BOND ANGLE DEPENDENT LIGAND FIELD MODEL FOR ELECTRONIC CONFIGURATIONS d² AND d³, II Theoretical Study of the Rhomboidal Distortion of Tetrahedral Complexes

By

M. I, BÁN and M. RÉVÉSZ Institute of General and Physical Chemistry, Attila József University, Szeged

(Received September 29, 1974)

The energy matrices of the electronic states arising from the symmetry splitting of configurations of d^2 and d^3 systems in rhomboidally distorted tetrahedral strong ligand fields are given in terms of Coulomb interaction and ligand field parameters and the angles of distortion.

In previous papers the theoretical treatment of the tetragonally [1] and trigonally [2] distorted tetrahedral cases has been presented on the basis of the bond angle dependent ligand field model. The present work deals with the states resulting from the electronic configurations d^2 and d^3 , of greatest practical importance, in rhomboidally distorted tetrahedral strong ligand fields.¹ The model adopted is expected to be useful for the interpretation of physico-chemical properties related with the electronic energies and their changes in four-coordinate tetrahedral transition metal complexes of MA₂B₂ composition, and square planar complexes of MA₃B and MA₂B₂ compositions. When treating MA₂B₂ complexes, it is obvious to start with the model of the tetragonally oriented tetrahedron [1]. In this case, the tetrahedron is arranged so that its centre coincides with the centre of a cube and the ligands in staggered position are located in the alternating corners of the cube. The orientation of the cube is so that the Z-axis of the coordinate system passes through the centres of its two parallel faces. Therefore, two identical A ligands $(A^1 \text{ and } A^2)$ lie above the XY-plane, each forming an angle α_4 with the positive direction of the Z-axis, and two identical B ligands (B¹ and B²) are below the XYplane, each enclosing the angle α_B with the +Z-axis.² Except the cases $R_A = R_B$ and $\alpha_A = \pi - \alpha_B \neq 54^{\circ}44' (D_{2d})$, $\alpha_A = \pi - \alpha_B = 54^{\circ}44' (T_d)$, $\alpha_A = \pi - \alpha_B = 0^{\circ} (D_{\infty h})$, $\alpha_A = \alpha_B = 90^{\circ} (D_{2h})$ the symmetry is always C_{2v} . Using the coordinates of the ligand positions with respect to the central metal ion (Table I), the actual ligand field operator³ in rhomboidally distorted tetrahedral symmetry is

¹ For other configurations see ref. [3].

² Without disregarding the possibilities of further generalizations, in this paper the following definitions are used: $0 \le \alpha_A \le \pi/2$ and $\pi/2 \le \alpha_B \le \pi$.

³ In orientation 2 (see ref. [11]), the terms belonging to V_2^2 and V_4^2 would not contain *i* as a multiplying factor and *i* sin 2φ would turn into $\cos 2\varphi$ while the last term consisting of V_4^* would change its sign.

$$V(C_{2\nu}) = eq\{[(3\cos^{2}\alpha_{A}-1)r_{2}^{A}(r) + (3\cos^{2}\alpha_{B}-1)r_{2}^{B}(r)]P_{2}^{0}(\cos\vartheta) + \frac{i}{4}[(1-\cos^{2}\alpha_{A})r_{2}^{A}(r) - (1-\cos^{2}\alpha_{B})r_{2}^{B}(r)]P_{2}^{2}(\cos\vartheta)(e^{-2i\varphi}-e^{2i\varphi}) + \frac{i}{4}[(35\cos^{4}\alpha_{A}-30\cos^{2}\alpha_{A}+3)r_{4}^{A}(r) + (35\cos^{4}\alpha_{B}-30\cos^{2}\alpha_{B}+3)r_{4}^{B}(r)]P_{4}^{0}(\cos\vartheta) + \frac{i}{24}[(1-\cos^{2}\alpha_{A})(7\cos^{2}\alpha_{A}-1)r_{4}^{A}(r) - (1-\cos^{2}\alpha_{B})(7\cos^{2}\alpha_{B}-1)r_{4}^{B}(r)] \cdot P_{4}^{2}(\cos\vartheta)(e^{-2i\varphi}-e^{2i\varphi}) - \frac{1}{192}[(1-\cos^{2}\alpha_{A})^{2}r_{4}^{A}(r) + (1-\cos^{2}\alpha_{B})r_{4}^{B}(r)]P_{4}^{4}(\cos\vartheta)(e^{4i\varphi}+e^{-4i\varphi})\}.$$
(1)

For $\alpha_A = \alpha_B = 90^\circ$, the rhomboidal planar case will emerge then being the potential

$$V(D_{2h}) = eq \left\{ -P_2^0(\cos\vartheta) \left[r_2^A(r) + r_2^B(r) \right] + \frac{3}{4} P_4^0(\cos\vartheta) \left[r_4^A(r) + r_4^B(r) \right] - \frac{1}{192} P_4^4(\cos\vartheta) \left(e^{4i\varphi} + e^{-4i\varphi} \right) \left[r_4^A(r) + r_4^B(r) \right] \right\},$$
(2)

and for $\alpha_A = \alpha_B = 54^{\circ}44'$ and $R_A = R_B$ (1) turns into the regular tetrahedral expression (comp. with (2) in ref. [11]) and for $R_A = R_B$ and $\alpha_A = \alpha_B = 90^{\circ}$, into the square planar (D_{4h}) one.

Table I

Type of complex	Ligand	R _k Metal-ligand distance	⁹ κ Polar angle (from the +Z-axis)	φ_k Azimuthal angle (from the +X-axis
MA_2B_2	$\begin{array}{c} A^1\\ B^1\\ A^2\\ B^2\end{array}$	R _A R _B R _A R _B	α_A α_B α_A α_B	π/4 3π/4 5π/4 7π/4

Ligand coordinates

By applying (1), the single electron ligand field integrals are

$$\langle d_0 | V(C_{2\nu}) | d_0 \rangle = 2D_2^0(2) + 6D_4^0(2),$$
 (3.1)

$$\langle d_{\pm 1} | V(C_{2v}) | d_{\pm 1} \rangle = D_2^0(2) - 4D_4^0(2),$$
 (3.2)

$$\langle d_{\pm 2} | V(C_{2\nu}) | d_{\pm 2} \rangle = -2D_2^0(2) + D_4^0(2),$$
 (3.3)

$$\langle d_{\pm 1} | V(C_{2\nu}) | d_{\mp 1} \rangle = \mp i [3D_2^2(2) + 4D_4^2(2)],$$
 (3.4)

$$\langle d_{\pm 2} | V(C_{2\nu}) | d_{\mp 2} \rangle = D_4^4(2),$$
 (3.5)

$$\langle d_{\pm 2} | V(C_{2\nu}) | d_0 \rangle = \mp i \sqrt{6} [D_2^2(2) - D_4^2(2)],$$
 (3.6)

or taking into account the splitting

$$d(C_{2v}) = 2a_1 + a_2 + b_1 + b_2, \tag{4}$$

THEORETICAL STUDY OF THE RHOMBOIDAL DISTORTION OF TETRAHEDRAL COMPLEXES 395

and the wave functions

$$a_1^1 = d_{z^2}, (5.1)$$

$$a_1^2 = d_{xy},\tag{5.2}$$

$$a_2 = d_{x^2 - y^2},\tag{5.3}$$

$$b_1 = \frac{1}{\sqrt{2}} (d_{xz} - d_{yz}), \tag{5.4}$$

$$b_2 = \frac{1}{\sqrt{2}} (d_{xz} + d_{yz}), \tag{5.5}$$

the energies⁴ of the real d-orbitals are

$$\langle a_1^1 | V(C_{2\nu}) | a_1^1 \rangle = 2D_2^0(2) + 6D_4^0(2),$$
 (6.1)

$$\langle a_1^2 | V(C_{2\nu}) | a_1^2 \rangle = -2D_2^0(2) + D_4^0(2) - D_4^4(2),$$
 (6.2)

$$\langle a_2 | V(C_{2v}) | a_2 \rangle = -2D_2^0(2) + D_4^0(2) + D_4^4(2),$$
 (6.3)

$$\langle b_1 | V(C_{2v}) | b_1 \rangle = D_2^0(2) - 4D_4^0(2) - 3D_2^2(2) - 4D_4^2(2),$$
 (6.4)

$$\langle b_2 | V(C_{2\nu}) | b_2 \rangle = D_2^0(2) - 4D_4^0(2) + 3D_2^2(2) + 4D_4^2(2),$$
 (6.5)

$$\langle a_1^1 | V(C_{2v}) | a_1^2 \rangle = -2\sqrt{3} [D_2^2(2) - D_4^2(2)].$$
 (6.6)

In the formulas (3) and (6) the following notations⁵ have been used (for simplicity R_A taken equal to R_B):

$$D_2^0(2) = \frac{6}{7} \varrho [(3\cos^2 \alpha_A - 1) + (3\cos^2 \alpha_B - 1)] Dq, \qquad (7.1)$$

$$D_4^0(2) = \frac{1}{14} \left[(35\cos^4\alpha_A - 30\cos^2\alpha_A + 3) + (35\cos^4\alpha_B - 30\cos^2\alpha_B + 3) \right] Dq, \quad (7.2)$$

$$D_2^2(2) = \frac{6}{7} \rho \left[(1 - \cos^2 \alpha_A) - (1 - \cos^2 \alpha_B) \right] Dq,$$
(7.3)

$$D_4^2(2) = \frac{5}{14} \left[(1 - \cos^2 \alpha_A) \left(7 \cos^2 \alpha_A - 1 \right) - (1 - \cos^2 \alpha_B) \left(7 \cos^2 \alpha_B - 1 \right) \right] Dq \quad (7.4)$$

$$D_4^4(2) = -\frac{5}{2} \left[(1 - \cos^2 \alpha_A)^2 + (1 - \cos^2 \alpha_B)^2 \right] Dq, \qquad (7.5)$$

where the meanings of ρ and Dq are as usual [1].

3

Following in every respect the procedure referred and sketched in our first paper [2], the energy matrices for the d^2 configuration are:

⁴ Throughout this paper the interaction between the states a_1^1 and a_1^2 has been neglected. This has no serious effect on the energies, especially at angles close to that of the regular tetrahedron and q=1. For a more precise treatment, the solutions of the one-electron energy matrix containing the off-diagonal elements $\langle a_1^2 | V(C_{2\nu}) | a_1^2 \rangle$ should be used to calculate the matrix elements of multi-electron states at given angles.

⁵ The subscripts 2 and 4 of *D* refer to the degree *l*, the superscripts 0, 2 and 4 to the order *m* of the associated Legendre polynomial $P_i^m(\cos \vartheta)$ involved in the operator (1) and (2) refers to the (rhomboidal) symmetry. In the expressions (8) and (9) the latter are omitted.

³ A ₁	$(a_1^1)(a_1^2)$			· .	
$(a_1^1)(a_1^2)$	$7D_4^0 - D_4^4$				(8.1)
³ A ₂	$(a_1^2)(a_2)$	$(a_1^1)(a_2)$	(b ₁)((b ₂)	
$(a_1^2)(a_2)$ $(a_1^1)(a_2)$ $(b_1)(b_2)$	$12B - 4D_2^0 + 2D_4^0$	$\begin{array}{c} 0\\7D_4^0+D_4^4\end{array}$	64 0 3B+2D	$\frac{3}{2}-8D_4^0$	(8.2)
³ B ₁	$(a_1^2)(b_1)$	$(a_1^1)(b_1)$	$(a_2)($	(b ₂)	
$(a_1^2)(b_1)$	$3B - D_2^0 - 3D_4^0 + 3D_2^2 + + 4D_4^2 - D_4^4$	3√3 <i>B</i>	- 3	B	-
$(a_1^1)(b_1)$		$9B + 3D_2^0 + 3D_2^2 + + 4D_4^2 + 2D_4^0$	- 3 V	⁷ 3 <i>B</i>	(8.3)
$(a_2)(b_2)$		• •	$3B - D_2^0 - 3D_2^0 - 4D_4^2$	$D_4^0 - 3D_2^2 - D_4^4$	
³ B ₂	$(a_1^2)(b_2)$	$(a_1^1)(b_2)$	(a ₂)(<i>b</i> ₁)	
$(a_1^2)(b_2)$	$3B - D_2^0 - 3D_4^0 - 3D_2^2 4D_4^2 - D_4^4$	$-3\sqrt{3}B$	3 <i>E</i>	}	- ·
$(a_1^1)(b_2)$		$9B + 3D_2^0 + 2D_4^0 3D_2^2 - 4D_4^2$	-3γ	3 <i>B</i>	(8.4)
$(a_2)(b_1)$			$3B - D_2^0 - 3D + 4D_4^2$	$D_4^0 + 3D_2^2 + D_4^4$	
¹ A ₁	$(a_1^1)^2$ $(a_1^2)^2$	$(a_2)^2$ $(b_1)^2$	$(b_2)^2$	$(a_1^1)(a_1^2)$	
$(a_1^1)^2$	$ \begin{array}{r} 12B+3C+\\ +4D_{2}^{0}+12D_{4}^{0} \end{array} $ $ 4B+C $	4B+C $B+C$	B+C	0	
$(a_1^2)^2$	$12B + 3C 4D_2^0 + 2D_4^0 - 2D_4^4$	C $3B+C$	3B+C	0	
$(a_2)^2$	41	$12B+3C-D_{2}^{0}+2D_{4}^{0}+2D_{4}^{4} 3B+C$	3B+C	0	(8.5)
$(b_1)^2$		$\frac{12B+3C+2}{-8D_4^0+6D_2^2}$	$D_2^0 - 3B + C$ - $8D_4^2$	- √ 6 B	
(<i>b</i> ₂)²			$\frac{12B+3C+2D_2^0-}{-8D_4^0-6D_2^2-8D_2^0}$, ∤ 6 <u></u> B	· ·
$(a_1^1)(a_1^2)$				8B+2C+	· .

THEORETICAL STUDY OF THE RHOMBOIDAL DISTORTION OF TETRAHEDRAL COMPLEXES 397

${}^{1}A_{2}$	$(a_1^2)(a_2)$	$(a_1^1)(a_2)$	$(b_1)(b_2)$	•
$(a_1^2)(a_2)$	$12B+2C-4D_2^0+2D_4^0$	0	0	(86)
$(\dot{a}_{1}^{1})(a_{2})$		$8B+2C+7D_4^0+D_4^4$	$2\sqrt{3}B$	
$(b_1)(b_2)$	· · · · · ·		$9B + 2C + 2D_2^0 - 8D_4^0$	
¹ B ₁	$(a_{1}^{2})(b_{1})$	$(a_1^1)(b_1)$	$(a_2)(b_2)$	· ·
$(a_1^2)(b_1)$	$\begin{vmatrix} 9B + 2C - D_2^0 - 3D_4^0 + 3D_2^2 + \\ + 4D_4^2 - D_4^4 \end{vmatrix}$	$\sqrt{3}B$	3 <i>B</i>	
$(a_1^1)(b_1)$		$11B+2C+3D_2^0+2D_4^0+$ + $3D_2^2+4D_4^2$	$-\sqrt{3}B$	(8.7)
$(a_2)(b_2)$			$9B + 2C - D_2^0 - 3D_4^0 - 3D_2^2 4D_4^2 + D_4^4$	
¹ <i>B</i> ₂	$(a_1^2)(b_2)$	$(a_1^1)(b_2)$	$(a_2)(b_1)$	
$(a_1^2)(b_2)$	$9B + 2C - D_2^0 - 3D_4^0 - 3D_2^2 - 4D_4^2 - D_4^4$	$-\sqrt{3}B$	- 3B	
$(a_1^1)(b_2)$		$11B + 2C + 3D_2^0 + 2D_4^0 - 3D^2 - 4D^2$	$-\sqrt{3}B$	(8.8)
$(a_2)(b_1)$		- 5D ₂ - 4D ₄	$9B + 2C - D_2^0 - 3D_4^0 + 3D_2^2 + + 4D_4^2 + D_4^4$	
and for the d	³ configuration :			
⁴ A ₁	$(a_2)(b_1)(b_2)$			
$(a_2)(b_1)(b_2)$	$-7D_4^0+D_4^4$			(9.1)
4A2	$(a_1^1)(a_1^2)(a_2)$	$(a_1^2)(b_1)(b_2)$	$(a_1^1)(b_1)(b_2)$	t i kul
$(a_1^1)(a_1^2)(a_2) (a_1^2)(b_1)(b_2)$	$3B-2D_2^0+8D_4^0$	$0 \\ -7D_{4}^{0} - D_{4}^{4}$	- 6 <i>B</i> 0	(9.2)
$(a_1^1)(b_1)(b_2)$			$12B + 4D_2^0 - 2D_4^0$	
⁴ B ₁	$(a_1^1)(a_1^2)(b_1)$	$(a_1^2)(a_2)(b_2)$	$(a_1^1)(a_2)(b_2)$. •
$(a_1^1)(a_1^2)(b_1)$	$3B + D_2^0 + 3D_4^0 + 3D_2^2 + + 4D_4^2 - D_4^4$	$-3\sqrt{3}B$	3 <i>B</i>	
$(a_1^2)(a_2)(b_2)$		$9B - 3D_2^0 - 2D_4^0 - 3D_2^2 - 4D_3^2$	$-3\sqrt{3}B$	(9.3)
$(a_1^1)(a_2)(b_2)$			$3B + D_2^0 + 3D_4^0 - 3D_2^2 4D_4^2 + D_4^4$	
⁴ B ₂	$(a_1^1)(a_1^2)(b_2)$	$(a_1^2)(a_2)(b_1)$	$(a_1^1)(a_2)(b_1)$	
$(a_1^1)(a_1^2)(b_2)$	$3B + D_2^0 + 3D_4^0 - 3D_2^24D_4^2 - D_4^4$	$-3\sqrt{3}B$	- 3 <i>B</i>	(9.4)
$(a_1^2)(a_2)(b_1)$		$9B - 3D_2^0 - 2D_4^0 + 3D_2^2 + 4D_4^2$	3 √3 B	(7.7)
$(a_1^1)(a_2)(b_1)$			$3B + D_2^0 + 3D_4^0 + 3D_2^2 + + 4D_4^2 + D_4^4$	

3*

${}^{2}A_{1}$	$(a_1^1)(a_1^2)^3$	$(a_1^1)^2(a_1^2)$	$(a_1^2)(a_2)^2$	$(a_1^1)(a_2)^2$	$(a_1^2)(b_1)^2 \dots$
$(a_1^1)(a_1^2)^2$	$\left 7B + 4C - 2D_{1}^{0} + 8D_{4}^{0} - 2D(0) \right $	0	0	U	$-\sqrt{3}B$
$(a_1^1)^2(a_1^2)$	-	$7B + 4C + 2D_2^0 + 13D_4^0 - D_2^0$	4 + C	0	B+C
$(a_1^2)(a_2)^2$			$27B+3C-6D_2^0+3D_4^0+D_4^4$	0	3B+C
$(a_1^1)(a_2)^2$		•	78	$+4C-2D_{2}^{0}+8D_{4}^{0}+2D_{4}^{0}$	0
$(a_1^2)(b_1)^2$:		•		•	$12B + 4C - 7D_4^0 + 6D_2^2 + 8D_4^2 - D_4^4$
	•	•		•	(9.5a)
${}^{2}\mathcal{M}_{1}$	$\dots (a_1^1)(b_1)^2$	$(a_1^2)(b_2)^2$	$(a_1^1)(b_2)^2$	$(a_2)(b_1)(b_2)$	$(a_2)(b_1)(b_3)$
$(a_1^1)(a_1^2)^2$	3B+C	$\sqrt{3}B$	3B+C	0	0
$(a_1^1)^3(a_1^2)$	$-\sqrt{3}B$	B+C	V <u>3</u> B	0	0
$(a_1^2)(a_2)^2$	0	3B+C	0	$-\frac{9\sqrt{2}}{2}B$	$\frac{3\sqrt{6}}{2}B$
$(a_1^1)(a_2)^2$	3B+C	0	3B+C	$\frac{\sqrt{6}}{2}B$	$\frac{3\sqrt{2}}{2}B$
$(a_1^2)(b_1)^2$	5 <u>1</u> 3 B	3B+C	0	$\frac{3\sqrt{2}}{2}B$	$-\frac{3\sqrt{6}}{2}B$
$(a_1^1)(b_1)^2$	$22B + 4C + 4D_2^0 + 6D_2^2 - 2D_4^0 + 8D_4^2$	0	3B+C	$\frac{\sqrt{6}}{2}B$	$\frac{9\sqrt{2}}{2}B$
$(a_1^2)(b_2)^2$		$12B + 4C - 7D_4^0 - 6D_2^2 - 8D_4^3 - 0_4^3$	-5 V3B	3 √ <u>2</u> B	0
$(a_1^1)(b_2)^2$		· · ·	$22B + 4C + 4D_2^0 - 2D_4^0 - 6D_2^2 - 8D_4^2$	0	0
$(a_2)(b_1)(b_2) \ (a_2)(b_1)(b_2)$				$9B+3C-7D_4^0+D_4^4$	$0 \\ 9B + 3C - 7D_4^0 + D_4^0$
•					(9.5b) (cont.)

$(a_1^2)^2 (a_2)$						
	0	$-\frac{9\sqrt{2}}{2}B$	$\frac{3\sqrt{6}}{2}B$	0	0	
$(a_1^i)^2(a_2)$	0	0	O	$\frac{\sqrt{6}}{2}B$	$\frac{3\sqrt{2}}{2}B$	
$(a_2)(b_1)^8$	0	-3V2B	. 0	2 \ <u>6</u> B	3 V <u>7</u> B	
$(a_2)(b_2)^2$	0	$-\frac{3\sqrt{2}}{2}B$	$\frac{3\sqrt{6}}{2}B$	$\frac{\sqrt{6}}{2}B$	$\frac{9\sqrt{2}}{2}B$	
$(a_1^1)(a_2^2)(a_2)$	2 V <u>3</u> B	$\frac{\sqrt{3}}{2}B$	$\frac{3}{2}B$	$-\frac{9}{2}B$	$\frac{3\sqrt{3}}{2}B$	· .
$(a_1^1)(a_1^2)(a_3) = 9B$	$3+3C-2D_{2}^{0}+8D_{4}^{0}$	3 7 B 8	$\frac{\sqrt{3}}{2}B$	$-\frac{3\sqrt{3}}{2}B$	$\frac{9}{2}B$	
$(a_1^{s})(b_1)(b_2)$	•	$9B+3C-7D_4^0-D_4^4$	0	$-\frac{3\sqrt{3}}{2}B$	$-\frac{3}{2}B$	
$(a_1^2)(b_1)(b_3)$		•	$9B+3C-7D_4^0-D_4^4$	$\frac{9}{2}B$	$-\frac{3\sqrt{3}}{2}B$	
$(a_1^1)(b_1)(b_2)$	· · ·	· ·	•	$16B+3C+4D_{a}^{0}-2D_{4}^{0}$	•	
$(a_1^1)(b_1)(b_2)$	•				$18B+3C+4D_{8}^{0}-2$	20%
-			• • •		(d9.6b)	(cont.)

	• •				
TH	IEORETICAL STU	DY OF THE RHOM	BOIDAL DISTORTION OF	TETRAHEDRAL COM	plexes 401
•			(9.7a)		
$(a_1^1)(a_1^2)(b_1) \dots$	$\frac{5\sqrt{6}}{2}B$	$\frac{5\sqrt{6}B}{2}$	o	γ6 <i>B</i>	$3C+D_2^0+3D_4^0+$ $D_2^3+4D_4^2-D_4^4$
				, ,	13 <i>B</i> + +3
$(b_1)(b_2)^2$	3B+C	B+C	3B+C	$12B + 4C + 3D_2^0 - 12D_4^0 - 3D_2^0 - 3D_2^0$	
$(a_2)^2(b_1)$	U	4 <i>B</i> + <i>C</i>	$12B + 4C - 3D_2^0 + 3D_3^2 - 2D_4^0 + 4D_3^2 + 2D_4^0$		
$(a_1^1)^2(b_1)$	4B+C	$22B + 4C + 5D_2^{\circ} + 8D_4^{\circ} + 3D_2^{\circ} + 4D_4^{\circ}$			
$(a_1^2)^2(b_1)$	$12B + 4C - 3D_2^0 - 2D_1^0 + 3D_2^0 + 4D_1^0 + 3D_2^0 + 4D_1^0 - 2D_1^0 + 4D_1^0 - 2D_1^0$				
$^{2}B_{1}$	$(a_1^2)^{a}(b_1)$	$(a_1^1)^2(b_1)$	$(a_2)^2(b_1)$	$(b_1)(b_2)^2$	(a [†])(b ₁) :
• .					

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{(a_1^1)(a_1^2)(b_2)}{3\sqrt{2}}R$	$\frac{(a_1^n)(a_2)(b_1)}{3\sqrt{2}}R$	$\frac{3\sqrt{6}}{B}$	(1a) (^a n)	(10)(20)(10)
$ \frac{2}{2}B - \frac{3\sqrt{6}}{2}B - \frac{3\sqrt{6}}{2}B - \frac{5\sqrt{6}}{2}B - \frac{5\sqrt{6}}{2}B - \frac{3\sqrt{5}}{2}B - \frac{3\sqrt{5}$		2 2	0 5	$\frac{5\sqrt{6}}{B}$	$\frac{3\sqrt{2}}{B}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$-\frac{3V_{2}}{2}B$	$\frac{3\sqrt{6}}{2}B$	$\frac{2}{2}B$	$\frac{2}{2}B$
$ \begin{array}{ccccc} -\frac{5\sqrt{3}}{2}B & \frac{3}{2}B & \frac{3}{2}B & -\frac{3\sqrt{3}}{2}B & -\frac{3\sqrt{3}}{2}B \\ \frac{3}{2}B & -\frac{5\sqrt{3}}{2}B & \frac{3\sqrt{3}}{2}B & -\frac{3\sqrt{3}}{2}B \\ +3C-3D_{2}^{0}-2D_{2}^{0}+ & 0 & \frac{5\sqrt{3}}{2}B & -\frac{3\sqrt{3}}{2}B \\ +3D_{2}^{0}+4D_{3}^{0} & 0 & \frac{5\sqrt{3}}{2}B & \frac{3}{2}B \\ +3D_{2}^{0}+4D_{3}^{0} & \frac{5\sqrt{3}}{2}B & \frac{5\sqrt{3}}{2}B \\ +3D_{2}^{0}+4D_{3}^{0} & \frac{12B+3C-3D_{2}^{0}-2D_{3}^{0}+ & \frac{3}{2}B \\ +3D_{2}^{0}+4D_{3}^{0} & \frac{5\sqrt{3}}{2}B & \frac{5\sqrt{3}}{2}B \\ +3D_{2}^{0}+4D_{3}^{0} & \frac{12B+3C-D_{2}^{0}+D_{3}^{0}+ & \sqrt{3}B \\ +3D_{2}^{0}+4D_{3}^{0} & \frac{12B+3C+D_{2}^{0}+3D_{3}^{0}+ & \sqrt{3}B \\ \end{array} $		0		- <i>V</i> 6 <i>B</i>	0
$\frac{3}{2}B - \frac{5\sqrt{3}}{2}B - \frac{5\sqrt{3}}{2}B - \frac{3\sqrt{3}}{2}B - \frac{3\sqrt{3}}{2}B - \frac{3}{2}B$ $+3C-3D_{2}^{0}-2D_{1}^{0}+ 0 - \frac{5\sqrt{3}}{2}B - \frac{3\sqrt{3}}{2}B$ $+3D_{2}^{0}+4D_{3}^{0} - \frac{5\sqrt{3}}{2}B - \frac{3\sqrt{3}}{2}B - \frac{3\sqrt{3}}{2}B$ $18B+3C-3D_{2}^{0}-2D_{1}^{0}+ \frac{3}{2}B - \frac{3\sqrt{3}}{2}B - 3\sqrt{$		$-\frac{5\sqrt{3}}{2}B$	$\frac{3}{2}B$	$\frac{3}{2}B$	$-\frac{3\sqrt{3}}{2}B$
$ \begin{array}{rcl} +3C-3D_{2}^{0}-2D_{4}^{0}+ & 0 & \frac{5\sqrt{3}}{2}B & \frac{3\sqrt{3}}{2}B \\ & +3D_{2}^{0}+4D_{4}^{0} & 0 & \frac{5\sqrt{3}}{2}B \\ & +3D_{2}^{0}+4D_{4}^{0}+ & \frac{3}{2}B & \frac{5\sqrt{3}}{2}B \\ & +3D_{2}^{0}+4D_{4}^{0}+ & \frac{3}{2}B & \frac{5\sqrt{3}}{2}B \\ & +3D_{2}^{0}+4D_{4}^{0}+ & \sqrt{3}B \\ & +3D_{2}^{0}+4D_{4}^{0}+ & \sqrt{3}B \\ & +3D_{2}^{0}+4D_{4}^{0}+ & \sqrt{3}B \\ & +4D_{4}^{0}+D_{4}^{0}+ & 0 \\ \end{array} $		$\frac{3}{2}B$	$-\frac{5\sqrt{3}}{2}B$	$\frac{3\sqrt{3}}{2}B$	$-\frac{3}{2}B$
$18B+3C-3D_{a}^{0}-2D_{a}^{0}+$ $+3D_{a}^{2}+4D_{a}^{2}$ $12B+3C+D_{a}^{2}+3D_{a}^{0}+$ $12B+3C+D_{a}^{2}+3D_{a}^{0}+$ $\sqrt{3}B$ $+3D_{a}^{2}+4D_{a}^{2}+D_{a}^{2}$ $9B+3C+D_{a}^{2}+3D_{a}^{0}+3D_{a}^{0}+3D_{a}^{0}$	126	$1 + 3C - 3D_{4}^{0} - 2D_{4}^{0} + 3D_{2}^{0} + 4D_{4}^{0}$	o	$\frac{5\sqrt{3}}{2}B$	2 B 2
$12B+3C+D_{2}^{0}+3D_{4}^{0}+$ $+3D_{2}^{2}+4D_{3}^{2}+D_{4}^{0}$ $9B+3C+D_{2}^{0}+3D_{4}^{0}+3L$ $+4D_{3}^{0}+3L$:	18 <i>B</i> +	$-3C - 3D_2^0 - 2D_4^0 +$ $+3D_2^2 + 4D_4^2$	$\frac{3}{2}B$	$\frac{5\sqrt{3}}{2}B$
$9B+3C+D_{2}^{0}+3D_{4}^{0}+3L$ $+4D_{4}^{0}+D_{4}^{0}$				$2B + 3C + D_2^0 + 3D_4^0 + + 3D_2^2 + 4D_4^2 + D_4^2$	1 <u>/3</u> B
		· · · · · · · · · · · · · · · · · · ·			$9B+3C+D_{1}^{0}+3D_{1}^{0}+3D_{1}^{0}$ $+4D_{1}^{0}+D_{1}^{0}$

THEORETICAL STUDY OF THE RHOMBOIDAL DISTORTION OF TETRAHEDRAL COMPLEXES 405

Proceeding the way described previously, the energy matrices (8) and (9) can easily be transferred to the configurations d^8 and d^7 .

References

Bán, M. I.: Acta Phys. et Chem. Szeged 18, 45 (1972).
 Bán, M. I.: Acta Phys. et Chem. Szeged 18, 185 (1972).
 Bán, M. I.: Acta Phys. et Chem. Szeged 19, 57 (1973).
 Bán, M. I.: Acta Phys. et Chem. Szeged 19, 245 (1973).
 Bán, M. I., M. Révész: Acta Phys. et Chem. Szeged 20, 383 (1974).

[3] Bán, M. I.: Unpublished data.

Révész, M.: Diploma Thesis, Szeged, 1973.

МОДЕЛЬ УГЛОВОЙ ЗАВИСИМОСТИ ЛИГАНДНЫХ ПОЛЕЙ *d*² И *d*³ ЭЛЕКТРОННЫХ КОНФИГУРАЦИЙ, II

Теоретическое рассмотрение ромбической деформации тетраэдрических комплексов

М. И. Бан, М. Ревес

Используя приближение сильного поля в ромбически деформированной тетраэдрической системе, рассчитали энергетические состояния матриксов энергии, происходящих из расщепления d^2 и d^3 электронных конфигураций, как функции кулоновских взаимодействий, параметров лигандных полей и угла деформации.