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) Tﬁe relation between SU,® SU, and O, is studied with a method different from the usual way,
leading to the well-known results of classical quantum mechanics for the hydrogen atom.

The quantum mechanical role of continuous groups is scarcely to be over-
estimated since WIGNER’s classical work [1]. He obtained his first success by the
interpretation of .the angular momentum, connecting this physical quantity with
the rotation group. Later on other continuous groups became of great importance, too.
May it suffice to point to the group SU,, very important in the theory of elementar -
particles. Investigation into the symmetry of the hydrogen atom began early.
Fock [2], then BARGMANN [3] pointed out that the hydrogen atom has a symmetry
higher than O, namely, O, symmetry. In this connection GYORGYI [4] obtained
important results.- All this points to the circumstance that the group O, deserves
further attention from the point of view of physical applications. GYORGYI’s mentioned
results can be not only formulated in an other way- [5] but also developed with respect
to applications. A good review of the problem-is given by MICHEL [6]. '

The semi-simple Lie-groups [7] can be classified according to the classification
of the correnponding Lie-algebras. Accordingly; the group O, is not simple in the’
case of even n, i.e. its algebra has a commutative ideal; this means that, for e.g
n=4, 04 can be factorized. In this paper we study this factorization and, on .this
basis, give the irreducible representation of the group. This conception seems also
~ to be more convenient from the point’ of view of appllcatlons

Factorization of the group O, -

Let us start from the group SU,. This consists of all unitary matrices of deter-
minant +1 of the two-dimensional complex vector space. The group SU, is closely
connected with the rotation group of the real three-dimensional space. More pre- -
cisely, there are two matrices differing in sign which correspond to a rotation of the
first kind in SU,; this circumstance w1ll be, however, neglected in the. followmg
as irrelevant.

The irreducible representatlons of SU, can be obtained in the well known way [1].
The irreducible representations can be distinguished by a number j (=0, 1/2, 1, ...).
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Let us denote be D; the corresponding representation, which is of dimension 2j+1.
The defining representatlon belongs to j=1/2. The connection with the rotation
group can be built up through the representation D, .

The rotation group O, of the three-dimensional space can be parametnzed
is several equivalent ways: besides the Eulerian angles, the. rotations can be cha-
racterized also by a vector the length of which is determined by the angle of rotation
¢(0=¢<mn) and its direction by the polar angles of #(0=¢®<2r) and O(0=60 <n).

Starting from given groups, a further group can be defined by direct product.
The direct product G= GI®G2 of two groups G, and G, is a set the elements of
which consist of all pairs (g, g»), where g,€G,, g.€G,. Among the elements of
the resulting set, multiplication can be deﬁned by

(81, 82) (81, 82) = (8181, 8285)- . o ¢))

For this multiplication G is a group. Let us recall the pertinent algebraic theorems:
(i) the representations of a direct product are given by the direct product of the
representations of the factor groups; (ii) the trace of the direct product of two
matrices is the product of the two traces; (iit) the representatlon of a dlrect product
built up from irreducible factors is 1rreduc1ble

-Accordingly, the direct product SU,®SU, is a group with six parameters.
Let us denote the parameters by @, @, ¢ and @’, @’, ¢’, respectively. The defining
. representation of the direct product is obtained by the direct product of the deﬁnmg
representations. Let 4 be a matrix of the defining representation SU,

A=[ g o f aa*+ﬁﬁ*'= 1 o (2
where o and f are otherwise arbitrary complex numbers. Another element (w1th '
prlmed parameters) is _ ( a b .

' B= [_b'* a*], aa* +bb* = 1. . &)
'The set of all matrices ' ' ‘ _ '
aa ab . pa Pb

—ab®*  oaa* —pb* Pa* o
—B*a —B*b  a*a o*b ' (4).
‘ B*b* _B*a* ——(Z*b* o*a* -
gives the defining represéntation of SU,® SU;.

The matrices T can be considered as transformations of the complex vector

" space spanned by the basis vectors e, e,, e;, ¢;. The elements of this space are
linear expressions of the following form :

_ U = ¢18;+ €8+ 383+ €404, (5
By T, the components c; of vector v transform according to

c; _Z'tuc =t c (i=1,2,3,4). T - (6)

Makmg use of the properties of SU,, we obtain
1€ — C2Ca = €04 —C3C3, 0
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- i.e. an invariant expression. Introducing the quantities .

1t .C1—Cy c;—Cy .CotCy
N= s = i, Xy = =, Xy = i ®)

for which :
' X;X; = €1€3—CoCy, . 9)

thus x;x; will also be invariant.

The transformations of the x;-s can be obtained from Eq (8) (see Appendix 1I).

. By these transformations real x;-s are converted into real ones. Therefore the -
quantities x=(x;, X5, X5, X4) can be considered as vectors of a real four-dimensional
space, and the T-s as their transformations. According to Egs. (7) and .(9), these
transformations leave the length of the vector invariant.

The elements of the group O, consist of all real 4X4 matnces which leave
the x;x; invariant. Accordingly, all elements of SU,® SU, belong to 0,: SU,®
®SU,S 0,. If all elements of O, have a corresponding element in SU,® SU,,
then the relation will become an-isomorphism. As a proof, let us calculate the in-
finitesimal elements of both groups and the -infinitesimal operators of the commu-
tation relations (Appendix I1). The commutation relations and structure constants
of both groups are identical. Thus both groups are isomorphic at least for infinitesimal
quantltles - . : .

. Representations and their decompositions.

The above connections between. SU,® SU, and O, being valid, the represen-
tations of the former will be representations of-the latter as well. An irreducible
representation of SU,® SU,, being derived from- two irreducible- representations
of SU,, can be characterized by two numbers (j;j). The dimensions of the repre-
sentation (2j+1)(2j"+1) can be found for some cases in Table I. Especially, the
dimensions of the irreducible representations pertaining to j’ =j are the squares of
the natural numbers. The irreducible representatlons of O, are given by the matrices
D;®D;..

’ The questlon of decomposing according to Oy the representations D; ®D
of 0,, which in general are clearly reducible representations of 03, seems to be
of importance with respect to applications.

This problem can be solved on the analogy of the procedure used for finite '
groups. Instead of summing for all elements of the group, which plays an important
role for finité groups, integration is to be used in the case of continuous groups [8].

Table 1
N ‘ 0 12 1 8/2 : 2
0 I 2 3 4 5
1/2 2 4 -6 © 8 10
1 3 6 9 12 15
32 - 8 12 16 20
2 5 10 15 20 25
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Let the number f(g) conrespond. to an element g €G, then the conresponding integral
will be

- 1@ dv(e), 10

where V is the volume of the parameter space;, and dV(g) the volume element
around g. In the case of group O;, the latter can be written [1] as

dV(g) = g(E)2(1 —cos ®) sin ¢ dP dO dy 0
‘where g(E) is the so called wenght function. Especially, with g(E)~1 we obtain
= 82, _ ' , (12)

The expressions f(g), important for the problem, are mostly matrix elements
and traces of the representations. For these the following theorems are valid. The
traces of the irreducible representations j and j” fulfil the orthogonality relation [8]

1 ' ‘ .
7 Ju@x @ dn(g) = 5, (13)
E :
"A reducible representation D can be decomposed into the direct sum of irreducible
representations in the form . . -
D=nmD;&..&nD; _ (14)

where n; is the multnphcnty of the 1rreducnble representatlon i. If the trace of the
representatlon D is y(g), then

= f 1(8)7,(&) v (8). NGE)

Let D be an irreducible representation of O,, and D;, one of Oy, then Eq. (15)
gives the number of the corresponding irreducible components By these the de-
composmon in Eq. (14) is determined; some of the decompositions are presented
in Table II.

- Table If
Decompositions of D;, @D,
D, :
D;, ’ Dy Dy D; Dy Da

D, D, Dy» D, Dy2 D.
Dy, D, Dy& D, Dy/2® Dyye D@D, " D32 ® Dy

D, D, | Dy:®Dye | Do®D,@D, Dy/2® Do ® Dyye D,©D:® D,
Dys | Dys | D@D | Dyp6Dy@Dys | D1@D@D.0D; |1 TDrsO D

D, . D, Da/e@ Dg; . D, D:® Dy Dllgengz-% Der2® - Dogg;gg‘ag
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Group O, and the hydrogen atom

The hydrogen atom is of O, symmetry, therefore its eigenfunctions transform
“according to the irreducible representations of O,, and its eigenvalues can be
arranged according to the latter. The irreducible representations of O, can -be
characterized by the numbers (j,j"), but not all combinations have a real physical
meaning; only the case j'=j is realized. Except for the case j'=j=0, the irreducible
representations are not unidimensional (Table I); the corresponding states are
degenerate. What are the differences between the corresponding states?

From the infinitesimal operators belonging to group O, the combination

C=A+ A2+ A2+ B+ B+ B : _ (16) -

(Casimir operator) can be formed. This is commutable with every 4; and B;. The

operator C is connected with the energy of the hydrogen atom [5)- This operator

is commutable” with B2? = Bl+Bz+Bs, which is in similar connection w1th 0,
-as C with O,. The relatrons ,

[C, BY] =0, [B? By =0, [C, B3] =0 )

will hold. There exist no further combinations of the infinitesimal operations which,
joint to the operators C, B% B;, would grve a mutually commutable set. Thus
there exist only three such operators B? is connected with the absolute value of
the angular momentum, and B; (respectively iB,) with the third component of the
latter. These results are well known from: classical quantum mechanics. '

A ppéndix I

From Eq. (6), using Eq. (4), detailed expressions for the c¢i-s can be obtained.
Substituting these in Eq. (8) and rearranging, the x;-s can be found:

o, wa—Bb tata"—pb xiaa—ﬁ*b*+bﬂ;a*a*

1= X1 . 2 B 2
x —p*a* —oab—a*b /ia+x o*b* —ab—p*a* + fa
3 2 al | 2 ] ’
oy i—ﬂ*b*-aa'+ﬁb+a*a* iy ﬁ*b*+cxa+ﬁb+a*a*+
2 T A1 2 © ] 2 )
b— p* * —o*b* — b — b *
+x3ia B a -;—,Ba o +x4ﬂa o 20{ '+,B a ’ Coay
. bra+pra+atb+ ﬁa*+x l,ab* +pra—o*b—pa* N
3 o 1 2 ‘ 2‘ 2 - N
tx a*—[)’*b+o¢*a—ﬂb*+x ’.oza*—ﬁ*b+ﬁb*—oc*a‘
3 2 44 - 2 ] ’
, —ab* *h oab* — B* *b — Ba*
o= xllﬁ o -{2—01 pa* x 2 [)’a-;o: fa +
ix i—aa*—ﬁ*b-{—ﬁb*-{—a a. . aa* + b+ pb* +oaa
3 —.

2 4 2
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Appendix 11

The elements of the defining représentation of SU, can be also expressed

by ¢, ?, 0O

: a= cosz—isingcosdi, = —e®sin 2 sin @, 19)
2 2 2

An element will be infinitesimal if the angle of rotation ¢ is infinitesimal for ¢ and Q.
In the case of small ¢, Eq.-s (19) can be written in the form

CSu = l—i% cos®, of = -% sin Pe'® (20)
and, for the other factor as ' '
 da= l—i%-cos o', 5b = —%sin @’ e, 1)

Substituting these into Eq. (18) and neglecting the terms of second and higher order,
we obtain '
' 1 a; —a, a

—03 ] bg bl

5T = , -
. a —b, 1 by 22) .
, —a, —b, —b; 1)
where the notations :
a, = —% sin ®cos @ —-% sin ¢’ cos O,
a, = % sin @ sin O —% sin ¢ sin @’ (23
a; = %cosib—k%cosd)’
and
b, = -% sin @ cos © +%‘sin @’ cos @',
by = % sin @ sin @ + % sin @’ sin @, : (24)
b; = %cosd?—%cos(b’

are used. The correspoh;dihg infinitesimal operators can be calculated from

96T’ 96T’ 3 '
[ da; ]a.-=0, b,»='0-Ai, [ ob; )a,-=0, bi=o_Bi' _(25)
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Then, the commutation relations will be

A;A;— A;4; = B,
AB—BA; = A
BiA;—A;B, = 4,
B;B;— B;B, = B,

(ijk =123, 231, 312)

and
A;B;—B;A; =0 (i=12, 3).
Let a matrix gof O, be _

a1 Gy Q13 Gy,
' ,_' Az Ay Qo3 Ay
&= (31 Q3 33 d3q
: Ay1 Ay Qg3 Qyy

for which S

Ui O = O (b k=1,2, 3: 4),

this_meané 10 relations for 16 real a;,. Let us write these in the form
ay = O+ ca

and let the ¢ be infinitesimal. Then |

i =—Cx, €z=0,

" therefore the infinitesimal form of Eq. (28), uéing the notation

€12 =8, C13=—8&, C 3= &,
€3 =105, Coyy= 05, C34=0,
will be
1 ‘83 —€ &
—& 1 6, 6 R
E= | & -5, 1 &

‘

—& —0, 03 1

The infinitesimal dperators will be given by

3g] o [3g] ,
o8l . _ 4. |C& — B’
[agi £=0,5,=0 2 1068;)e,=0, 5,0 Bi

For these the same commutation relations will hold as for 4;-s and B;-s.

195
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PA3JIOXKEHHUE PVYIIIBI O, U ATOM BOﬂOPOHA
&, H. Tuade

M3ydena cBasb Mexay rpymaamu SU,QSU, 1 O, HOBBIM METOAOM, OTJIMYAIOLIHMCA OT H3-
‘BECTHOTO, H TOJyYeHbI pe3yabTaThl KNACCHYECKOH KBAHTOBOM MeXaHMKM AJIA aTOMa BOAOpOAA.



