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The relation between SU%®SU2 and O, is studied with a method different from the usual way, 
leading to the well-known results of classical quantum mechanics fór the hydrogen atom. 

The quantum mechanical role of continuous groups is scarcely to be over-
estimated since WIGNER'S classical work [1]. He obtained his first success by the 
interpretation of the angular momentum, connecting this physical quantity with 
thé rotation group. Later on other continuous groups became of great importance, too. 
May it suffice to point to the group SU3, very important in the theory of elementar 
particles. Investigation into the symmetry of the hydrogen atom began early. 
FOCK [2], then BARGMANN [3] pointed out that the hydrogen atom has a symmetry 
higher than 03, namely, Ô,s symmetry. In this connection GYÖRGYI [4] obtained 
important results. All this points to the circumstance that the group 04 deserves 
further attention from the point of view of physical applications. GYÖRGYI'S mentioned 
results can be not only formulated in an other way [5] but also developed with respect 
to applications. A good review of the problem is given by MICHEL [6]. 

The semi-simple Lie-groups [7] can be classified according to the classification 
of the correnponding Lie-algebras. Accordingly, the group On is not simple in the 
case of even i.e. its algebra has a commutative ideal; this means that, for e.g 
n — 4, Oj can be factörized. In this paper we study this factorization and, on this 
basis, give the irreducible representation of the group. This conception seems also 
to be more convenient from the point of view of applications. . 

Factorization of the group 04 

Let us start from the group SU2. This consists of all unitary matrices of deter-
minant + 1 of the two-dimensional complex vector space. The group SU2 is closely 
connected with the rotation group of the real three-dimensional space. More pre-
cisely, there are two matrices differing in sign which correspond to a rotation of the 
first kind in SU2; this circumstance will be, however, neglected in the following 
as irrelevant. . 

The irreducible representations of SU2 can be obtained in the well-known way [1]. 
The irreducible representations can be distinguished by a number j (j—0, 1/2, 1, ...). 
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Let us denote be Dj the corresponding representation, which is of dimension 2j+\. 
The defining representation belongs to /=1 /2 . The connection with the rotation 
group can be built up through the representation DX. 

The rotation group 03 of the three-dimensional space can be parametrized 
is several equivalent ways: besides the Eulerian angles, the rotations can be cha-
racterized also by a vector the length of which is determined by the angle of rotation 
(p(0s<p<7r) and its direction by the polar angles of 4>(0^<P<2n) and 6>(O^0<7T). 

Starting from given groups, a further group can be defined by direct product. 
The direct product G=G1<g>G2 of two groups Gi and G2 is a set the elements of 
which consist of all pairs (gi,g2), where gl£Gl, g2£G2. Among the elements of 
the resulting set, multiplication can be defined by 

g'2) (gi, gi) = (glgl, gigi)- (1) 
For this multiplication G is a group. Let us recall the pertinent algebraic theorems: 
(i) the representations of a direct product are given by the direct product of the 
representations of the factor groups; (ii) the trace of the direct product of two 
matrices is the product of the two traces; (iii) the representation of a direct product 
built up from irreducible factors is irreducible. 

Accordingly, the direct product SU2®SU2 is a group with six parameters. 
Let us denote the parameters by 0 , 0, cp and <£', 0', <p', respectively. The defining 
representation of the direct product is obtained by the direct product of the defining 
representations. Let A be a matrix of the defining representation SU2 

A = ( - / ? * ! * ) ' \> ' ( 2 ) 

where a and p are otherwise arbitrary complex numbers. Another element (with 
primed parameters) is , ^ 

B = \-b* a* ' aa* + bb* = L (3> 
The set of all matrices 

a a 
-aZ>* 
- / ? * « 

p*b* 
gives the defining representation of SU2<g>SU2. 

The matrices T can be considered as transformations of the complex vector 
space spanned by the basis vectors el, e2, e3, e4. The elements of this space are 
linear expressions of the following form 

v = c1e1 + c2e2+c3e3 + c4e4. (5) 
By T, the components c; of vector v transform according to 

C'I = 2 ' I J C J = TUCJ, (/ = 1 , 2 , 3 , 4 ) . ( 6 ) 
j = 1 

Making use of the properties of SU2, we obtain 
CjCi — c2c3 — CiC4-c2c3 , (7) 

T = A®B = (UJ) = 

ab pa pb 
a a* -pb* Pol* 

p*b rx*a « *b. 
P*a* -o>*b* 

(4) 
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i.e. an invariant expression. Introducing the quantities 

_ C1 + Ci _ . C1 — Ct _ Co — c3 _ _ . c2 + c3 

•»1 — 2 ' 2 — 2 ' ~ 2 ' — 2 
for which 

X j X j = — C2C3, 

thus Xj^i will also be.invariant. 
The transformations of the xrs can be obtained from Eq. (8) (see Appendix I). 

By these transformations real xrs are converted into real ones. Therefore the 
quantities x=(xlt x2, x3, x4) can be considered as vectors of a real four-dimensional 
space, and the T-s as their transformations. According to Eqs. (7) and (9), these 
transformations leave the length of the vector invariant. 

The elements of the group 04 consist of all real 4X4 matrices which leave 
the Xix'i invariant. Accordingly, all elements of SU2®SU2 belong to 04: SU2<g> 
®SU2<^04. If all elements of 04 have a corresponding element in SU2®SU2, 
then the relation will become an isomorphism. As a proof, let us calculate the in-
finitesimal elements of both groups and the infinitesimal operators of the commu-
tation relations (Appendix II). The commutation relations and structure constants 
of both groups are identical. Thus both groups are isomorphic at least for infinitesimal 
quantities. . 

. Representations and their decompositions 

The above connections between SU2®SU2 and 04 being valid, the represen-
tations of the former will be representations of the latter as well. An irreducible 
representation of SU2®SU2, being derived from two irreducible representations 
of SU2, can be characterized by two numbers (J;j'). The dimensions of the repre-
sentation ( 2 / + l ) ( 2 / + l ) can be found for some cases in Table I. Especially, the 
dimensions of the irreducible representations pertaining to j'=j are the squares of 
the natural numbers. The irreducible representations of 04 are given by the matrices 
DJ®DY. 

The question of decomposing according to 03 the representations Dj(&Dy 
of 04, which in general are clearly reducible representations of 03, seems to be 
of importance with respect to applications. 

This problem can be solved on the analogy of the procedure used for finite 
groups. Instead of summing for all elements of the group, which plays an important 
role for finite groups, integration is to be used in the case of continuous groups [8]. 

Table I 

\ j y \ 0 1/2 1 3/2 2 

0 1 " 2 3 4 5 
1/2 2 4 6 8 10 
1 3 6 9 12 15 

3/2 4 8 12 16 20 
2 5 ' 10 15 20 25 

(8) 

(9) 
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Let the number f(g) conrespond to an element g then the conresponding integral 
will be 

p f f ( g ) d V ( g ) , (10) 
G 

where V is the volume of the parameter space, and dV(g) the volume element 
around g. In the case of group 0 3 , the latter can be written [1] as 

dV(g) = g(E)2(1 - cos <f>) sin <p d<P d& dip (11) 

where g(E) is the so called weight function. Especially, with g ( £ ) = l we obtain 

V = 8tt2. (12) 

The expressions / (g) , important for the problem, are mostly matrix elements 
and traces of the representations. For these the following theorems are valid. The 
traces of the irreducible representations j and j' fulfil the orthogonality relation [8] 

^ fy.Ag)xHg)dV(g) = 8jr. (13) 
G 

A reducible representation D can be decomposed into the direct sum of irreducible 
representations in the form „ 

D = n1Dh®...®nkDJk (14) 

where «; is the multiplicity of the irreducible representation /. If the trace of the 
representation D is %(g), then 

= p J x(g)7X(g)dV(g)- (15) 
G 

Let D be an irreducible representation of 0 4 , and Dh one of Os, then Eq. (15) 
gives the number of the corresponding irreducible components. By these the de-
composition in Eq. (14) is determined; some of the decompositions are presented 
in Table II. 

Table II 

Decompositions of D® D1 

»0 fl/2 D; »3/2 °2 

0» Do 01/2 03/2 02 

D u , D m 0„©d, 0i/2©03/2 01 © 02 03/2 ©05/2 

d l D, 0O©0,©02 01/2 ©03/2 ©05/2 01©0»©03 

D w 03/2 D ^ D « £>1/2 ©03/2 ©As/2 00 ©01 ©02 ©Di .01/2 ©-03/2© 05/2© 
©07/2 

0 , D2 03/2 ©£>5/2 O^Osff iO, 01/2 ©03/2 ©05/2© 
©07/2 

00 © 01 © 02 © 
© 03 © 04 
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Group 0 4 and the hydrogen atom 

The hydrogen atom is of 0 4 symmetry, therefore its eigenfunctions transform 
according to the irreducible representations of O t , and its eigenvalues can be 
arranged according to the latter. The irreducible representations of 0 4 can be 
characterized by the numbers (j, j ' ) , but not all combinations have a real physical 
meaning; only the case j'=j is realized. Except for the case j'=j=0, the irreducible 
representations are not unidimensional (Table I); the corresponding states are 
degenerate. What are the differences between the corresponding states? 

From the infinitesimal operators belonging to group 0 4 the combination 
C = A\ + A\ + A\ + B\ + B\ + B\ (16) 

( C A S I M I R operator) can be formed. This is commutable with every A{ and B{. The 
operator C is connected with the energy of the hydrogen atom [5]. This operator 
is commutable with B2 = B2 + Bl + B%, which is in similar connection with 03, 
as C with 04. The relations A 

[C,f?2] = 0, [B%B3] = 0, [C, 2?3] = 0 (17) 
will hold. There exist no further combinations of the infinitesimal operations which, 
joint to the operators C, B2,B3, would give a mutually commutable set. Thus 
there exist only three such operators. B2 is connected with the absolute value of 
the angular momentum, and B3 (respectively iBs) with the third component of the 
latter. These results are well known from classical quantum mechanics. 

Appendix I 

From Eq. (6), using Eq. (4), detailed expressions for the c'rs can be obtained. 
Substituting these in Eq. (8) and rearranging, the x--s can be found: 

, _ oia-p*b* + a*a*-pb .<xa-p*b* + bp-x*a* 
Xi — Xj - f~ x 2 i —^ • f-

-p*a*-atb-a*b*-pa .a*b*-ab-fi*a*;+0a 
+ -X3 2 ; 2 ' 

.-p*b*-m+pb + <x*a* p*b* + aa+pb + a*a* 
x2 — x^i ^ : I " 2 ^ 

.<xb-p*a*+pa-a*b* $a-a*b* -ab+p*a* 
+ x3l : 2 2 • ' ' ^ 

, _ b*<x + p*a + <x*b + pa* .<xb* +p*a-a*b-pa* 
x3 — Xi hx2i 2 : ""I" 

aa*-p*b + oc*a-pb* .<xa* ~p*b+pb*-a*a 
+ x3 — 2 + x *' — 2 ' 

, _ .p*a-ab* + a*b-pa* otb*-p*a + a*b-pa* 
x4-— x±i 2— f~ x2 2 ^ 

.-aa*-p*b+pb* + a*a aa*+p*b + pb*+ «*a ' 
+ + *4 2 — ' 
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Appendix II 

The elements of the defining representation of SU2 can be also expressed 
by (p, 0 

<P • <P n a • <P a. = cos y — / sin y cos <P, p = — e'® sin y sin (19) 

An element will be infinitesimal if the angle of rotation <p is infinitesimal for # and 0 . 
In the case of small <p, Eq.-s (19) can be written in the form 

5a. = 1 - / -jCos<f>, SP — - y sin <Peie 

and, for the other factor as 

<5a = 1 — / y - cos Sb = sin <PV®. 

(20) 

(21) 

Substituting these into Eq. (18) and neglecting the terms of second and higher order, 
we obtain 

- 1 a3 -a1 a2~] 
-a3 1 b2 bl 

fli ~b2 1 b3 

\ — a 2 —b1 —b3 1 > 

ST' = 

where the notations 

a1 — - y sin $cos 0 — y - sin <i>'cos 0 ' , 

(22) 

a2 = sin <P sin 0 — ̂ r sin sin 0', 2 2 (23) 

and 

y cos<P + y - c o s 

¿>! = — y sin $ COS 0 + y - sin cos 0 ' , 

y sin $ s i n 0 + y - s i n $ ' s i n 0 ' , (24) 

b3= —COS — COS 3 2 2 

are used. The corresponding infinitesimal operators can be calculated from 

(dST' 

CMf; J„. = o, fc, = 0 I. ODf Ja.=o, bi = 0 
(25) 
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Then, the commutation relations will be 

AiAj-AjAi = Bk 

AiBj-BjAt = Ak 

BiAj-AjBi = Ak 

B¡Bj — BjB¡ = Bk 

{ijk= 123, 231,312) 

and 
A ^ - B . A ^ 0 (i = l ,2 ,3 ) . 

Let a matrix g of 04 be 

•8 = 

(an a12 a13 

a21 a22 ^24 
a31 aS2 a33 a34 
ail ai2 ai3 a44 

for which 
a„ia„k = ôik (j, k =1,2,3, 4), 

this means 10 relations for 16 real aik. Let us write these in the form 

aik — dik + Cik 

and let the cik be infinitesimal. Then 

cki = ~~cik> cii= 

therefore the infinitesimal form of Eq. (28), using the notation 

C12 — E 3 > C 1 3 E l J ^14 — £ 2 J 

C23 = C24 ~ ^l! C3i = ÔS 
will be 

8 = 

1 

~ £ 3 

£3 — £1 £2 ' 

1 <52 <5! 

C>2 1 ¿3 

- e 2 —¿i ¿3 1 

The infinitesimal operators will be given by 

OE¡ Je¡ = 0, S¡ = 0 (OÓiJc,=0, <S,=0 

(26). 

(27) 

(28). 

(29) 

(30). 

(3I> 

(32). 

(33) 

(34> 

For these the same commutation relations will hold as for Ars. and B r s . 
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РАЗЛОЖЕНИЕ ГРУППЫ О, И АТОМ ВОДОРОДА 

Ф. Й. Гилде 

Изучена связь между группами 5£ / 2 ®Я/ 2 и 04 новым методом, отличающимся от из-
.вестного, и получены результаты классической квантовой механики для атома водорода. 


