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It is shown that the well known formulae of Fresnel can be obtained in a rather straightforward 
way using consequent vector formalism. The aim of the article is to clarify some general questions 
connected with Maxwell's theory and, in particular, to improve from the didactical point of view 
the method of derivation of the formulae. 

Fresnel's formulae give the relations between polarization and intensities of 
the beams which appear if a primary beam is reflected on the plane boundary of 
two homogeneous media. The considerations of Fresnel are well-known and can 
be regarded as a well established result of classical electrodynamics. From the 
didactical point of view it is, however, disturbing that the formulae are obtained 
as a result of tiresome calculations; we shall give presently a rather symmetric 
treatment of the problem—at the same time we make a few remarks about the 
physical contents of the theory. We hope that our consideration may facilitate the 
teaching of this phenomenon. 

Maxwell's equations of the electromagnetic field can be written in the form of 
the wave equations 

V 2 A - 4 - A = -4m, 
c 

V*<P-\<t> = ~4ne, (1) 
c 

divA + — <P = 0. 
c 

The charge and current densities arise partly or wholly as charges and currents 
inside the atoms of the material in which the field spreads. If we consider P the 
electric and I the magnetic polarization of the material, then we can write 

0 — — div P , 
(2) 

1 = — p + ro t l , 
c 

provided no outer current and charges appear. 
2 
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One usually supposes 

P — xE, I = y/B, (3) 
where 

1 + 4nx = e, 1 + Any = n, 

ï = yJn, } (4) 

e and n are the dielectric constant and the magnetic permeability; usually such 
cases are considered when (3) is valid and e, •/' and therefore e, ft are given functions 
of the coordinate vector r. 

We note that for rapidly changing fields (3) cannot be taken to be valid — since 
the polarizations come about by the displacements and changes of velocities of the 
atomic electrons. Because of the inertia of the electrons the polarizations follow 
the field only with some delay. One might e.g. suppose in place of the first equation (3) 
the following dynamical equation 

where co0 is one of the characteristic frequencies of the atom. Introducing the inertia 
of the electrons by (3o) or some more elaborate expressions, one is led to a theory 
which accounts for the dispersion phenomena of light. We cannot deal with this 
problem—we note here only that, considering waves of a given frequency v, we 
can suppose (3) to be valid in a good approximation only; x and y' have to be taken 
as the dynamical polarization depending on the frequency v. 

We make this remark because it is often incorrectly stated that Maxwell's 
theory is incomplete as it does not give an account of the phenomena of dispersion. 
The fact seems,.however, that the theory does give the correct description of dispersion 
phenomena—provided the correct relation between polarization and field strength 
are made use of. The question of the correct relation between polarization and 
field is rather a question of describing the structure of matter than one of the theory 
of the electromagnetic field.* The electromagnetic field strength can be derived from 
the potentials as 

-^P + P = xE, 
>O2 

(3a) 

E = — grad 0 — — À, 
c 

B = rot A. 
(5) 

Thus making use of (2) and (3) we find 

0 = — divxE = — x divE — Egrad x, 

1 = — xÈ + y' rot B + grad y' x B. 
(6) 

* See e.g. L. Jdnossy: Theory of relativity based on physical reality, Publishing House 
of the Hungarian Academy of Sciences, Budapest, 1971. p. 197. 
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With the help of (5) and (6) the current and charge densities can be expressed in 
terms of the potentials. If we insert the latter expression into the wave equations 
(1), we find 

V 2 A — r A = grad i> H rot rot A — 4n grad x' X B, c c c 

= — 4?rx IV2<i>-}-divÄJ-f-4nEgradx, 

since 

— divÂ = — \<P . 

The equation can also be written 

V2 A - A + (spi - 1) grad div A = - 4Tt/t(grad / X B), 
{la) 

1 •• 4 k 
V2<P —ï<t> = — E grad k, 

cz s 

V- c 

izu 
Thus in homogeneous regions where 

grad = grad x = 0, 
we find 

V 2 A — 1 A = 0, (7) 

div A = 0, 
fan 

when supposing tf>=0. The latter supposition is permissible, as it can be shown 
by a more detailed analysis. Particular solutions of (7) can be written as 

A = An cos (kr — cot + q>), 
(8) 

kA0 = 0, k = io/K 
Thus 

E = — - A = — — A0 sin (kr — cot-h <p), 
c c 

(8o) 
B = rot A - — k X A 0 sin (kr — at + q>), 

thus 

B = » y - X E . k 
The general solutions of (7) can be obtained as a superposition of solutions 

of the form (8). Because of the inertia of the electrons, V=cfn is a function of a> 
and n is thus the refractive index for the circular frequency co. 
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Boundary conditions 

Consider two homogeneous regions I and II with velocities V1 and V" and a 
boundary surface S separating them. The waves propagating in I or in II can be 
obtained as superpositions of plane waves of the form (8). In the region in the im-
mediate vicinity of S, instead of the homogeneous wave equation (7) the inhomogene-
ous equations (la) are valid. We can take that in this region y' and x change rapidly 
from the values y'x and x, which they take up in the one region into values y'2 and x2 
which they take up in the second region. Owing to those rapid change some of the 
components of A and <P suffer also rapid changes, which can be taken in the limit as 
discrete jumps of those quantities across 5. 

The detailed analysis shows that on the boundary S a surface charge density 

<7 = 4;I(PS-P},) ; m 

P1, P " and PX
N, P " their components perpendicular to S, are the polarization vectors 

on both sides of S. 
Similarly a surface current density i appears 

• = 4 T r ( i ; : - i ; ) (%) 

where I" and Ij, are the components of the magnetic polarizations I" and I1 parallel 
to the surface. 

The discontinuity and thus the boundary conditions can be expressed more 
conveniently in terms of the field strength than of the potentials.* 

Denoting by K the unit vector perpendicular to S, the boundary conditions 
expressing the presence of the surface charges and currents (9a) and (9b) can be 
written as 

K ( E " —E 1 ) = — 4 K K ( P " — P 1 ) , ( 10a ) 

K X ( B " - B 1 ) = 4nK X (T<"> -1<'>). (106) 
The tangential component of E and the normal components of B must be con-

tinuous* — this can be expressed as 

K X O E ^ - E O ) = 0, (11a) 

K(B ( I I ) — B(1)) = 0. ( l i é ) 

* This is so because although the waves can be expressed in both regions supposing 0 = 0, 
nevertheless from the Lorentz condition it follows that a discontinuity of A at the boundary cor-
responds to a change of 0; therefore if we want to describe the waves on both sides of S in a form 
<P = Q then we have to construct the field in T1 matching it to that in I and then we have to submit 
the latter solution to a transformation of gauge to make 0" = Q. 

* The relations 
1 . 

rot E = B and div B = 0 
c 

are valid in the region of the boundary. From the latter relations follows that the tangential com-
ponent of E must be continuous — a discontinuity of this component would leed to infinitely large 
values of B thus the field would change rapidly until the break in the tangential component of E 
vanishes. From divB = 0 it follows that the normal component of B must be continuous in any 
state of the field. 
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With the help of (3) and (4), (10a, b) can be written 

K(e I IE I I-£,E I) = 0 (11c) 

Kxi— 1=0. (11 d) 
{ H II ft ) 

Thus (11a—D) give the boundary conditions on the surface S. 
The equation of the surface S can be written in a parameter representation 

r = K X s if r a point of S, (12) 

where s is arbitrary. If we want the field on both sides of S to satisfy any kind of 
boundary condition identically in t then it is necessary that the arguments of the 
wave functions appearing in the fields on both sides of S should be identical. Thus 
two waves may satisfy a boundary condition if 

k ( K X s ) - ® i + 9 = k ' ( K X s ) - a / i + <p' (13) 

where we have made use of (12); k, co, t and, k', a>', q>' respectively, are the parameters 
of the wave to be matched at the surface. From (13) it follows that 

<x> — ID' (P = q>' (14) 
and therefore 

k(KXs) = k ' (KXs) (15) 
for all values of s. Since 

k(KXs) = s (kxK) 

(15) is fulfilled then and only then if 

k x K = k 'xK. (16) 

From (16) it follows that k, k' and K lie in one plane. Thus the plane defined by 
the propagation vectors k and k' of two matched waves is perpendicular to the 
plane S. 

Furthermore it follows from (16) that 

A: sin 3 = fc'sin 3' (17) 

where $ and 9' are the angles between the vectors k, k' and K; thus in accordance with 

sin 9 _ 
sin ~ V ' 

If V—Vx, V'=Vn, then (10) gives the Snellius law; considering, however, two 
waves on the same side of S, then we have V= V, and can only be satisfied if 

9'= n-9; 

thus we obtain the law of reflection. We obtained thus the connection between the 
wave vectors of waves which match on the surface S. 
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To match the fields on both sides of S the amplitudes of the fields have also to 
be matched. 

Considering one wave in each of the regions we obtain an overdetermined set 
of equations—therefore the matching is only possible if at least three waves are 
considered. This corresponds to the fact that one wave approaching the surface 
e.g. coming through I, this wave produces a reflected wave returning into I and a 
refracted wave autcoming into II. The amplitude of the vector potentials can be 
denoted, using the suffies 0, 1, 2, thus 

A0, k0 describe the incident wave, 

Aj, kx describe the reflected wave, 

A2, k2 describe the refracted wave. 

As the vector potentials are perpendicular to the directions of propagation, 
we can express them in terms of components in the directions M and k m XM, thus 

A„, = flmM + M k , „ x M ) . 

The boundary condition contains the electric field strength its amplitudes can be 
written, since cojc = km/nm as 

Em = — K M + bm (k,„ X M)). (18) 
^tn 

The amplitudes of the magnetic field strength are 

Bm = km X Am. 
We find thus easily 

Bm =-nmkmbmM + a,„(imXM). (19) 

The boundary condition for components of the field strength; in accord with (11 a—d) 
can be written 

K ( E 2 E , - E 1 E 1 ) = K e 0 E 0 , 

K(B2 -B j ) = KB,, 

K X F E O - E j ) = K X E N . 

K x l ^ - ^ 
Hi Hi 

= K x 
/'a 

(20) 
B0 

Giving the values of a0, b0 i.e. intensity and polarization of the incident beam, (20) 
gives six equations for the four coeiTbients am, bm, m= 1, 2. The system is, however, 
not overdetermined as we find that among the six equations obtained, two pairs are 
identical; indeed, introducing (18) and (19) into (20) there are only four different 
ones. The result of a short calculation sh'o.vs that (20) reduces to 

eJ->2-c1bl = e0b0 

( k j K ^ - i k x K ) ^ = (k0K )b0 
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and 

kgK kjK k()K 
A2 = O0-

Hi Hi Ho 

We see thus that the equations separate automatically into two sets, one containing 
the amplitudes of the components polarized in the direction of M, thus components 
polarized parallel to S. The other set of equations gives the components polarized 
perpendicular to M. We see thus that the consequent calculation leads automatically 
to the separation of the two states of polarization. 

The explicite solutions of (21) and (22) can be written as follows, 

i _ fekp —Sok2)K 
1 ~ ( f i ^ - g j k o J K 0 

_ fa k0 —Spk^K 
(s2k1-e1k2)K'bo 

(23) 

A, = 

KO K8 . 

ио / v 

Hi Hi 

Ho Hi 

KI _ 

Hi Иг 

•a 0. 
К 

The expressions (23) are equivalent with the well-known expressions of Fresnel. 
We note, that one should insert into (22) 

£0 = £j = £j £2 - S|j 

Ho = Hi = Hi Hi = Htt 

where e,, £M, n, and /<„ are the dielectric constants and permeabilities in the regions 
I and II. 

ЧЁТКАЯ ФОРМУЛИРОВКА ФОРМУЛ ФРЕНЕЛЯ 
Л. Яноши 

Показано, что хорошо известные формулы Френеля можно получить простым путём 
при последовательном использовании векторного формализма. Главная цель работы — ос-
ветить некоторые общие вопросы, связанные с теорией Максвелла, и, в частности, улучшить 
с дидактической точки зрения метод получения формул. 


