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A spin operator method described by Pratt for constructing singlets is demonstrated to be
a considerably more- complicated procedure than that of Léwdin or of the present author.

The reason for elaborating the spin operator method was given by PRATT’S
paper (1] entitled “Eigenfunctions of S2? by a Spin Operator Method”. Studying
the works of CoNDON, SHORTLY [2] and RAcaH [3], Pratt discovered the mathematical’
difficulty arising from the method of configuration interaction, and wanted it to
be solved. Therefore a spm operator was constructed with the so-called S* step-
-up and S~ stepdown spin operator which, when operating on determinants built
up from spin-orbitals, creates each eigenfunction of the total S% Above all, Pratt
applied his operator to find all the orthogonal singlets for a 2N-electron system:
the 5 singlets of the six-electron system, the -14 singlets of the eight-electron system
and the 42 singléts of the ten- electron system The formula of the operator is as
follows:
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On applyiﬂg operator (1) two cases have to be taken into consideration:

1) the operator is operating on spin-orbitals havmg the projection of spm
M=0;

2) the operator is operating on spm -orbitals havmg the pro_]ectlon of spin
M #0.

In the first case, one must know when using the operator that PRATT divided
the electrons of the 2N-electron system into two sets: the collection of N electrons
and orbitals will be termed set A4, and the remaining N electrons and N orbitals
denoted as set B. The determinant which on application of (1) gives the singlet
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states was constructed by Pratt by composing the product of the two determinants
built up from spin-orbitals of the electrons of set 4 and set B. Sy and S} mean the
so-called step-down and step-up operators which operate on part 4 and B, respec-
tively, of the above mentioned determinant.

The summation of i means the summation of all the different sets constructed
from the 2N spin-orbitals by choosing the N spin-orbitals in all possible ways. M
denotes the number of spin reserving in set 4 and B, respectively. In case of
M =0, the value of n is one.

In the second case the projection of spin M, differs from zero. This means
that (1) operates on spin-product functions in which the number of electrons having
spin o don’t agree with the number of electrons having spin f. If x denotes the num-
ber of electrons having spin ¢, but y the number
of electrons having spin f and x>0, n is given in
(1) by the formula as follows:

x!
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where y means the value of N in (1).
5 —N To estimate Pratt’s and the present author’s
12 3 4 56 . .
[4] operators together, one must investigate the
Fig. L. , deriving procedure of both operators. Pratt derived

his operator in more steps. First, he constructs
the singlet of the six-electron system givén with the branchmg diagram in Fig. 1
based on the spin-vector model.
Havmg experlenced the above results giving the general definition of the number-
of spin-reversing in 4 and B, he writes the operator constructing the smglets of the
2N—electron systems in the following formula:
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Then he investigates the remaining singlets of the six-electron systems, given in
Figs. 2 and 5. It was established that operator (3) must be generalized to the followmg
formula: _
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But this operator isn’t general enough because it’s applicable only to the spin product
functions having the projection of spin M,=0. Operator (4) is to be generalized
for the case M,>0. Fomula (1) of the operator originates from this generahzatlon
After constructing the operator on the basis of the formula

52——iN(N+4)+ Z’P,J, : 5)
. i<j
it was proved, that O can be transposed with S§% P;; denotes the permutation
operator.

As against the former way of derivation, it was shown by the present author
that in uniting the systems, having spins « and f, respectively, into a system having
the resulting spin s+s5°—/, the spin summation formula of van der Waerden results
in the linear combination of the original configurations, which is an eigenfunction
of operator S? corresponding to eigenvalues (s+s'—A)(s+s'—A+1). Then the
formula of the spin summation will be put in its operator form, which will be trans-
formed by the branching diagram into the case of exgenfunctxons given by Slater-
determinants. So the present author’s operator takes the following form: /
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This way of derlvatlon seems to be easier then that of Pratt.

Previously we saw that on applymg Pratt’s operator, because of its structure,
we had to distinguish between spin orbitals having the projection of spins M,;=0:
and M>0. In this fact the application of the operator is complicated to some extent.
Such difficulties are not occuring to the present author’s operator, because it genera--
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tes the eigenfunctions of §? with a projection of the maximum spin uniformly.
From these eigenfunctions the eigenfunctions having the projection of the other spins
can be obtained by applying the following formula:

W(s,s— (SYUGs, 9. ' )

1
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In connection with the structure of Pratt’s operator one must also speak about
the fact, that it operates on sets 4 .and B constructed in all possible ways from
electron orbitals ¢;. This fact raises an additional difficulty in applying Pratt’s
operator because increasing the number of electrons results in a sum of many members
making calculation more difficult. For instance, in case of the three-electron system
[(@p)], the operator has the form as follows:
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The above-mentioned circumstance was eliminated from the present author’s
operator by uniting the state of the N-electron system, having the total spin S, with
the branching diagram from part systems on the basis of the spin summation formula
of van der Waerden, and the operators constructing the eigenfunctions of S2 were
built up in succession from the operators acting on the part systems. In the above
mentioned-case of three-electron systems the present author’s operator has the
form as follows: ’ ‘

1 ‘ 5 . ,
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where Sy denotes the step-down operator acting on the (ax) spinproduct function,
Sz the step-up operator acting on the spmfunctlon

It follows from the above mentioned companson, that the present author’s
spin operator method is mathematically easier to treate than Pratt’s method being
simpler and more homogeneous.

. Finally, the projection oporator_method [5] is to be mentioned as well. The
essence of this is to give the eigenfunction of an operator when the eigenvalues are
known. Par-Olov Lowdin has given a spin projection operator which, when operating
‘on a determinant built up from spin orbitals of N antisymmetric particles with a
half spin, such as electrons or nucleons, selects a state of multiplicity (2/+ 1) This
operator has the following form: :

ket S2—k(k+1)
@+H0 = _
' ~O ]k] Id+D)—kk+1)’

where § denotes the spin operator. Measuring the spin in units of %:

(10)

N N N’ : 1
I_T’ -7—1, —2——2,...,0.or 5
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depending on whether N is even or odd; the smallest and the largest values of &

are the minimum and maximum values of the resulting spins',‘ respectively. _
On giving the Slater-determinants built up from 2N spin orbltals with elgenvalue

.S,=0, Lowdin introduced the following quantities: . .

= {oor... | ﬁ}, _ .
T, = -{(ﬂaa.:.)+(aﬁa'...)+_.. l@BB..)+ (BB ..)+ ...} o
To = (BB )+ (Bof )+ ... [@of . )+ (@fe. )6} (A1) -

Ty = {ﬂﬁ...ﬂ}exa...a}.

Ty is ev1dently the original Slater determinant, havmg ‘N columns with spin «a
and spin B respectively, and T is the sum of all the different determinants obtained
from the k 1nterchanges of the spin functions between the two originally given
orbital 4 and B, in all possible order. Hence, T} is a product of two. factors, -

each of which .is containing [ Z] terms and T ‘consists, therefore, of a sum of

'n)2 “
(k] determinants. .
Then Lowdin has proved among others that in case of smglets the followmg,

relatlon is valid: _
' 10T, = C© 2(-1)*() Ty 1)

On the basis- of operator (12) it can be veriﬁed that for singlets Lowdin’s operator

. and Pratt’s operator, given under (3), are identical up to a constant factor. Therefore,
the effect of the step-up and step-down operators (S 2 S7) on the T, introduced
aboye should be investigated. g operator reverses in the Slater determinant all the
o spms into” B spms and S7 operator reverses in the Slater determinant all the
B spins into o spins, and so (Sz SF) T, gives the sum of all the different deter-
_ minants obtained by an interchange of the spin functions between the two originaly
given groups- 4 and B of the orbitals, in all p0551ble order. But thls is just.the
way 13 ‘was introduced, therefore, . .

(SA SPTo=T, = 12T1 _ . , (13)

When (S; Si) operates on T;, we obtain, before the hne as well as after
terms. which contain two B and two o spins respectively, in all possible order.
Of these terms, however, due to the structure of T; two are equlvalcnt before.
the line as well as after, therefore, .

- (S1S§) Ty = 2T, 1
Quite similarly ' ' ' ‘ , o
: (SIS Ty = k2T . N (F))
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From (13), (14), -and (15)

-1

I ='17(SZS§)T0 (16)

1 1
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Let us substitute (18) for (12)
' | © - (N7 0 - k 1 O+
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Comparing (19) with (12) — as k=M — we can verify that for constructing
singlets Lowdin’s and Pratt’s operators are. with the exception of a constant
factor identical.

Since Lowdin’s spin projection operator is suitable for constructmg the eigen-
functions of all the muitiplet states, and for singlets, it agrees with the simplest
form of Pratt’s operator, it can be laid down as a fact that Pratt by generalizing
his operator, makes it rather complicated. .
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n-electron (n=4, 6, 8) quintets, septets and nonets were constructed as S? eigenfunctions
" by the method of spin operators.

Introduction

In previous papers [1—3] on the basis of the branching diagram a spin operator
-was constructed which, when operating on the eigenfunctions of the total S, spin
operator,. creates the eigenfunctions of the total S® operator.

The branching diagram has the form:

and the formula of the operator is as follows: -

X —Xp+Xg— ... Xoyo 1~ Xop+1 ')1/2><

0X1X2X3~~-X2"-‘X2"=[' X1~ Xp+X3— ...+ Xop_1+1
\ , e F Xy

>([xl—x2+xa——...x:‘,,,_s—xg,,_2+1 ]1/2X X[ X;—Xp+1 ]1/2X
X;— X +Xg— ... Xop_3+1 x4+ 1

X1 —Xo+X5— ...+ Xgp,_1—k)!
(e =X+ x3— ...+ x5,V k!

X % (-1 (
k=0

(S)?l XgXa...Xz,.-.‘l S;;!n)k X
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(Ger—Xe+xg—.. X -3—J)!
Yy e e (5 S
x,—i)! .
X...X 2(1—'3(S;1S;2)l9
. i=0 Xp:l:
where S* and S~ mean the so-called step-up and step-down spin operators

respectively and X; the i-th part system to be umted containing Xx; electrons
with parallel o and ﬁ spins.

Similarly, in previous papers [4, 5], with the aid of the proposed operator
technique the n-electron (n=2,4, 6, 8) singlets and triplets and, in the present
paper, quintets, septets and nonets were constructed as S?% eigenfunctions.

The n-electron quintets -

Let us denote the Slater determinants descnbmg the states of n- electron systems

as follows
n=4
A = |aooa|.
n==6
B, = |eoooafl, = |aaoafal,

B; = |ooafan], B, = |aafoax],

= |afaooc|, = |faaaoa.
=8 ’
D, = |aaaooofif|, D, = |aaaoofpal,
Dy = |aaaoafaf|, D, = |eaoaffoal,
D, = |waaafaxf), D= |acaafofal|,
Dy, = oo f o], Dy = Jorar Bocoxex B,

Dy = |eaofaafal, Dy, = [ooofafoal,

Dy, = |oree B Bororoccr,
D3 = |aafaoafu,
Dy; = |aafofaoct|,
+ Dy = |afoconfu,
Dy, = |afoafooa|,
D,, = |afBoooon),
Dy = |ﬂaﬂaaaatot|,.
Dy = |Booofoorer],

Dy = |Baaacrfar],

Dy, = |aafooaafl,
Dy, = loaBaao,

Dyg = |afacooafl,

Dys = |aPocafocl,

D,y = |aBofacoe,

" Dy, = |BPocacratar],

D,, = |Baafacac|,
Dy = |Baoouerforce],
Dy = |Booaoaf].
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The relating eigenfunctions are as follows:

n=4
ot = 4.
n=2~6
. 1 e
o = Oxlngl = V_——[SB1“(Bz+Bs+B4+Bs+Bs)]§
i = OX1X2X332 V [432—(33+B4+35+Bs)]
B = Oy, x,x, B = ﬁ[3Bse(B4+Bﬁ+Be)1;
- D = Oy, x,x,Bs = Vg‘ [2B,—(B;+ By)l;.
. 1
®f = Oy, x,x,B5 = ﬁ (B;+ By).

n=2_§

V35

210 [30D1+2(D4+D7+D10+D11 +D14+D15+D18

4 @} = Oy, x,D, =

+ Dyy+ Dy +D21 +Dso+ Doy +D24 +D26) -
- 5(02+D3+D5 +Dg +D8+D9+D12 +D13+D16 +D17 +D27 +Dag)l;

V6

¢8 - 0X1X2X3D2 30 [

10D2+D +D11+D15+D19+D20+
v +D2_1+D22+D23+Dé4+D25—2(D4+_D6+D9+D10+
+Dia+Dl4+D17+D18+D26+D27)]§
1 o L
&} = Oy, .. x,Ds = 30 (25D3+2(D;+Dyy+Dy5+ D1y + Doy + Dy +Dys +

+D23+D24+D25) +D4 +D6 +D9 +D10 +D13 +D14+D17 +D18+D26+
+Dy; = 5(Dy+Dy+Dy+Dy+Dig+Dys+ Dy + Dig+Dis+ Dag + Das)l;

§4E

P} = Ox, x,x, D1 = 60 [15D4+D11+D20+D21+D22.‘*‘D23+.D24—

~ —(D;+ Dy, +D14A+ Dy5+ Dy +D_19 + Dy +Dyg)l;
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6 .
o3 = Ox,..x.Ds = %[2_0D5+2(D11+D20+D21+D22+D23+D24)+
: +D9+D10+D13+b14+D17+D18+D26+D27_5(D8+D12+D16+D28)_
—4(Dy+ Dg)—-3(D, + D5+ Dyp+ D25)];
) ) .
q>g = Oxl...sts = '26[16D6+2(D11+D20+D21+D22+D23+D24)+D10+
+D14+D18+D26 4(D4+D9+D13+D1.+D27) 3(D'+D1a+D19+D25)]a
g _ _)2 : :
D7 = Ox, 1.3, 07 = 3 [3D;+4Dgy+ Doy + Dy; — (D11 + D15+ Dyg +

+ Dyy+Dyy +Dy5)];

Yo

&3 = Oy, x,Ds = 60 [15Dg+2(Dgy+ Dgp+Diy3) + D13+ Dy +

+ Dy5+ D17+ Dyg+ Dyg+ Do+ Do+ Doy — 5(Dyp + Dig+
-+ Dyy) - 3(D;+Dy+Dy) — Z(Du +Dyg+ Dyy)l;

V

: 15
= OXAI.‘.X5D9 [12D9+2(D21+022+D23)+D14+D15+D18+
+_D19+D25+D26—4(D13+Dl7 +D27)_3(D7+D10)_Z(Di+D20+D24)];
. 1 .
ng = OXI...stlo = 12 [9D10+2(D21+D22+D23)+D15+D19+

+D25_3(D7+D11+D14+D18+D20+D24+D26)];

: V3
% = 0X1x2st11 = 3 [2(D11+D22)—(D2q+D21+D23+D24)] 5
8, = V— 10
Pl = Oy, .. x, D12 = [ D12+2D22—5(D16+D28) (Dg1+Dy3)—

- 2(D11+D13+D14+D15)+D17 +D18+D19+D20+D24+D25+D26+D27]’

/3

Yy = Oy, .. x, D13 = _60—[8D13+D18 +Dyg+Dyy+2Dgs + Doy + Doz +

+Dyg—4(Dyy+Dy;) —2(Dyy + Dy +Di5)— (Dgy + Do)l -
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V2

‘pi; = Oxl..;x5D14 = 12

[6D14+ D1+ Dyy+2Dg0+ Doy + Dos —
—3(D1s+Dsg)—2 (Du + D15 — Dy + Dy3)};
M 1 R . . .
@gs = OXI...'Xles = 'g [4D15+Dyy+2Dyy+ Doy —

-2 (Du +D1g+Dys)— (021+Dgs)] >

@Y = Oy, .. x,Dis = —3()—[5D16+D23+D24 + D5+ Dy +

‘ _+D27 — 5Dy - (D17 +D1g+ Dy +VD20 f*'Dzl)]Q

@;7 = 0X1...X'5,D17 = W[4D17+D23+D24+D‘25_+D26_

- Dy; —(Dy3+Dig+ Doy +D21)] 5
V6 '

L2 = _Oxl...stxs = T2

[3Dy;+ Dy '_*‘D24 +Dy; f_Dzs —(D19+Dz+Dy));
‘qsls = Oy,. . xsD1s = —6—[2D19+D23+D24_(D20+D2;+D25)];

. 1 -
sbgo = Oxl...x5D20 =5 [D2g+ Doy —(Dyy +Dsy)].
: 2 o

The n-electron septets:
.Let us denote the Slater determinants describing the states of n-electron systems
as follows: - ' oL C : . '
' ' "n=26
G = |aaxaaoo
n=3
K, = joooaoaaf], K, = |oocaxefal,
K, = |aooaafoc), K, = |acoufooc|,

K; = |axafonaa|, K;= |aafoocoa,

K, = |aBocacan|, Kg = |Baaooooa].
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The relating eigenfunctions are as follows:-

n=26
vé=¢G
n=28 .
: VTa ' -
¥ =0Ox,x. K = 2_8[7K1_(K2+ K;+ K4+ Ks'f‘ Ks+ K7+ K3l
Y8 = Ox,x,x, Kz = TZ_[6K2_(K3+ Ko+ K5+ K+ K+ Kyl -

: 30 :
¥ = 0X1X2X3K3 = VT;’ [5K;—(Ky+ Ks+ Ko+ Ko+ Kl

V5

¥} = Oxyxox, Ko = 75 [4Ka— (Kot Kot Kot Kl

/3

‘ Y3 .
‘P?, = 0X1XsXaK5 = ‘6‘[3K5*(K6+ K+ KS)];

Tg = OxlxzxsKe = ? (K7'+ Ks)];
. V2
51/573 = 0X1X2X3K7 = T (K7“ Ks)-

The n-electron nonet:

Let us denote the Slater determinant describing the state of r-electron system .
as follows: '
/ n=2_8
L = |oooocotororee].

The relating eigerifunction is as follows:-

w=L



n-ELECTRON QUINTETS, SEPTETS AND NONETS AS $2EIGENFUNCTIONS 223

References

"[1] Berencz, F., R. Pauncz: Proc. Phys. Soc. 71, 145 (1958).

[2]-Berencz, F.: Proc. Phys. Soc. 71, 152 (1958) !

[3] Berencz, F.: MTA III Oszt. Kozl (Proceedings of Class III of the Hungarlan Academy of
Sciences.) 8, 437 (1958).

[4] Beérencz, F.: Acta Phys et Chem. Szeged 20, 277 (1974).

[5]1 Berencz, F.: Acta Phys. et Chem. Szeged 21, 4 (1975).
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