TETRAGONALLY DISTORTED TETRAHEDRAL ML_4 -COMPLEXES. II Splitting of the d^3 -Configuration in Strong Ligand Field of D_{2d} Symmetry

By

M. I. BÁN

Institute of General and Physical Chemistry, Attila József University, Szeged

(Received June 16, 1972)

The energies of spectroscopic levels arising from the splittings, in ligand field of D_{2d} symmetry, of strong field configurations deduced from the electronic system d^3 have been given in terms of the interelectronic repulsion parameters B and C, the three ligand field parameters K, L, and M and the distortion angle β .

GILDE and BAN qualitatively described [1] the orbital splittings of configurations d^n (n=2, 3, ..., 8) in strong ligand field of D_{2d} symmetry, using the determinantal functions [2] valid in the subspaces corresponding to the splittings. FURLANI *et al.* [3] calculated, by the weak field approximation, the orbital splittings of pseudotetrahedral CoA₂B₂ (C_{2v} symmetry) and CoA₃B (C_{3v} symmetry) complexes (both types containing Co^{II}-ion; d^7 -configuration) and gave the energy matrices for the quartet levels.

In the present paper—using the procedure described in the earlier publication [4] and employing the functions mentioned—the strong field matrices for the d^3 -configuration in D_{2d} symmetry have been given.

Energy matrices

On the basis of the perturbation method, using the assumptions made and the procedure described in the first paper of this series [4], the energy matrix elements¹ related with the electron-electron and ligand-electron interactions have been calculated.

The complete energy matrices² are as follow:

$$(b_2)(e)^2 \quad {}^{4}B_1: \qquad -12K - 12L + 6M \tag{1}$$

$$(b_1)(e)^2 \quad {}^4B_2: \quad -12K-24L+6M$$
 (2)

$$\frac{4A_2: (a_1)(e)^3 (a_1)(b_1)(b_2)}{12B - 6K - 18L + 10M - 6B}$$

$$\frac{3B + 6K - 18L + 4M}{3B + 6K - 18L + 4M}$$
(3)

$$\frac{E: (a_1)(b_1)(e) (a_1)(b_2)(e) (b_1)(b_2)(e)}{3B - 24L + 7M 3B - \sqrt{27}B} (4)$$

$$\frac{3B - 12L + 7M - \sqrt{27}B}{9B - 18L + 3M}$$

¹ The corresponding integrals are written up with the the determinantal funcions [2] and the operators [3] end [8] of Paper I [4].

² The matrix elements below the diagonals are the mirror images of those above them.

² A ₁ :	$(a_1)(b_1)^2$	$(a_1)(b_2)^2$	$(a_1)(e)^2$	$(b_1)(e)^2$		$(b_2)(e)^2$	
	7B+4C+6K-30L+4M	С	$\sqrt{2}(3B+C)$	√6 <i>B</i>		0	
	÷	7B+4C+6K-6L+4M	$\sqrt{2}(3B+C)$	0		-√6B	(5)
			25B + 5C - 6K - 18L + 10M	√ 75 B		√75 B	(3)
				9B + 3C - 12K - 24L + 6M	М	-3B	

.

.

9B+3C-12K-12L+6M

² A ₂ :	$(a_1)(e)^2$	$(b_1)(e)^2$	$(b_2)(e)^2$	$(a_1)(b_1)(b_2)$	$(a_1)(b_1)(b_2)$	
	15B + 3C - 6K - 18L + 10M	- 3 <i>B</i>	- 3B	-3B	√ <u>27</u> B	
	· · · ·	9B+3C-12K-24L+6M	3 <i>B</i>	3 <i>B</i>	$-\sqrt{3}B$	(6)
	•		9B + 3C - 12K - 12L + 6M	0	$-\sqrt{12}B$	(0)
				9B+3C+6K-18L+4M	$-\sqrt{12}B$	
					13B + 3C + 6K - 18L + 4M	

130+30+04

² <i>B</i> ₁ :	$(a_1)^2(b_1)$	$(b_1)(b_2)^2$	$(a_1)(e)^2$	$(b_1)(e)^3$	$(b_2)(e)^2$	
	7B + 4C + 12K - 24L + 6M	4B+C	√6B	$\sqrt{2}(B+C)$	0 .	
		27B + 4C - 12L	- 0	$\sqrt{2}(3B+C)$	$-\sqrt{54}B$	(7)
			$19B + 3C - 6K - 18L + 10M^{\circ}$	√75 B	- 3 <i>B</i>	. 0
		•		15B + 5C - 12K - 24L + 6M	$-\sqrt{27}B$	

9B + 3C - 12K - 12L + 6M

² B ₂ :	$(a_1)^2(b_2)$	$(b_1)^2(b_2)$	$(a_1)(e)^2$	$(b_1)(e)^2$	$(b_2)(e)^2$	
,ŕ	7B + 4C + 12K - 12L + 8M	4B+C	-√6B	0	$\sqrt{2}(B+C)$	
		27B + 4C - 24L	0	$\sqrt{54}B$	$\sqrt{2}(3B+C)$	(8)
			19B + 3C - 6K - 18L + 10M	3 <i>B</i>	$-\sqrt{75}B$. (0)
				9B + 3C - 12K - 24L + 6M	√27 B	
	•				15B + 5C - 12K - 12L + 6M	

M. I. BÁN

186

² E:	. (e) ³		$(a_1)^2(e)$	$(b_1)^2(e)$	$(b_2)^2(e)$	$(a_1)(b_1)(e)$
12 <i>B</i> +4 <i>C</i>	- 	L+9M	B+C .	3B+C	3B+C	√6B
	2	2 <i>B</i> +4 <i>C</i> -	+ 6K - 18L + 11M	4B+C	4B+C	$\sqrt{\frac{75}{2}}B$
	-		12B+40	C-6K-30L+3M	C .	$\sqrt{\frac{75}{2}}B$
				12B + 40	C = 6K - 6L + 3M	0

13B + 3C - 24L + 7M

(9) ·

$(a_1)(b_1)(e)$	$(a_1)(b_2)(e)$	$(a_1)(b_2)(e)$	$(b_1)(b_2)(e)$	$(b_1)(b_2)(e)$
0	$-\sqrt{\frac{9}{2}}B$	$\sqrt{\frac{3}{2}}B$	$-\sqrt{\frac{27}{2}}B$	$-\sqrt{\frac{81}{2}}B$
$-\sqrt{\frac{9}{2}}B$	$-\sqrt{\frac{81}{2}}B$	$\sqrt{\frac{3}{2}}B$	0	0
$\sqrt{\frac{9}{2}}B$. 0	0	$-\sqrt{\frac{27}{2}}B$	$-\sqrt{\frac{9}{2}}B$
0	$-\frac{1}{18}B$	$\sqrt{24}B$	0	$-\sqrt{18}B$
$\sqrt{3}B$	$-\sqrt{\frac{27}{4}}B$	$-\frac{3}{2}B$	$-\frac{9}{2}B$	$\sqrt{\frac{3}{4}}B$
9B + 3C - 24L +	$7M \qquad \frac{3}{2}B$	$-\sqrt{\frac{27}{4}}B$	$-\sqrt{\frac{27}{4}}B$	$-\frac{3}{2}B$
	$\frac{21}{2}B+3C-12L+7M$	$-\sqrt{\frac{27}{4}}B$	$-\sqrt{\frac{27}{4}}B$	$\frac{3}{2}B$
•	$\frac{23}{2}$	$\frac{3}{B}$ + 3C - 12L + 7M	$\frac{3}{2}B$	$-\sqrt{\frac{75}{4}}B$
		$\frac{27}{2}$	B+3C-18L+3M	$\sqrt{\frac{27}{4}}B$
• •			$\frac{33}{2}$	B+3C-18L+3M

In the matrices, B and C are Racah's parameters and

$$K = \frac{5}{42} D_4 (35 \cos^4 \beta - 30 \cos^2 \beta + 3),$$
$$L = \frac{5}{6} D_4 (1 - \cos^2 \beta)^2,$$
$$M = D_2 (3 \cos^2 \beta - 1),$$

where D_2 and D_4 denote—apart from numerical factors—the integrals related to second-order spherical harmonics and fourth-order ones, respectively.

The expressions (1)—(9) can easily be transcribed for the case of configuration d^7 . Then—apart from a constant energy term contributing to all diagonal elements—the elements related with interelectronic repulsions remain unchanged and the ligand field energies—apart from another additive constant—are found by reversing the signs of those for d^3 -configuration.

The energy matrices can be utilized—as was shown *e.g.* in [5, 6]—for the interpretation of such properties of d^3 - or d^7 -complexes which can be attributed to changes in the electronic energies.

References

[1] Gilde, F. J., M. I. Bán: Acta Phys. et Chem. Szeged. 5, 3 (1959).

[2] Bán, M. I.: Unpublished results.

[3] Flamini, A., L. Sestili, C. Furlani: Inorg. Chim. Acta 5, 241 (1971).

- [4] Bán, M. I.: Acta Phys. et Chem. Szeged. 18, 45 (1972).
- [5] Bán, M. I., J. Császár, M. Hegyháti: "Spectra of tetragonally distorted tetrahedral Ni(II)complexes". Paper presented at the International Conference on Molecular Spectroscopy, Wroclaw, Poland, Sept. 15–19., 1972.
- [6] Császár, J., Bán, M.: Optikai színkép, ligandumtér elmélet, komplexszerkezet. (Optical Spectra, Ligand Field Theory, Structure of Coordination Compounds). Akadémiai kiadó, Budapest, 1972.

ТЕТРАГОНАЛЬНО ДЕФОРМИРОВАННЫЕ ТЕТРАЭДРИЧЕСКИЕ КОМПЛЕКСЫ *ML*₄. II

РАСЩЕПЛЕНИЕ *d*³-КОНФИГУРАЦИЙ В СИЛЬНЫХ ПОЛЯХ ЛИГАНДОВ *D*²⁴ СИММЕТРИЙ

М. И. Бан

Используя приближение сильного поля, рассчитали энергетическое состояние электронов, происходящих из расщепления конфигураций создаваемых из d^3 электронных структур в лигандных полях D_{2d} (деформированные тетраэдрические) симметрии в зависимости от параметров *B* электростатического и лигандных полей, а также угла деформации.