THEORETICAL TREATMENT OF BINUCLEAR COMPLEX COMPOUNDS

By V. MARÁZ
Institute of Theoretical Physics, The University, Szeged

(Received March 15, 1962)

Abstract

The energy levels and transitions of the $\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Co}(\mathrm{OH})_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{4-}$ and of the $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Co}(\mathrm{OH})_{3} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3-}$ binuclear complex ions are calculated by the LCAO-MO method

 using the half-empirical approximation of Wolfsberg and Helmholtz.The theory of complex compounds has been developed by several authors [$1-3$] and more recently in [4]. A distinguished group of complexes is represented by the complexes having two or several ions in their centres. In the Institute of General and Physical Chemistry of the University of Szeged the binuclear complex compounds were investigated, hence, their theoretical treatment had to be developed as well.

As a matter of fact, in this paper the binuclear complex compounds $\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Co}(\mathrm{OH})_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{4-}$ (denoted by K_{1}) and $\left.\left[\mathrm{NH}_{3}\right)_{3} \mathrm{Co}(\mathrm{OH})_{3} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3-}$ (in the following K_{2}) are theoretically investigated in detail. The central ions are surrounded by ligands with bi-octahedral symmetry. The two octahedra have in the case of K_{1} a common edge and in the case of K_{2} a common face. In fact, the common edges and faces are somewhat contracted, nevertheless, the bi-octahedral symmetry is not disturbed in this way. The Co ions are in the centres of the octahedra the OH ion along the common edge and along the common face, respectively, furthermore, the NH_{3} molecules are on the other vertices of the octahedra (Fig. 1 and Fig. 2).

The direction of the atomic orbitals of the ligands are denoted on the figures by vectors and the different atoms are labelled by arabic numerals. The ligands may be regarded as electric dipols where owing to the electrostatic attraction of the positive charged central ions the centre of negative charges, i.e. the O and N atoms, is nearer to the Co ions than the centre of the positive charges.

For the sake of simplicity, let us suppose that (i) the H atoms of the ligands do not take part in the formation of the complex, therefore, their influences can be neglected; (ii) this is the reason that also the electrons in the closed shells of the Co atoms are not taken into consideration at the fornation of molecular orbitals (MO-s). In fact, we take into account: five $3 d$, one $4 s$ and three $4 p$ atomic orbitals of the Co atoms, the three $2 p$ orbitals of the OH ions and O atoms, respectively, finally, the $2 p \sigma$ orbitals of the N atoms of the ammonia molecules along the $\mathrm{N}-\mathrm{Co}$ bounding axes. Owing to the supposition (i) the $2 p \pi$ orbitals of N atoms can be
neglected. In the course of the calculation we have observed that in the case of K_{1} the $2 p \pi$ orbitals of the O atoms which are orthogonal to the $\mathrm{Co}-\mathrm{O}$ bounding axes do not take port in the bounding, therefore, these atomic orbitals as well as the corresponding two electrons can also be neglected. As a matter of fact, we have

Fig. 1

Fig. 2
in the case of $K_{1} 30$ atomic orbitals and 36 electrons and in the case of $K_{2} 33$ atomic orbitals and 42 electrons, respectively.

The energies of the electrons are calculated by means of the LCAO-MO method, for the extensive simplification of which group theoretical considerations are used [5]. The 30 and 33 atomic orbitals, respectively, mentioned above span the reducible representations of the groups considered. Using the character systems of the groups [6,7] the reducible representations have the form:

$$
\begin{equation*}
\Gamma_{1}=7 A_{1 g}+7 B_{1 u}+4 B_{2 g}+4 B_{3 u}+3 B_{2 u}+3 B_{3 g}+B_{1 g}+A_{1 u}, \tag{1}
\end{equation*}
$$

$\left(K_{2}\right)$

$$
\Gamma_{2}=6 E^{\prime}+5 E^{\prime \prime}+5 A_{1}^{\prime}+5 A_{2}^{\prime \prime}+A_{2}^{\prime} .
$$

The new basic functions spanning the irreducible subspaces can be found in Table I (K_{1}) and in Table II (K_{2}).

The secular equation having originally the form $\left|H_{i j}-E S_{i j}\right|=0$ may be broken up into products corresponding in the case of K_{1} to the decomposition (K_{1})
and in the case of K_{2} to the decomposition $\left(\mathrm{K}_{2}\right)$, respectively. For the calculation of the overlap integrals $S_{i k}$ an approximation method [4] was used; in the case of Co-O bound the nuclear distance $1,88 \AA$, and in the case $\mathrm{Co}-\mathrm{N}$ bound the nuclear distance $1,92 \AA$ was taken into account [8]. The integrals of type $H_{i i}$ were substituted by the ionisation potentials: in the case of the Co atom for $4 s$ orbitals $-7,84 \mathrm{eV}$, for $4 p$ orbitals $-4,08 \mathrm{eV}$, for $3 d$ orbitals $-9,38 \mathrm{eV}$. [9], in the case of N for $2 p \sigma$ orbitals $-13,81 \mathrm{eV}$ and in the case of O for $2 p \sigma$ orbitals $-11,24 \mathrm{eV}$ [10], respectively. The integrals $H_{i j}(i \neq j)$ were determined by the approximation formula of Wolfsberg and Helmholtz [3]:

$$
H_{i j}=F_{x} S_{i j} \frac{H_{i i}+H_{j j}}{2}
$$

where the empirical factor F_{x} was chosen as 2,20 for σ bounds and 2,65 for π bounds [4]. The energy values are summarized in Table III.

Owing to Pauli's principle the electrons occupy the lowest energy levels, then due to the selection rules, summarized in Table IV, the allowed transitions in Table V can be calculated without any difficulties. The results obtained are in good agreement with those of the experiments [11].

Table I. (K_{1})

	co	o	N
$A_{1 g}$	$\begin{gathered} d_{z^{2}}(1)+d_{x^{2}}(2) \\ d_{x^{2}-y^{2}}(1)+d_{x^{2}-y^{2}}(2) \\ s(1)+s(2) \\ p_{z}(1)+p_{z}(2) \end{gathered}$	$p_{x}(1)+p_{x}(2)+p_{x}(1)+p_{z}(2)$	$\begin{aligned} & p_{z}(1)+p_{x}(2)+p_{x}(3)+p_{x}(4) \\ & p_{z}(5)+p_{z}(6)+p_{z}(7)+p_{z}(8) \end{aligned}$
$A_{1 \times}$	$d_{x y}(1)+d_{x y}(2)$		
B_{19}	$d_{x y}(1)-d_{x y}(2)$		
B_{14}	$\begin{gathered} d_{z^{2}}(1)-d_{z^{2}}(2) \\ d_{x^{2}}-y^{2}(1)-d_{x^{2}-y^{2}}(2) \\ s(1)-s(2) \\ p_{z}(1)-p_{z}(2) \end{gathered}$	$p_{x}(1)-p_{x}(2)-p_{z}(1)+p_{z}(2)$	$\begin{gathered} p_{z}(1)+p_{z}(2)-p_{z}(3)-p_{z}(4) \\ p_{z}(5)+p_{z}(6)-p_{z}(7)-p_{z}(8) \end{gathered}$
$B_{2 \theta}$	$\begin{gathered} d_{x z}(1)-d_{x z}(2) \\ p_{x}(1)-p_{x}(2) \end{gathered}$	$p_{x}(1)+p_{x}(2)-p_{z}(1)-p_{z}(2)$	$p_{z}(1)-p_{z}(2)+p_{z}(3)-p_{z}(4)$
$B_{2 u}$	$\begin{gathered} d_{y z}(1)-d_{y z}(2) \\ p_{y}(1)-p_{y}(2) \end{gathered}$		$p_{z}(5)-p_{z}(6)-p_{z}(7)+p_{x}(8)$
$B_{3 g}$	$\begin{gathered} d_{y z}(1)+d_{y z}(2) \\ p_{y}(1)+p_{y}(2) \end{gathered}$,	$p_{z}(5)-p_{z}(6)+p_{z}(7)-p_{z}(8)$
$B_{3 u}$	$\begin{aligned} & d_{x z}(1)+d_{x z}(2) \\ & p_{x}(1)+\dot{p}_{x}(2) \end{aligned}$	$p_{x}(1)-p_{x}(2)+p_{z}(1)-p_{z}(2)$	$p_{z}(1)-p_{z}(2)-p_{2}(3)+p_{z}(4)$

Table II. $\left(K_{2}\right)$

	Co	o	N
A_{1}	$\begin{gathered} d_{z^{2}}(1)+d_{z^{2}}(2) . \\ s(1)+s(2) \\ p_{z}(1)+p_{z}(2) \end{gathered}$	$\begin{aligned} & p_{x}(1)+p_{y}(1)+p_{x}(2)+ \\ &+ p_{y}(2)+p_{x}(3)+p_{y}(3) \end{aligned}$	$\begin{aligned} & p_{z}(1)+p_{z}(2)+p_{z}(3)+ \\ + & p_{z}(4)+p_{z}(5)+p_{z}(6) \end{aligned}$
A_{2}^{\prime}		$p_{z}(1)+p_{z}(2)+p_{z}(3)$	
$A_{2}^{\prime \prime}$	$\begin{gathered} d_{z^{2}}(1)-d_{z^{2}}(2) \\ s(1)-s(2) \\ p_{z}(1)-p_{z}(2) \end{gathered}$	$\begin{gathered} p_{x}(1)+p_{x}(2)+p_{x}(3)- \\ -p_{y}(1)-p_{y}(2)-p_{y}(3) \end{gathered}$	$\begin{gathered} p_{z}(1)+p_{z}(2)+p_{z}(3)- \\ -p_{z}(4)-p_{z}(5)-p_{z}(6) \end{gathered}$
E^{\prime}	$\begin{gathered} d_{x^{2}-y^{2}}(1)+d_{x^{2}-y^{2}}(2) \\ d_{x z}(1)+d_{x z}(2) \\ p_{x}(1)+p_{x}(2) \end{gathered}$	$\begin{gathered} 2 p_{x}(1)+2 p_{y}(1)-p_{x}(2)- \\ -p_{y}(2)-p_{x}(3)-p_{y}(3) \\ p_{z}(2)-p_{z}(3) \end{gathered}$	$\begin{gathered} 2 p_{z}(1)+2 p_{z}(4)-p_{z}(2)- \\ -p_{z}(3)-p_{z}(5)-p_{z}(6) \end{gathered}$
	$\begin{gathered} d_{x y}(1)-d_{x y}(2) \\ d_{y z}(2)-d_{y z}(1) \\ p_{y}(2)-p_{y}(1) \end{gathered}$	$\begin{aligned} & p_{x}(2)+p_{y}(2)-p_{x}(3)-p_{y}(3) \\ & p_{z}(2)+p_{z}(3)-2 p_{i}(1) \end{aligned}$	$p_{z}(3)+p_{z}(6)-p_{z}(2)-p_{z}(5)$
$E^{\prime \prime}$	$\begin{gathered} d_{x y}(1)+d_{x y}(2) \\ d_{y z}(1)+d_{y z}(2) \\ p_{y}(1)+p_{y}(2) \end{gathered}$	$p_{x}(2)+p_{y}(3)-p_{y}(2)-p_{x}(3)$	$p_{z}(2)+p_{z}(6)-p_{z}(3)-p_{z}(5)$
	$\begin{gathered} d_{x^{2}-y^{2}}(2)-d_{x^{2}-y^{2}}(1) \\ d_{x x}(1)-d_{x x}(2) \\ p_{x}(1)-p_{x}(2) \end{gathered}$	$\begin{gathered} 2 p_{y}(1)-2 p_{x}(1)+p_{x}(2)+ \\ +p_{x}(3)-p_{y}(2)-p_{y}(3) \end{gathered}$	$\begin{gathered} 2 p_{z}(1)-2 p_{z}(4)+p_{z}(5)+ \\ +p_{z}(6)-p_{z}(2)-p_{z}(3) . \end{gathered}$

Table III.

K_{1}							
A_{19}	$\boldsymbol{B}_{1 u}$	$B_{2 g}$	B_{314}	$B_{2 u}$	$B_{3 g}$	$B_{1 g}$	$A_{1 u}$
- 3,702	+ 8,070	- 0,794	- 3,892	- 4,135	- 4,034	-9,38	-9,38
- 6,787	- 3,960	- 8,442	- 8,085	- 9,380	- 9,380		
- 8,813	- 7,862	- 12,274	$-11,569$	-13,811	-13,811		
- 9,806	- 8,466	-14,197	$-14,187$				
- 11,353	-11,261						
- 13,977	-14,126						
-14,669	-16,769						
K_{2}							
A_{1}^{\prime}		A_{2}^{\prime}	$A_{2}^{\prime \prime}$		E^{\prime}	$E^{\prime \prime}$	
- 4,299		$-10,54$	+ 8,001		- 4,113	- 3,987	
- 8,295			- 6,063		-- 9,086		9,084
- 9,616			- 9,467		- 9,38		9,38
$-12,603$			- 11,402		- 10,494		1,622
$-14,576$			-14,725		-11,329		4,121
					-14,079		

Table IV.

K_{1}		
$A_{1 g} \leftrightarrow B_{1 u}$	$A_{1 u} \leftrightarrow B_{2 s}$	$B_{1 g} \longrightarrow B_{2 u}$
$A_{1 g} \longleftrightarrow B_{2 u}$	$A_{14} \longleftrightarrow B_{3 g}$	$B_{2 u} \longleftrightarrow B_{3 g}$
$A_{1 g} \leftrightarrow B_{3 u}$	$B_{2 g} \longleftrightarrow B_{3 u}$	$B_{1 u} \longleftrightarrow B_{3 g}$
$A_{14} \longleftrightarrow B_{1 g}$	$B_{1 g} \longleftrightarrow B_{3 u}$	$\mathrm{B}_{14} \longleftrightarrow \mathrm{~B}_{2 g}$
K_{2}		
$A_{1}^{\prime} \longleftrightarrow A_{2}^{\prime \prime}$	$A_{2}^{\prime} \leftrightarrow E^{\prime}$	$E^{\prime} \leftrightarrow E^{\prime}$
$A_{1}^{\prime} \leftrightarrow E^{\prime}$	$\begin{aligned} & A_{2}^{\prime \prime} \leftrightarrow E^{\prime \prime} \\ & E^{\prime \prime} \leftrightarrow E^{\prime \prime} \end{aligned}$	$E^{\prime} \leftrightarrow E^{\prime \prime}$

Table V.

K_{1}			
5817.	23939	40898	44940
8189	26375	41568	45594
8746	26948	42479	46925
10376	28086	42544	47417
. 11667	28199	42568	47579
12748	29296	43464	48103
15983	29869	44246	48668
21018	32644	44432	48991
21341	32757	44811	49846
21913	39462	44852	50475
K_{2}			
8754	18113	40285	44214
9456	20461	40301	44295
11360	20477	40624	44400
11376	24479	40640	44852
11731	25068	40995	45513
17742	26762	41697	46667
17895	28376	42496	49983
18097	28667	43512	51484

The author wishes to express his thanks to dr. F. J. Gilde for calling his attention to the problem investigated and for the helpful discussions.

References

[1] Ilse, F. E., H. Hartman: Z. phys. Chem. 197, 239 (1951).
[2] Pauling, L.: The Nature of the Chemical Bond (Cornell University Press, New York, 1939).
[3] Wolfsberg, M., L. Helmholtz: J. Chem. Phys. 20, 837 (1952).
(14] Gilde F.: Dissertation, Szeged, 1958.
[5] Wigner, E.: Gruppentheorie und ihre Anwendung (Vieweg, Braunschweig, 1931).
[6] Eyring, H., J. Walter, G. E. Kimball: Quantum Chemistry (Wiley, London, 1944).
[7] Herzberg, G.: Molekula-színképek és molekula-szerkezet II. (Akadémiai Kiadó, Budapest, 1959), p. 142.
[8] Pauling, L.: The Nature of the Chemical Bond (Cornell University Press, New York, 1939), p. 167, 169.
[9] Landolt, Börnstein: Zahlrenwerte und Funktionen. Atom und Molekularphysik I (Springer, Berlin, 1954).
[10] Mulliken, R. S.: J. Chem. Phys. 2, 792 (1934).
[11] Császár J.: Private communication.

ТЕОРЕТНЧЕСКОЕ ИССЛЕДОВАНИЕ ДВУЯДЕРНЫХ КОМПЛЕКСНЫХ ИОНОВ B. Mapas

Были рассчитаны электронные энергии двуядерных комплексных ионов $\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Co}(\mathrm{OH})_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{4-}$ и $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Co}(\mathrm{OH})_{3} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3-}$
с помошью полуэмпиричєского метода МО-ЛКАО.

