^ m j ] cos 2 (pi 

(4) 

O-bromofluorobenzene: The ratio of the three rotational constants is 
approximately 1 :1 ,3 :4 . With these sK= 1/5 and sL = 4/5. 

The theoretical form of pure and hybrid bands of bromofluorobenzene 
is given in Figure 5 where also the spectral slit width of 2 cm-1 has been 
taken into account. The bond signed with AB is corresponding to the transition 
in which an angle of 30° is enclosed by the transition moment with the 
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axis A. With the band signed with AB the enclosed angle is 45° with that 
of the sign BA 60°. 

M-bromofluorobenzene: The ratio of the three rotational constants was 
found to be approximately 1:1,25:6. Computing with these: s^ = 1/7 and 
s l — 6/7. 

The envelope curves of the sub-branches and theoretical bands are given 
in Figure 6, the band forms computed for finite slit width may be seen from 
Figure 7. Some details of infrared vapour spectra prepared in our investiga-
tions are presented in Figure 8 with a designation of the character of the 
bands for both bromofluorobenzene isomers. The distances of the partial 
maxima show a good agreement with those computed theoretically. By com-

Fig. 8a Fig. 8c 

Fig. 8b Fig. 8d 
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paring the experimental and theoretical forms of bands an approximate deter-
mination of the angle enclosed by the transition moment and the axis of 
the smallest moment of inertia in the corresponding transition can be given. 

Fig. 8e Fig. 8 f 

Fig. 8g 
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