CONTRIBUTIONS TO THE: GENERAL I‘HEORY OF LCAO-MO
METHOD

By M.1. BAN* F. . GILDE and J. L. HORVATH
Institute of Theoretical Physics, The University, Szeged

(Received June 15, 1960)

The coefficients of the AO’s in different MO’s belonging to degenerate energy states
and ‘the physical quantities dependent on these coefficients, as well, are not unequally de-
termined, but are dependent on diophantic parameters of uncertamty It will be proved
that: (/) the diophantic parameters of uncertainty refer to rotations in the eigenspace of
MO'’s belonging to degenerate energy states; (i7) in the case of closed shells of MO's the
physical quantities are independent of the dxophantlc parameters of uncertainty; (/i) the
physical quantities in the case of non-closed electron shells of MQ’s are only independent
of the diophantic parameters of uncertainty if the “number of electrons” is the same on
the dxfferent MO'’s corresponding to the same energy.

§ 1. Introduction

Owing to the_great success of the molecular orbital (MO) method —
particularly if one considers the MO’s as linear combinations of atomic or-
bitals (LCAO-MO method) — in dealing with the practical problem of quan-
tum chemistry, the general theory of the LCAO-MO method has been investi-
gated in detail by several authors [1]—[5]. Nevertheless, in order to solve an
actual’ problem of quantum chemistry by the LCAO-MO method, one of us
(M. L. B.) has suggested a practical problem which may also be of interest
from the point of view of the general theory, especially in the case of non-
closed. electron shells (in terms of RooTHAAN [5]). It is- well-known on the
one hand that the coefficients of atomic orbitals (AO) in different MO’s be-
longing to degenerate energy states are not unequally determined and on the
other hand that such important quantities as the electron densities and the
bond orders, respectively, are dependent. on these coefficients of the AO’s.
As a matter of fact, it should be of interest in which cases these quantities
are not influenced by the uncertainty of the coefficients of AO’s in MO’s. It
~ will be proved below that (/) the uncertainty -of the electron density as well
as that of the bond order due to the uncertainty of the coefficients of AO’s
in MO’s for closed ‘shells' are automatically eliminated; (ii) in the case of
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non-closed shells in order to remove the same difficulty the equalization of
the “number” of electrons among the MO's belongmg to the same energy
will be proposed.

§ 2. Reinvestigation of benzene as a model

To prepare the general treatment let us briefly investigate the well-

known problem of benzene. Taking only the sz electrons of the C atoms of
benzene into account, the MO’s of the sz electrons will be denoted by

6 ’ ’
y=2c®, @
r=1 . N

where the index r of the AQ’s refers to atom r (r=1,2,...,6). The energy
of the MO's as well as the coefficients of the AO's in these MO’s can be
obfained by solution of the system of linear equations: : :

‘Zamw4ﬁw=Q‘ =12 ...,6) (22)

. r=1

with '
o =| DIHD A7, S0=] DI dr, 2,3

where H denotes the Hamiltonian of the system. Without any essential spe-
cialization of the problem suggested, one can only deal with the well-known
approximation of the LCAO-MO method: .

‘ a for s= r,' ,
83,:. sy ‘J('sr == 18 for s=r i 17 (2: 4)
0 otherwise.

The solution of equation (2,2) leads to four energy values, two of which
belong to doubly degenerated energy statés. For sake of perspicuity of the
following paragraphs the energy values as well as the MO’s, i e. electron
shells, will be denoted as follows

Eiin=a+28, E2,1“= Es» = + 8,

E3,1:Esz=a—ﬁ, E4,1=Ct.—2:8; (g' 5)

Ei’gl

%m Zug (i=1,...,4; 0—1,2) (2,6) -

Note that the first index of Crio (as well as in the following s, 1, u) refers to
the AO’s, the second one (as in the following j, &, /) to the MO’s by the
third one (as in the following by o, =) the different MO’s are denoted be-
longing’ to the degenerated energy E;, and 0=1,2,..., ﬁ, where f; refers

to the order of: degeneracy of energy E;&Q.Kb“‘}‘
A
N
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Owing to the orthonormality of the MO’s belonging to different electron
shells:

[ w8015 007 =63 @7
and (2, 4), we have ‘
6

1;1‘ C:i, oCrj, e =— d,‘j . (2, 8)

In order to determine the MO's i.e. the coefficients of the AO’s in the
MO's explicitly, one can proceed by the following two methods:

2.1. Taking the equations (2,2) and (2, 8) into account in the cases
i=1 and /=4 the coefficients ¢,;, can be immediately obtained. However,
in the case of the degenerated- energy states i=2 and i=23 our equations
(2, 2) and (2, 8) do not provide equations enough for the determination of
¢, o’'S. As matters stand, one can ‘use [6], e g., for i=2 the following
method:

.Due to (2, 2) for. the c,9, the relations

C12,9=—Ca2,9; C29,0=—Cs2,0; C(82,9= ¥Csz,e=—clz,9+622,g (2,-9)
can be obtained. Considering also the equations (2, 8) we have 10 equations
for the 12 unknown coefficients (o =1, 2). Let the uncertamty be expressed

by the dlophantnc parameters A and wuo:

-C12,1= = —C42,1, Ci0=—Cq2,2= (1—#9)6‘22,2,
Co2,1 = —C521 = 42C121, C22,9 == — (39,2, (2' 10)
7 G391 = —Ce2,1 = (12"-1)(312,1; (32,2 = ——Cp2,2 == MaC222. ‘
Table I*
i: 2 = 3 .
r| i=1 : i=4
o=1 =2 e=1 e=2
il 6 k 37RQRA—Nk | —3RQRA+ DK | W 67
2| 6 Ask 37 (2 —2)k 37 (45 + 2K Ak | -6
31670 | (h—Dk | =3R4k | 3BU—DE | —(+ i)k | 67
4| g —k | =37"R@a—1k | —37"@A+ DI K —67"
5| 6% _ Ak | =37 y—2)k 3745+ 2K Ak 67"
6] 6 | —(a—Dk | 37+ Dk 3 — 1k | —(1 4 )k | —67"
* In Table | k=(4A3—42,+ 4)"2 and &' = (445—4 4, + 4™
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Since, the different ‘MO’s belonging to the same electron shell can be
orthonormalized one can replace (2, 8) by :

Z C:i,acrj, [4 == di‘;'dzrg ) 'l . (2, 1 1)
r=1
therefore, our system of equations is completed by
Ccrg1Co 21— o+ 224 po(Ae—1)] =0 (Cw 1e2270) (2,12)
and, finally, we have

g — 2L | (2, 13)

Aa—2

This means that the coefficients of the AO’s in the MO’s are only dependent
on 4;. (Table L)

2.2. For sake of 51mp11c1ty one can use the method of group theory.

Taking, e. g., the Csy symmetry of benzene into consideration, then the -6-di-
mensional representation I” in the linear space of AQ’s is splitting into"

'=24:+2E. , (2,14)

(Concerning “the notation cf. e, & [7]). The correspondmg new basnc vec-
tors are

) GO = 13D+ Dot De); gAO=1/[3(DoF Dot De); ~
? =1/V§(@2f D), o — 1)) 6(2 @y — D5— Dy); (z 15)
P =1/2(De—D5), . ¢ =1//6(Ds+ Ds—2 D).

Naturally, the energy values are the same ones as in (2.5). As to the deter-
mination of ¢, one can use our equation (2,2) and (2,8) again, but, of -

" Table II

, i=2 i=3
r i=1 : =4
’ e=1 o=2 o=1 0= _
i (RC 3t 0 0 37 6
2 67'h 127 —2! 271 | -2k gk
3 62 — 127 —2-1 | —ot | g2k 6"z
PR —37% 0 0 - 3k —67"2
5 67 S o 27! — 127 6"
6 6" 127 27! -2t —127": "—67" -
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course, the AQ’s have to be replaced by the basic- vectors (2, 15). The ¢
are in this case unambiguous (Table II), and the relations of orthonormahty
(2, 11) are automatically fulfilled. - 4
_ Taking other symmetry groups of -benzene into account (e.g. Caov, Den
[8]) for ¢.,, exactly the same table as Table Il can be obtained.

One observes immediately that Table Il with Zo=1/2 and 23————1/2
can be derived from Table I

§ 3. Electron density and bond order

As is well-known based on the LCAO-MO method several quantities
characterizing the physical -and chemical properties of molecules (in the fol-
lowing physical quantities) can be dealt with. Owing to a previous investi-
gation of C. A. CouLsoN and H. C. LONGUET-HIGGINS [4] all of these physxcal
quantities can be dérived -from the electron density at the atom r

2, an acrz gcn [ ’ » (3’ 1)

L1 9—'1

and ffom the bond order between the atoms r and s

,,,,,,

Pro=2, Z MioChioCoives 3,2
i e._.
where n; o refers to the number of electrons in MO Wio ‘and the Ssum has to
be extended over all electron shells of the MO’s.
“Owing to the fact that the coefficients of AO’s in MO’s with f;> 1 are

depending on 4;, i.e. .
| S Criy o = Criy o (A), _ - (3,3)

one may generally expect that the electron den51ty as well as the bond order
are ‘also dependent on 4;’s:

4=,y ) and pre==poalia, B, .. ), 3, 4)
respectively. - -
In splte of this one can observe that, e. g for benzene

g-=1 and p,s=£ (s=r+1,r=12,...,6). (3,5)

3
This means that the electron den51ty and the bond order do not depend-on
the diophantic parameter of uncertainty introduced.

"~ However, for the positive molecule-ion of benzene having a sr-electron
system . of only five electrons.on suggestmg the occupahon of the energy
states by electrons as

'y

ﬂ11—2 nei=2, noe=1, ngi=ngo=n,; =0, - (3,6a)
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and as - _ S 3 ) o '
Aa=2, fi=1, Moe=2, Ms1==fi32=ns,1=0, (3, 6b)
respectively, the electron densitie_s, at the different atoms .
1 843—84+11. 1 11A—84h+8 _
‘h'_—qr-—ﬁm: %—‘h—%—%—iim, v(3,.7a).
and ‘. L
o 1. 423—441,+3 . 1 342—441,+4 @3 7b)

LA i Sy vy R R ey Ry p

respectively, can be obta'ined, without having any 'physical reason to dis-

°

E
Ess E4y .
1 2t
- Esy Es. Esy E;.
Iy A . 1, .,
3y 3, . . Loy 11
¢ ¢ By Ep B E, 127 ‘12
1 ' . 2/3
Evs Eqr
-0—-
a : b
 Fig. 1 .

tinguish among the two distributions proposed. Fig. 1 refers to both models
(3, 6a) and (3, 6b), respectively, for 4= 1/2.
Concerning the bond orders one can obtain similar results for benzene

as well as for the molecule-ion of benzene too.
_ It seems as if in the case of the electron shells of MO's filled up by

electrons and in that of electron shells of MO’s without electrons (benzene),
respectively, the electron density as .well as the bond order are independent
of the diophantic parameters of uncertainty introduced; however, in the case
of electron shells of MO’s which are not filled up by electrons (molecule-ion
of benzene) both .quantities are dependent on the diophantic parameters of
uncertainty without any physical reason. Whether these conclusions can be
generally suggested will be discussed in the next paragraph

§ 4. Investigation and removal of the uncertainty

In order to really understand the meaning of the u‘ncertéinty mentioned
in the previous two paragraphs let us consider the functional space of MO's.
First, it seems suitable to formulate the problem in the case of benzene for
i=2 again. :
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4.1. The functional space of the corresponding MO’s — being the
eigenspace of energy Es, — is in this case a two-dimensional subspace of
all the MO’s. One can use arbitrary pairs of functions of this eigenspace as
basic vectors fulfilling (2, 11). Let us consider the MO’s

W = 1/]/3 (@1 +—;— @z—% @3—@4—% @3+ @6):
Yoo = 1/2(— éDZ—Q)S‘I' D; -+ (PG),

which can be obtained by the method mentioned in 2. 1. In view of fact that
the basic vectors (4, 1) are real, by a rotation with angle « another arbitrary
basis system

1)

Y= zp.g,l cos a-l—m,z/g,.g sin «
Yoo = —1p,18i0 ¢+Yp2C08 @
can be derived from the basis system (4, 1).
One may observe, of course, a correspondence between the diophantic

parameter of uncertainty 1, and the angle e of rotation and 1t can be pro-
ved that

42

i.gz?(l + V3tga) (4, 3)

is valid for- all values of «. By the usual limiting process one can easily
see that the coefficients of the AO’s in MO’s -are finite also for ‘the case
«=7t/2, 371/2.

Due to these considerations the diophantic parameter of uncertamty gets
an immediate geometrical meaning.

4.2. Now, the question has to be investigated in which cases the dio-
phantic parameters of uncertainty occur? Taking the considerations of 4. 1.
into account it looks as if and only if the quantum mechanical problem has
degenerated energy states. Namely, on the one hand, only the eigenspace of
degenerated energy states are multi-dimensional and on the other hand, only
in this case can different orthonormal basis systems in the eigenspace of
MO’s — connected by orthogonal transformations — be introduced. Finally,
these orthogonal transformations may be characterized by diophantic parame-
ters of uncertainty.

In the course of our above considerations we have only explicitly con-
sidered the double-degenerated energy state Es, (6=1, 2) of benzene. One
can readily see that in the case of a f; -dimensional eigenspace of energy
Ei, (6=1,2,...,f) the number of diophantic parameters of uncertainty is
the same as the number of parameters of the f;-dimensional rotational group.

Let us consider the f;-dimensional eigenstate of the f;-fold-degenerated
- energy state E;, (6=1,2,...,f) as well as two different basis systems
{4105 and {y e} respectlvely They are connected by orthogonal transforma-
thflS S:(Sgo .

fi
- 'l,bf,g : g Sgtr"/}i, o ) ) (4) 4)
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with
3 ) .
Zl Scré Stg) - da’r . (4 5)

C0n51dermg that on the one hand due to (2 6) and @3, 3) one can ge—
nerally write

. B
= Z Cri, o(li) @r; .
r=1
v | (4,6)
. ‘ ¢5,g=§Cri,9(M)@r- \ -
and on the other hand taking (4, 4) into account one has
i N N _
'(,U; g: oél‘ Sga’ g Cri,\(r (lL) @ 7; Z SQU‘CT’L,O'(Z/ ) @ . (4’ 7)
Thus one can immediately obtain:

Cri, Q('{{) = c% Sgo-cri, a'('{i)y . (47 8)

- where N refers to the number of the AO’s of the problem considered, fur- .
thermore.4; and 4; denote the set of diophantic parameters of uncertamty It
may be observed-in- this way in what manner the uncertainty can be repre- -
sented by the matrix instead of the diophantic parameters.

4.3. Owing to the definitions of the electron density (3, 1) and that of
bond order (3, 2), for investigation of the dependence of physical quantities
on the diophantic parameters of uncertainty it will be enough to deal with
the bond order:

. i
p;'s = Z Z ni,ec:i, g(lg)csi, g(l:) ==

_Z i’ i CH a‘(l)cm z(l) Z nl: S@‘ngz

It can be proved that the bond order and the physzcal quantities are
only independent of the diophantic’ parameters of uncerz‘amty if the number of
electrons n;,, does not depend on o, i.e. if the “number” of electrons is the
same on the different MO's corresponding to the same energy E;.

Namely, for B ’ A -
n;,, = n; ==const (dependent on i) . - (4, 10)
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due to (4,9) and (4, 5)
) fi f
Drs = Z Zl‘ '_Zl:C:i,a(li)ng,r(li) Ni0g; =

1

> (4, 11)
_— Z 0221 n; C:i, a(li)c‘gi, 0(2,‘) = Py

1

can be obtained;

- 4.4. In order to summarize the physical conclusions of the above re-
sults it looks as if the guess suggested at the end of §3. would be gene-
rally proved: : : -

(i) in the case of closed electron shells of MO'’s the physical quantities
are independent of the diophantic parameters of uncertainty, i.e. of the choice
of the basis systems in the different subspaces of MO's.

Namely, in this case the n;,’s are either 2 or O and, of course, the
condition (4, 10) is fulfilled. .

. Owing to this result, a remark of Appendix 2 of CouLsoN and LON-
GUET-HIGGINS's paper [4] seems to be unnecessary,=since, that paper refers
only to closed shells. ’ '

(ii) in the case of non-closed electron shells of MO's to render possible
the independence of physical quantities from the diophantic parameters of un-
“certainty the “number” of electrons must be the same on the different MO's
corresponding to the same energy.

Consider the example of benzene again. In spite of (3, 6a) and (3, 6b)

" we have -
nyi=2, ng1==ng>=15 ng1=n32="n4,1=0. 4, 12)

One can immediately see that in this case
qi=5/6 (i=12,...,6). (4, 13)

It looks as if thd suggested solution of the problem might be accepted
also from the physical point. of view, namely, in the case of unperturbed
systems one has not any argument to expect some asymmetry in the electron
density of the molecules efc., except if the asymmetry mentioned would be
~ based on any physical reason. : ‘

Furthermore, it is well known that — according to MCCONNEL’s theory
of paramagnetic resonance for aromatic systems — the distances of hyper-
. fine structure lines of protons are dependent on the electronic densities at
the C atoms. However, in such cases it was not observed so far that any
difference between the hyperfine structure lines would have occured. As a
matter of fact, our proposal based on quite other arguments is supported by
these experimental evidences too.

4.5. Finally, we have to consider the generalizations of the version of
the LCAO-MO method mentioned. The generalization means, e. g., that at the
approximation of higher orders some of our suppositions (2, 4) have to be
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changed. Due to WIGNER's results [9] — although the energy values and the
coefficients of AO’s in- MO's as well can be modified — the degeneration
induced- by the symmetry of the molecules, the so-called normal degeneration,
cannot be eliminated. This means, however, that the problem treated above’
_occurs in general cases too and it can immediately be proved-that our above
considerations can be repeated without any difficulty.
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OO~ O OL O —

3AMEUAHHS OB OBIIEM TECOPUM METOAA MO-JIKAO
M. U bon . U Tusde u 1. H. Xopsar

Ko>prnHenTsl aTOMHBIX OPOHT B DPARJTHUYHBIX MOJEKVJSDHBIX OPOHTAX, OTHOCSLUHXCS -
K BHIPOXEHHOMY 3HAYeHHIO SHepPruu, n (H3HYECKHe BeNHYHHL, 3aBUCALIHE OT THX KO3(H-
LUCHTOB, HEOMHO3HAYHBl, d OHH 3aBHCAT OT IMApPAMeTPOB HeonpeaesdenHocTd Juoganta.
Beuto noxasano: uro (I) 3tH napamerpm Huopawra cssi3aHbLl ¢ IMOBOPOTAMH COGCTBEH-
HOTO TI0JiA, OTHOCAIlerocs K BBIPOXKAEHHOMY 3HaueHHIO 3HepruH; M uto (II) dusnyeckne
BeJMuliEL, B cJaydae 3aHATEIX MO, He 3aBucsT or ‘napamerpos [uoganrta; u uto (III)
¢uzudecKHe BEAHYHHBI, B CJydYae He cOBceM 3aHATEIX MO, ToJbKC TOrga HE3aBHCHMBI OT
napamerpos Juoganta, Korna uMca0 3JEKTPOHOR SIBJSeTCS TOXAECTBEHHBIM I pas-
anygpix MO, OTHOCAIMUXCS K BHIPOKAEGHHOMY 3HAYEHUK) 3HEPTHH.
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