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The rule of the matrix elements formatlon of the Hamlltoman between Slater determmants :
was generalized. for n-electron molecules.

Introduction

it is well known, that in the configuration-interaction method the zero-order
eigenfunction of a molecule with »n electrons has to be constructed as the linear
combination of the Slater determmants

(ad)l . (nB),

M)
(aa) - (B, '

Vn !

where a, b, ¢, ..., n mean orbital eigenfunctions, o and f one-particle spin functions
and (aa); =a(1)a(1), etc. The energy, to the first order, of the system given by the
linear combination of all the possible different configurations can be obtained from
the roots of the usual secular equation:

|Hij— ES;| = 0, . - @
where .
Hy = [gtHp,dc and S, = [ ytgyde. " G)

In the work of EYRING, WALTER and KiMBALL [1] one can read about rules
for the matrix elements formation of the Hamiltonian between Slater determinants
in the cas¢ of four-electron molecules. In this work the results obtained by the
above mentioned authors will generalized for n-electron molecules. The orbital
cigenfunctions of the Slater determinants in terms of the configuration-interaction
- method agree with each other, the difference between two Slater determinants
occurs only in the arrangement of the spin on the orbital functions. Therefore one
must consider Slater determinants only containing the same- orbital eigenfunctions.
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Reduction of the matrix element

Let us assume that the one-electron functions a, b, ..., n are mutually ortho-
- gonal and let us further consider two arbitrary Slater determinants:

Py = %Z(—l)”m‘(aa)l s () (1B, @
n!> 4 .

1 v’ .
o= 2 (= )" Pi(ag) ... (B); .- (n),, ©)
V! ,
‘where P, and P} mean permutation 6perators. The integral [@kHep,dr is therefore
1 v .
Hy, = ,7/[2(—1) Py (a2), ... (i); .. (nB),J* X
XH[ 2 (= 1) Pl(ag), ... GB): - (n),] dr.

The value of the integral remained unchanged by a new notation of its variables.
The new notation of the variables can be accomplished by the inverse operator

—1)"(Py)~1. Let the inverse operator work on all the three factors .of the integrand.
Due to the symmetry of the Hamiltonian this new notation of the variables does
not cause any change. Taking into consideration, that in the first summation the
identical permutation operator takes place:

—PHTN(=D'PE=E, | | M
one obtains for the first summation
| (=1 (P (= 1) Phad, .. (iod; ... (nf), =
= nl{aay) ... (0); ... (nf),,

since there are n! identical terms. If -the permutation operator (=D P> in the
second summation was running over all the variables in all possible way, the appli-

. cation of the permutatiofl. operator (—1)"(Py)~'(~1)"P} = (=1)"P,~ has the

(6

8 .

same result — maybe — except of order. The matrix element is thus reduced to
Hiy = [ (@), ... (@) ... (nf)IF % %
XH[Z (= 1) Py(an)y ... (B); - (n),] dr.
The matrix elements H

We will first focus our attention on the lntegrals of the type [¢fHpdt. Then
Eq. (9) has the following form: )

iy = [ 1@y - @@ (B
XH[%,’ (— 1" Py(aw)q ... (ia); ... (nB),] dr.

(10)
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It is well known that

| H=K+L | an
where . : :
K=2K. and L= 3L . (12)
K= —%Vf+‘2i and L, = 71—,. . : ,. (13
ai ik

Owing to Eq. (11), (10) must be studied separately for K and L.
Let us first consider the integral j(p1K<p,dr Its i-th term has the form as fol-
lows: .

S L@, G, - @] X Ki[ Z(él)“:'Pv,,(aa)l o (i) .. (n;é),,]dr. 09

The identical permutation leaves all the indices unchanged and results the following .
contribution to the matrix element Hj,: .

j (aoc) (acx) dr, .. f (i K (i), e X f () (), =
= f(/oc)*K (i), dt.

All the other permutations change indices and so all the other terms m Eq. (14)
will vanish contammg mutual]y orthogonal one-electron functions. o
The situation is the same in all other terms’ of the integral [¢}Kp,dr.
Let us next consider the integral ftplL(pldr Its term contammg the: indices
i cmd k has the form as fo]lows . :

[T, - iy . (k) (BT
X L,k[%’(— DV P,.(a0); ... (ia); ... (ko) ... (nB),] dr.

(s

(16) -

In Eq. (16) two. permutations result effective contribution to the matrix element Hyy:
1. the identical permutation, with a contribution of

| (o)t (k) LGy (kady di, e | Can
2. the permutation of i, k, with a Contribufion of

| —f (i2)F (koO)f Lyg (ko) (i) di; . (18)

- All the other permutation change indices and so all the other terms in Eq. (16)
vanish containing mutually orthogonal one- -electron functions.

The situation is the same in all the other terms of the integral ¢fLg,dr.

The integration in every term means an integration over the orbital variables
and a summation regarding the spin variables. Because of the orthogonality of
the spin function all terms in Egs. (15), (17) and (18) vanish except those for which
the spins match identically.
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In fact, due to Egs. (15), (17) and (18) the matrix element H;; is the coulombic
integral @ minus the sum of all axchange integrals between orbitals having the
same spin.

The matrix element H;

In that case, when the Slater determinant ¢, differs from ¢, only in the spin
of one orbital function, Eq. (9) has the following form:

Hi, = / [(a=), .. (io); .. @) X H[Z(—l)“"P‘.,,((la), o (iB); oo ()] dr. (19)
According to Eq. (Al_S) the result of the identical permutation is now

| (3 KByt (20)

and vanishes because of the orthogonality of the spin functions. In all other térms
of the integral f @iK @,dr there are terms containing mutually orthogonal one-
electron eigenfunctions and as a matter of fact vanish, too.

By the permutation of the indices i and k& Eqs. (17) and (18) has the form:

[ oyt (ko Loy (iB)s (k) v, e, @1)

] et Lot . - @

They will, however, also vanish because of the orthogonality of the spin- funcnons
All the other terms of the integral [¢fLg,dt vanish due to the factors contammg
mutually orthogonal one-electron eigenfunctions.

Finally, let us consider the case, when the Slater determmant i, differs from
¢, in the spin of two orbital functlons Now, Eq. (9) has the following form:

[az), .. (@), . kB - (no0,J X

(23)
XH[Z’(— 1) P, (a2), @ oo (ko) ... (nar),] dr. ,
The mtegral f(plk(/zzdr vanishes again, since the circumstances are the same
as in the previous case.
But, now the .integral f(p L,dr does not vanish, namely, owing to Eq (@2}
it has the following form:

— [ o B LB Yk da, e

giving a contribution to H,,, which is the negative of the exchange integral bet-
" ween two orbitals having the same spin.
If the Slater determinant ¢, differs from ¢, in the spin of more then two orbi-
tals, the integral [p}Hq,dr vanishes on account of the results of the previous cases.
" In fact, the rule can be formulated as follows: The matrix elements H;; bet-
ween two different Slater determinants are zero unless the Slater determinants differ
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only in the spin of nwo orbitals and are the negative of t/ze corresponding exchange
nz{eglals

If the one-electron functions «, b, ..., n are not orthogoridl many terms in
the formulas for the matrix elements of the Hamiltonian do not vanish, and the
number of such terms increases almost astronomically as the number of electrons’
increases. Therefore, it seems to be advantageous to try to set up such orthonormal
orbitals, which can be used for molecular calculation. This method was. developed
by LOWDIN {2), SLATER [3] and WANNIER [4]
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