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Based on the paper of BUD6 and KETSKEMETY we derived a general equation which describes 
the shape of the fluorescence spectrum of multi-component solutions as a function of the emission-, 
absorption- and quantum yield spectrum of each component. Both radiative and non-radiative 
excitation energy transfers were taken into account. This equation is discussed for the cases of 
one-, two- and three-component solutions. 

The problem of excitation energy transfer in luminescent multi-component 
solutions appears frequently in the literature. In many cases [1—7] considerable 
enhancement of the generated energy of dye lasers could be achieved by applying 
multicomponent systems. Recent experiments [8] threw light onto the excitation 
energy migration in the phycoerythrin — phycocyanin — chlorophyll a system 
of plant chloroplasts. More detailed chromatographic investigations revealed that 
some dyes, widely applied to luminescence investigations are, in fact, mixtures of 
several components. Thus, the problem of luminescence of multi-component solutions 
can be regarded as a theoretical and experimental topic [9—12]. 

Radiative energy transfer in multi-component solutions 

The general equations which describe the shape of the fluorescence spectrum 
of a two- and three-component solution was given in our previous papers [9—11]. 
These expressions take into account the influence of reabsorption and secondary 
emission on the shape of the spectrum but neglect the contribution of higher order 
emissions as small one. Quite recently we demonstrated [12] that emission of at 
least third order should be additionally taken into account to obtain satisfactory 
agreement with certain experimental data. 

These expressions can be generalized for arbitrary number of components 
under the same assumptions and formalism as given elsewhere [9, 13]. Let us assume 
that the luminescence of an «-component solution will be excited by a parallel light-
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beam with a cross-section of R2n, perpendicular to the front face of the sample. 
The luminescence light will be reversely directed starting from the centre of the 
excitation region. Its crosssection is small as compared to R2n and, thus, when 
computing the intensity of the fluorescence we can limit ourselves to the direct 
neighbourhood of the straight line which passes through the central point of the 

excitation region. In this case the illuminated part of the solution forms a cylinder 
(base radius R and height=the thickness of the sample —/) whose axis coincides 
with the z-axis of the coordinate system Oxyz (Fig. 1). The exciting light which, 
enters the solution has an intensity of Ex at the front (z=0) of the sample. From 
this light available an arbitrary elementary volume dV at deepth z absorbs in each 
second the amount of quanta 

Exk(X)e-«x)zdV, (1) 
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where k(A) is the absorption coefficient of the solution at this wavelength (A). If no 
chemical reactions occur in the solution then we can assume [12] that 

k(>.) = 2 ki('-), (2) 
¡=1 

where kt(k) denote the absorption coefficient of each component. Let us denote the 
normalized true fluorescence quantum-spectrum of the successive components and 
their effective quantum yield* with ./¡(A) and ^¡(A) respectively, then the magnitude 
and spectral distribution of the first order photoluminescence quantum flux (depending 
on wavelength A') which is emitted from the volume element dVx can be described 
by the following expression: 

rf>p(A, A', z t) = E>e-k^k(>) 2 n ' m m dVr dk' = 
1 = 1 

= E , e - ^ k ( ) ) 2 Pud dK dl' 
¡=1 

where 
piM,i') = r1[{i)fM'). 

The number of quanta emitted by first order photoluminescence, B(k, k')pdk' in 
unit time and from unit area in unitary solid andle and, in the range (A', k'+dk'), 
can be obtained by integrating expression (3) along the whole thickness of the sample. 
Taking into account the reabsorption of the emitted quanta inside the cuvette we 
obtain: 

B{k, k% dk' = f e-W)+k}^k(k) 2 Pud >') dz1 dk' = 

( 5 ) 

= C(k,;.') 2 Pud >') dk', 
i = l 

where Q is a coefficient which' takes into account the radiation losses caused by the 
partial reflection from the front wall of the cuvette, n is the refractive index of the 
solution, and C(A, A') is defined as 

where a=k(k)-l and ¡}=k(k')-l. Similarly, the magnitude and the spectral distri-
bution of the second order emission from the element dVl (appearing as a result 

(3) 

(4) 

* Effective qunatum yield ti',(X) means the ratio of the number of quanta if emitted from element 
dV by the i-th component to the number of quanta absorbed in this element by all components of 
the solution from the light at wavelength A. 
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of radiative excitation energy transfer to this element from the other part of the 
excitation region) can be described by the following expression 

;/, Zl) = J f Exe-«»**k(X) 2Putt, 
X' Vn 

%Pj№", AOdVzdrdVtdV. 
47TS j=1 

Since 

(7) 

2 Putt, n • 2 Pjjtt", n = 2 Pijtt, >')Pjitt", n , (8) 
¡ = 1 J=1 ¡,7 = 1 

we may write 
d> s (A, A', z,) = 

n f -p-HX")s-HH)z 2 -, 

2 [ W JPjitt", nktt") 4ns2 ¿M^'] ¿K dk'. 
(9) 

The intensity and the spectral distribution of the second order emission B(X, A')s 
can be obtained by integration (as for B{X, X')p) 

Bstt, AO = - ¿ ~ i E,kV) . 2 [Pijtt, A') J Pjitt-", H f e - ^ k ( r ) X 

(10) 

X / ' dv*dX"\ dzi = WSjitt'), 

where SJt denotes 
i l J (U(}"\ » p-k(.À")s-k(X)z2 \ 1 

= / ^ W ) J± -—dV^dz^dX". (11) 

Eq. (11) is identical with Eq. (11) from our previous paper [13]. Introducing the 
following.notation 

we obtain 

X'J in (12) 

Bs(X,;/) = C(X,;/) 2 Putt, (13) 
¡ ,7=1 

Inserting Eq. (4) to Eq. (13) we may write 

BS(X,).') = c(X,;/) 2 mtt)Xijfjtt'). (14) 
'",7=1 

On the basis of Eqs. (16), (17), (19) and (26) from the paper [13] we can easily prove 
that: 

*,j = J t i ' j t t ' V i t t l M i n d X " . (15) 
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The function M(X") is given by 

.. (16) 
+ 2 [ l - e - c + « ] [ x ( g ' + y) + e~P}l/(a' y) + e~*il'(P, y)l 

where y = /c(A")/, m = R/l and 
2 3 

£,(*) = 0.5772 + + 

Hx,y) = ^ - l G ( - y ) - G { - y + x)], (17) 

x(x,y) = L[G(-y)-G(-y-x)]. 

G(x) is def ined as G(x)=Ej(x) — In |x| . 
A presice computation of the spectral distribution and the intensity of the third 

order emission of a multi-component solution is connected with great difficulties. 
According to BUD6 and KETSKEMETY [13] this can be done by assuming that the 
ratio of emission intensity of the (m+1) th order of the k\h component (excited 
by the radiative energy transfer of the mth order emission of the j'th component) 
is independent of m and this ratio is equal to the ratio of the primary and secondary 
emission intensities in the same system. Comparing Eqs. (5) and (14) it can be seen 
that this assumption is equivalent with the premise that Eq. (15) not only describes 
the energy transfer to secondary emission but also the energy transfer to higher order 
emissions. Thus, according to Eq. (14) for third order emission we may write 

A') = C(A, A') 2 t l iW*i jXj k f k W). (18) 
i,j,k=l 

The shape of the fluorescence spectrum, 2?(A, A'), of an «-component solution taking 
into account first, second and third order emissions can be given as a sum of Eqs. 
(5), (15) and (18) 

B{k, A') - C(A, A') 2 Wid) + 21jW*ji + 2 l'k(QxkJXjiW)- (19) 
;=i j=i m=i 

By applying this procedure subsequently we could easily find the approximate 
expressions which takes into account the contributions of the emission of arbitrary 
order to the fluorescence spectrum of a solution of arbitrary number of components. 
From Eq. (19) we can see that the successive terms with xu form in the expression 
of B (A, A') a decreasing geometrical progression with a quotient of Therefore, 
we can write another expression for B (A, A') which is a better approximation of the 
real luminescence spectrum for multicomponent solutions than Eq. (19) 

B(A, A') - C(A, A') 2 Ir^—1> W + 2 1j№y-ji + 2 n:(A) Xkj Xjh(A')- (20) 
i = l ii j = 1 . j,k = l J 

OVO U=fc=>./V0 
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Introducing the terms of non-radiative energy transfer into, the theory 
of radiative transfer 

In the case of a solution in which the emission spectra of the acceptors does 
not overlap with the absorption spectra of the donors according to Eq. (16), all 
values %ij for i-s-j vanish and then Eq. (20) becomes: 

B{X, A') - C(A, A') ¿ f — L - ^ ; ( A ) + ¿ njO-)Xji+ 2 (21) 
¡=1 LI /-a j=i j,k=l J 

o-=o a, «=-=<) 

Under these conditions we apply the definition of the effective quantum yield and 
denote the transition probability of the z'th component molecule to the electronic 
excited state by t]f(X), and so we obtain the following expressions 

= + - (22) 

" , Í ( A ) = W)[fca(A)^(A)K3+kl())nU?){KkK"+Kl2Ki3Ki)+ki(;l)n*Ko-3Ks]' 

The constants K¡ and Kik denote the quantum yield of each component and the 
yield of noñ-radiative excitation energy transfer between the ith and &th component. 
We can easily see that for the effective quantum yield of the /th component the 
following equation holds 

fí(¿) = ¿ kj(A)>!+(>•) [*,,+ ¿ KJkKkr . . . . , + 

Û«') (j-zk-zi) 

+ 2 KjkKk,K,¡+...+K12K23'...• K¡-2,i-if^i-i,¡\\• 
k,l=l i ) 

(23) 

O'-ck-cl-ci) 

In the particular case of monocomponent solutions Eq. (21) can be written according 
to Eq. (25) from [13] 

B(A, A') = C(A, A'K(A) Kx ,(>/). (24) 
i—><ii 

For two-component solutions we obtain : 

B(k, A') = C(A, A') { j - ^ - r\ 'x(l)h{l ') + [ j ^ - ^ ( ¿ ) + * 1 2 ( l + * 2 2 ) ^ . ) ] /2(A')}. 

(25) 
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And for three-component solutions 

B{k, A') = C(A, Aoi-y-^—%(A)A(A')+ \-r^r,i(X)+x12(l + *22)r,[(X)]f2(.k') + 
1 1 X-I i L I «22 J 

+ x I s W + »<23(1 + x22 +J<33) r/'2(?.) + (x 1 3 +x 1 3 x 3 3 +x 1 2 x 2 3 + XiiXi3)f7i w j / s W j • 
33 (26) 

This equation is identical with those published previously [12]. 
Substituting Eq. (22) into Eq. (16) we obtain the following expressions for the 

Xi/s for one-, two- and three-component solutions: 

X12 = K2 Ri2+Ki2 K2 Rn, 

Xn = K3 R13+K13 Kj Rn+Ki2 K13 K3 Rn + K23 K3 R12, 

x22 = K2R22 . (27) 

x23 = K, R,3 + K23 K3 R22 

X33 = &3R33 
where 

R,J = f ^ j - r , U r ) M r ) M ( r y d r . (28) 

As seen from Eqs. (23)—(28) to the calculation of 5 (A, A') values for concrete solu-
tions, apart from the absorption-, the emission-, and the absolute quantum yield 
spectrum of each component, is is necessary to know the yield values Kt and K^. 
These yields can be computed from the expressions obtained for the non-radiative 
excitation energy transfer in multi-component solutions. To this problem, however, 
a separate paper will be devoted [14]. 

" We should emphasize that Eq. (26) was supported by our previous experimental 
data [12]. The investigations were carried out on two series of three-component 
solutions with a constant concentration of the first and third component varying 
the concentration of the second component. Yields Kt and Ku were computed f rom 
the expressions obtained by generalizing the non-radiative excitation energy transfer 
theory of BOJARSKI and DOMSTA [15] for the multi-component case. For both solu-
tion series the agreement between Eq. (26) and the experimental data was satis-
factory. 

* * * 
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ПЕРЕДАЧА ЭНЕРГИИ ВОЗБУЖДЕНИЯ В МНОГОКОМПОНЕНТНЫХ 
ЛЮМИНЕСЦЕНТНЫХ РАСТВОРАХ 

И. Кечке мети и Й. Кушба 

Основаясь на работах Б у д о и Кечкемети представлена общая формула, описывающая 
смещение спектров флуоресценции, как функция эмиссионного и абсорбционного спектров и 
квантового выхода каждого из составляющих компонентов. Приняты во внимание как излу-
чателъные, так и безызлучательные передачи энергии возбуждения. Представленное урав-
нение рассмотрено для одно-, двух- и трехкомпонентных растворов. 


