FACTORIZATION OF THE GROUP O_{4} AND THE HYDROGEN ATOM

By
F. J. GILDE
Institute of Theoretical Physics, Attila József University, Szeged

(Received July 21, 1973)

Abstract

The relation between $S U_{2} \otimes S U_{2}$ and O_{4} is studied with a method different from the usual way, leading to the well-known results of classical quantum mechanics for the hydrogen atom.

The quantum mechanical role of continuous groups is scarcely to be overestimated since Wigner's classical work [1]. He obtained his first success by the interpretation of the angular momentum, connecting this physical quantity with the rotation group. Later on other continuous groups became of great importance, too. May it suffice to point to the group $S U_{3}$, very important in the theory of elementar particles. Investigation into the symmetry of the hydrogen atom began early. Fock [2], then Bargmann [3] pointed out that the hydrogen atom has a symmetry higher than O_{3}, namely, O_{4} symmetry. In this connection Györgyi [4] obtained important results. All this points to the circumstance that the group O_{4} deserves further attention from the point of view of physical applications. Györgyi's mentioned results can be not only formulated in an other way [5] but also developed with respect to applications. A good review of the problem is given by Michel [6].

The semi-simple Lie-groups [7] can be classified according to the classification of the correnponding Lie-algebras. Accordingly, the group O_{n} is not simple in the case of even n, i.e. its algebra has a commutative ideal; this means that, for e.g $n=4, O_{4}$ can be factorized. In this paper we study this factorization and, on this basis, give the irreducible representation of the group. This conception seems also to be more convenient from the point of view of applications.

Factorization of the group O_{4}

Let us start from the group $S U_{2}$. This consists of all unitary matrices of determinant +1 of the two-dimensional complex vector space. The group $S U_{2}$ is closely connected with the rotation group of the real three-dimensional space. More precisely, there are two matrices differing in sign which correspond to a rotation of the first kind in $S U_{2}$; this circumstance will be, however, neglected in the following as irrelevant.

The irreducible representations of $S U_{2}$ can be obtained in the well-known way [1]. The irreducible representations can be distinguished by a number $j(j=0,1 / 2,1, \ldots)$.

Let us denote be D_{j} the corresponding representation, which is of dimension $2 j+1$. The defining representation belongs to $j=1 / 2$. The connection with the rotation group can be built up through the representation D_{1}.

The rotation group O_{3} of the three-dimensional space can be parametrized is several equivalent ways: besides the Eulerian angles, the rotations can be characterized also by a vector the length of which is determined by the angle of rotation $\varphi(0 \leqq \varphi<\pi)$ and its direction by the polar angles of $\Phi(0 \leqq \Phi<2 \pi)$ and $\Theta(0 \leqq \Theta<\pi)$.

Starting from given groups, a further group can be defined by direct product. The direct product $G=G_{1} \otimes G_{2}$ of two groups G_{1} and G_{2} is a set the elements of which consist of all pairs $\left(g_{1}, g_{2}\right)$, where $g_{1} \in G_{1}, g_{2} \in G_{2}$. Among the elements of the resulting set, multiplication can be defined by

$$
\begin{equation*}
\left(g_{1}, g_{2}\right)\left(g_{1}^{\prime}, g_{2}^{\prime}\right)=\left(g_{1} g_{1}^{\prime}, g_{2} g_{2}^{\prime}\right) \tag{1}
\end{equation*}
$$

For this multiplication G is a group. Let us recall the pertinent algebraic theorems: (i) the representations of a direct product are given by the direct product of the representations of the factor groups; (ii) the trace of the direct product of two matrices is the product of the two traces; (iii) the representation of a direct product built up from irreducible factors is irreducible.

Accordingly, the direct product $S U_{2} \otimes S U_{2}$ is a group with six parameters. Let us denote the parameters by Φ, Θ, φ and $\Phi^{\prime}, \Theta^{\prime}, \varphi^{\prime}$, respectively. The defining representation of the direct product is obtained by the direct product of the defining representations. Let A be a matrix of the defining representation $S U_{2}$

$$
A=\left(\begin{array}{cc}
\alpha & \beta \tag{2}\\
-\beta^{*} & \alpha^{*}
\end{array}\right), \alpha \alpha^{*}+\beta \beta^{*}=1
$$

where α and β are otherwise arbitrary complex numbers. Another element (with primed parameters) is

$$
B=\left(\begin{array}{cc}
a & b \tag{3}\\
-b^{*} & a^{*}
\end{array}\right), a a^{*}+b b^{*}=1
$$

The set of all matrices

$$
T=A \otimes B=\left(t_{i j}\right)=\left(\begin{array}{cccc}
\alpha a & \alpha b & \beta a & \beta b \tag{4}\\
-\alpha b^{*} & \alpha a^{*} & -\beta b^{*} & \beta \alpha^{*} \\
-\beta^{*} \alpha & -\beta^{*} b & \alpha^{*} a & \alpha^{*} b \\
\beta^{*} b^{*} & -\beta^{*} a^{*} & -\alpha^{*} b^{*} & \alpha^{*} a^{*}
\end{array}\right)
$$

gives the defining representation of $S U_{2} \otimes S U_{2}$.
The matrices T can be considered as transformations of the complex vector space spanned by the basis vectors $e_{1}, e_{2}, e_{3}, e_{4}$. The elements of this space are linear expressions of the following form

$$
\begin{equation*}
v=c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}+c_{4} e_{4} . \tag{5}
\end{equation*}
$$

By T, the components c_{i} of vector v transform according to

$$
\begin{equation*}
c_{i}^{\prime}=\sum_{j=1}^{4} t_{i j} c_{j} \equiv t_{i j} c_{j} ; \quad(i=1,2,3,4) \tag{6}
\end{equation*}
$$

Making use of the properties of $S U_{2}$, we obtain

$$
\begin{equation*}
c_{1}^{\prime} c_{4}^{\prime}-c_{2}^{\prime} c_{3}^{\prime}=c_{1} c_{4}-c_{2} c_{3} \tag{7}
\end{equation*}
$$

i.e. an invariant expression. Introducing the quantities

$$
\begin{equation*}
x_{1}=\frac{c_{1}+c_{4}}{2}, x_{2}=-i \frac{c_{1}-c_{4}}{2}, x_{3}=\frac{c_{2}-c_{3}}{2}, x_{4}=-i \frac{c_{2}+c_{3}}{2} \tag{8}
\end{equation*}
$$

for which

$$
\begin{equation*}
x_{i} x_{i}=c_{1} c_{4}-c_{2} c_{3} \tag{9}
\end{equation*}
$$

thus $x_{i} x_{i}$ will also be invariant.
The transformations of the x_{i}-s can be obtained from Eq. (8) (see Appendix I). By these transformations real x_{i}-s are converted into real ones. Therefore the quantities $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ can be considered as vectors of a real four-dimensional space, and the T-s as their transformations. According to Eqs. (7) and (9), these transformations leave the length of the vector invariant.

The elements of the group O_{4} consist of all real 4×4 matrices which leave the $x_{i} x_{i}$ invariant. Accordingly, all elements of $S U_{2} \otimes S U_{2}$ belong to $O_{4}: S U_{2} \otimes$ $\otimes S U_{2} \subseteq O_{4}$. If all elements of O_{4} have a corresponding element in $S U_{2} \otimes S U_{2}$, then the relation will become an isomorphism. As a proof, let us calculate the infinitesimal elements of both groups and the infinitesimal operators of the commutation relations (Appendix II). The commutation relations and structure constants of both groups are identical. Thus both groups are isomorphic at least for infinitesimal quantities.

Representations and their decompositions

The above connections between $S U_{2} \otimes S U_{2}$ and O_{4} being valid, the representations of the former will be representations of the latter as well. An irreducible representation of $S U_{2} \otimes S U_{2}$, being derived from two irreducible representations of $S U_{2}$, can be characterized by two numbers $\left(j, j^{\prime}\right)$. The dimensions of the representation $(2 j+1)\left(2 j^{\prime}+1\right)$ can be found for some cases in Table I. Especially, the dimensions of the irreducible representations pertaining to $j^{\prime}=j$ are the squares of the natural numbers. The irreducible representations of O_{4} are given by the matrices $D_{j} \otimes D_{j^{\prime}}$.

The question of decomposing according to O_{3} the representations $D_{j} \otimes D_{j}$; of O_{4}, which in general are clearly reducible representations of O_{3}, seems to be of importance with respect to applications.

This problem can be solved on the analogy of the procedure used for finite groups. Instead of summing for all elements of the group, which plays an important role for finite groups, integration is to be used in the case of continuous groups [8].

Table I

j	0	$1 / 2$	1	$3 / 2$	2
\mathbf{j}	$\mathbf{1}$	\cdots	2	3	4
$1 / 2$	2	4	6	8	5
1	3	6	9	12	15
$3 / 2$	4	8	12	16	20
2	5	10	15	20	25

Let the number $f(g)$ conrespond to an element $g \in G$, then the conresponding integral will be

$$
\begin{equation*}
\frac{1}{V} \int_{G} f(g) d V(g), \tag{10}
\end{equation*}
$$

where V is the volume of the parameter space; and $d V(g)$ the volume element around g. In the case of group O_{3}, the latter can be written [1] as

$$
\begin{equation*}
d V(g)=g(E) 2(1-\cos \Phi) \sin \varphi d \Phi d \Theta d \varphi \tag{11}
\end{equation*}
$$

where $g(E)$ is the so called weight function. Especially, with $g(E)=1$ we obtain

$$
\begin{equation*}
V=8 \pi^{2} \tag{12}
\end{equation*}
$$

The expressions $f(g)$, important for the problem, are mostly matrix elements and traces of the representations. For these the following theorems are valid. The traces of the irreducible representations j and j^{\prime} fulfil the orthogonality relation [8]

$$
\begin{equation*}
\frac{1}{V} \int_{G} \chi_{j}(g) \chi_{j^{\prime}}^{*}(g) d V \cdot(g)=\delta_{j j^{\prime}} \tag{13}
\end{equation*}
$$

A reducible representation D can be decomposed into the direct sum of irreducible representations in the form

$$
\begin{equation*}
D=n_{1} D_{j_{1}} \oplus \ldots \oplus n_{k} D_{j_{k}} \tag{14}
\end{equation*}
$$

where n_{i} is the multiplicity of the irreducible representation i. If the trace of the representation D is $\chi(g)$, then

$$
\begin{equation*}
n_{i}=\frac{1}{V} \int_{G} \chi(g) \chi_{j_{i}}^{*}(g) d V(g) \tag{15}
\end{equation*}
$$

Let D be an irreducible representation of O_{4}, and $D_{j_{i}}$ one of O_{3}, then Eq. (15) gives the number of the corresponding irreducible components. By these the decomposition in Eq. (14) is determined; some of the decompositions are presented in Table II.

Table II
Decompositions of $D_{j} \otimes D_{j}$

$D_{j^{\prime}} D_{j}$	D_{0}	$D_{1 / 2}$	$D_{\text {i }}$	$D_{3 / 2}$	D_{2}
D_{0}	D_{0}	$D_{1 / 2}$	D_{1}	$D_{3 / 2}$	D_{2}
$D_{1 / 2}$	$D_{1 / 2}$	$D_{0} \oplus D_{1}$	$D_{1 / 2} \oplus D_{3 / 9}$	$D_{1} \oplus D_{2}$	$D_{3 / 2} \oplus D_{5 / 2}$
D_{1}	D_{1}	$D_{1 / 2} \oplus D_{3 / 2}$	$D_{0} \oplus D_{1} \oplus D_{2}$	$D_{1 / 2} \oplus D_{3 / 2} \oplus D_{5 / 2}$	$D_{1} \oplus D_{2} \oplus D_{3}$
$D_{3 / 2}$	$D_{3 / 2}$	$D_{1} \oplus D_{2}$	$D_{1 / 2} \oplus D_{3 / 2} \oplus D^{\mathbf{3} / 2}$	$D_{0} \oplus D_{1} \oplus D_{2} \oplus D_{\mathrm{s}}$	$\begin{gathered} . D_{1 / 2} \oplus D_{3 / 2} \oplus D_{5 / 9} \oplus \\ \oplus D_{; / 2} \end{gathered}$
D_{2}	D_{3}	$D_{3 / 2} \oplus D_{5 / 2}$	$D_{1} \oplus D_{2} \oplus D_{3}$	$\begin{gathered} D_{1 / 2} \oplus D_{3 / 2} \oplus D_{5 / 2} \oplus \\ \oplus D_{i / 2} \end{gathered}$	$\begin{gathered} D_{0} \oplus D_{1} \oplus D_{2} \oplus \\ \ominus D_{3} \oplus D_{4} \end{gathered}$

Group O_{4} and the hydrogen atom

The hydrogen atom is of O_{4} symmetry, therefore its eigenfunctions transform according to the irreducible representations of O_{4}, and its eigenvalues can be arranged according to the latter. The irreducible representations of O_{4} can be characterized by the numbers (j, j^{\prime}), but not all combinations have a real physical meaning; only the case $j^{\prime}=j$ is realized. Except for the case $j^{\prime}=j=0$, the irreducible representations are not unidimensional (Table I); the corresponding states are degenerate. What are the differences between the corresponding states?

From the infinitesimal operators belonging to group O_{4} the combination

$$
\begin{equation*}
\dot{C}=A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2} \tag{16}
\end{equation*}
$$

(CASIMIR operator) can be formed. This is commutable with every A_{i} and B_{i}. The operator C is connected with the energy of the hydrogen atom [5]. This operator is commutable with $B^{2}=B_{1}^{2}+B_{2}^{2}+B_{3}^{2}$, which is in similar connection with O_{3}, as C with O_{4}. The relations

$$
\begin{equation*}
\left[C, B^{2}\right]=0, \quad\left[B^{2}, B_{3}\right]=0, \quad\left[C, B_{3}\right]=0 \tag{17}
\end{equation*}
$$

will hold. There exist no further combinations of the infinitesimal operations which, joint to the operators C, B^{2}, B_{3}, would give a mutually commutable set. Thus there exist only three such operators. B^{2} is connected with the absolute value of the angular momentum, and B_{3} (respectively $i B_{3}$) with the third component of the latter. These results are well known from classical quantum mechanics.

Appendix I

From Eq. (6), using Eq. (4), detailed expressions for the c_{i}^{\prime}-s can be obtained. Substituting these in Eq. (8) and rearranging, the $x_{i}^{\prime}-s$ can be found:

$$
\begin{align*}
x_{1}^{\prime} & =x_{1} \frac{\alpha a-\beta^{*} b^{*}+\alpha^{*} a^{*}-\beta b}{2}+x_{2} i \frac{\alpha a-\beta^{*} b^{*}+b \beta-\alpha^{*} a^{*}}{2}+ \\
& +x_{3} \frac{-\beta^{*} a^{*}-\alpha b-\alpha^{*} b^{*}-\beta a}{2}+x_{4} i \frac{\alpha^{*} b^{*}-\alpha b-\beta^{*} a^{*}+\dot{\beta} a}{2} \\
x_{2}^{\prime} & =x_{1} i \frac{-\beta^{*} b^{*}-\alpha a+\beta b+\alpha^{*} a^{*}}{2}+x_{2} \frac{\beta^{*} b^{*}+\alpha a+\beta b+\alpha^{*} a^{*}}{2}+ \\
& +x_{3} i \frac{\alpha b-\beta^{*} a^{*}+\beta a-\alpha^{*} b^{*}}{2}+x_{4} \frac{\beta a-\alpha^{*} b^{*}-\alpha b+\beta^{*} a^{*}}{2} \tag{18}\\
x_{3}^{\prime} & =x_{1} \frac{b^{*} \alpha+\beta^{*} a+\alpha^{*} b+\beta a^{*}}{2}+x_{2} i \frac{\alpha b^{*}+\beta^{*} a-\alpha^{*} b-\beta a^{*}}{2}+ \\
& +x_{3} \frac{\alpha a^{*}-\beta^{*} b+\alpha^{*} a-\beta b^{*}}{2}+x_{4} i \frac{\alpha a^{*}-\beta^{*} b+\beta b^{*}-\alpha^{*} a}{2} \\
& +x_{3} i \frac{-\alpha a^{*}-\beta^{*} b+\beta b^{*}+\alpha^{*} a}{2}+x_{4} \frac{\alpha a^{*}+\beta^{*} b+\beta b^{*}+\alpha^{*} a}{2} \\
& =x_{1} i \frac{\beta^{*} a-\alpha b^{*}+\alpha^{*} b-\beta a^{*}}{2} \\
&
\end{align*}
$$

Appendix II

The elements of the defining representation of $S U_{2}$ can be also expressed by φ, Φ, Θ

$$
\begin{equation*}
\alpha=\cos \frac{\varphi}{2}-i \sin \frac{\varphi}{2} \cos \Phi, \beta=-e^{i \theta} \sin \frac{\varphi}{2} \sin \Phi . \tag{19}
\end{equation*}
$$

An element will be infinitesimal if the angle of rotation φ is infinitesimal for Φ and Θ. In the case of small φ, Eq.-s (19) can be written in the form

$$
\begin{equation*}
\delta \alpha=1-i \frac{\varphi}{2} \cos \Phi, \delta \beta=-\frac{\varphi}{2} \sin \Phi e^{i \theta} \tag{20}
\end{equation*}
$$

and, for the other factor as

$$
\begin{equation*}
\delta a=1-i \frac{\varphi^{\prime}}{2} \cos \Phi^{\prime}, \delta b=-\frac{\varphi^{\prime}}{2} \sin \Phi^{\prime} e^{i \theta} \tag{21}
\end{equation*}
$$

Substituting these into Eq. (18) and neglecting the terms of second and higher order, we obtain

$$
\delta T^{\prime}=\left(\begin{array}{rrrr}
1 & a_{3} & -a_{1} & a_{2} \tag{22}\\
-a_{3} & 1 & b_{2} & b_{1} \\
a_{1} & -b_{2} & 1 & b_{3} \\
-a_{2} & -b_{1} & -b_{3} & 1
\end{array}\right)
$$

where the notations

$$
\begin{align*}
& a_{1}=-\frac{\varphi}{2} \sin \Phi \cos \Theta-\frac{\varphi^{\prime}}{2} \sin \Phi^{\prime} \cos \Theta^{\prime} \\
& a_{2}=\frac{\varphi}{2} \sin \Phi \sin \Theta-\frac{\varphi^{\prime}}{2} \sin \Phi^{\prime} \sin \Theta^{\prime} \tag{23}\\
& a_{3}=\frac{\varphi}{2} \cos \Phi+\frac{\varphi^{\prime}}{2} \cos \Phi^{\prime}
\end{align*}
$$

and

$$
\begin{align*}
& b_{1}=-\frac{\varphi}{2} \sin \Phi \cos \Theta+\frac{\varphi^{\prime}}{2} \sin \Phi^{\prime} \cos \Theta^{\prime} \\
& b_{2}=\frac{\varphi}{2} \sin \Phi \sin \Theta+\frac{\varphi^{\prime}}{2} \sin \Phi^{\prime} \sin \Theta^{\prime} \tag{24}\\
& b_{3}=\frac{\varphi}{2} \cos \Phi-\frac{\varphi^{\prime}}{2} \cos \Phi^{\prime}
\end{align*}
$$

are used. The corresponding infinitesimal operators can be calculated from

$$
\begin{equation*}
\left(\frac{\partial \delta T^{\prime}}{\partial a_{i}}\right)_{a_{i}=0, b_{i} \doteq 0}=A_{i},\left(\frac{\partial \delta T^{\prime}}{\partial b_{i}}\right)_{a_{i}=0, b_{i}=0}=B_{i} \tag{25}
\end{equation*}
$$

Then, the commutation relations will be

$$
\begin{align*}
A_{i} A_{j}-\dot{A}_{j} A_{i} & =B_{k} \\
A_{i} B_{j}-B_{j} A_{i} & =A_{k} \\
B_{i} A_{j}-\dot{A}_{j} B_{i} & =A_{k} \tag{26}\\
B_{i} B_{j}-B_{j} B_{i} & =B_{k}
\end{align*}
$$

and

$$
\begin{equation*}
A_{i} B_{i}-B_{i} A_{i}=0 \quad(i=1,2,3) \tag{27}
\end{equation*}
$$

Let a matrix g of O_{4} be

$$
g=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \tag{28}\\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)
$$

for which

$$
\begin{equation*}
a_{n i}^{\prime} a_{n k}=\delta_{i k} \quad(i, k=1,2,3,4) \tag{29}
\end{equation*}
$$

this means 10 relations for 16 real $a_{i k}$. Let us write these in the form

$$
\begin{equation*}
a_{i k}=\delta_{i k}+c_{i k} \tag{30}
\end{equation*}
$$

and let the $c_{i k}$ be infinitesimal. Then

$$
\begin{equation*}
c_{k i}=-c_{i k}, \quad c_{i i}=0 \tag{31}
\end{equation*}
$$

therefore the infinitesimal form of Eq. (28), using the notation

$$
\begin{array}{lll}
c_{12}=\varepsilon_{3}, & c_{13}=-\varepsilon_{1}, & c_{14}=\varepsilon_{2} \tag{32}\\
c_{23}=\delta_{2}, & c_{24}=\delta_{1}, & c_{34}=\delta_{3}
\end{array}
$$

will be

$$
g=\left(\begin{array}{rccc}
1 & \varepsilon_{3} & -\varepsilon_{1} & \varepsilon_{2} \tag{33}\\
-\varepsilon_{3} & 1 & \delta_{2} & \delta_{1} \\
\varepsilon_{1} & -\delta_{2} & 1 & \delta_{3} \\
-\varepsilon_{2} & -\delta_{1} & \delta_{3} & 1
\end{array}\right)
$$

The infinitesimal operators will be given by

$$
\begin{equation*}
\left(\frac{\partial g}{\partial \varepsilon_{i}}\right)_{\varepsilon_{i}=0, \delta_{i}=0}=A_{i}^{\prime},\left(\frac{\partial g}{\partial \delta_{i}}\right)_{\varepsilon_{i}=0, \delta_{i}=0}=B_{i}^{\prime} \tag{34}
\end{equation*}
$$

For these the same commutation relations will hold as for $A_{i}-\mathrm{s}$ and $B_{i}-\mathrm{s}$.

References

'[1] Wigner, E.: Gruppentheorie, Friedr. Vieweg \& Sohn Akt.-Ges., Braunschweig (1931).
[2] Fock, V.: Z. Physik 98, 145 (1935).
[3] Bargmann, V.: Z. Physik 99, 576 (1936).
[4] Györgyi G.: Magyar Fizikai Folyóirat 15, 505 (1967).
'[5] Bander, M., C. Itzykson: Rev. Mod. Phys. 38, 330, 346 (1966).
[6] Michel, L., in: Group Representation in Mathematics and Physics (ed. V. Bargmann). Springer-Verlag, Berlin (1970) p. 36. ss.
[7] Pontrjagin, L. S.: Topological Groups, Princeton University Press, Princeton, (1958).
:[8] Boerner, H.: Darstellungen von Gruppen, Springer-Verlag, Berlin (1967).

РАЗЛОЖЕНИЕ ГРУППЫ O_{4} И АТОМ ВОДОРОДА

Ф. Й. Гилде

Изучена связь между группами $S U_{2} \otimes S U_{2}$ и O_{4} новым методом, отличаюшимся от из:вестного, и получены результаты классической квантовой механики для атома водорода.

