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Initiated by the need to produce quartz-free bentonite as a filler substance for machine greases, 
the mathematical model of a continuously-operating settling apparatus has been elaborated, together 
with a computer programme to evaluate experimental data and compare them with the theoretical 
ones. Though the experimental flow pattern deviates to various extents from the ideal laminar 
flow used in the theoretical approach, the granulometric curves measured and computed on the 
product agree fairly well. The method described can be used for modelling and optimization of 
continuous settlers. 

Bentonite is one of the most frequently occurring clay minerals; it is widely used 
in both its original and its modified, organophilic form in many fields of industry 
(food, textile, pharmaceutical, varnish and paint industries). Its role in oil production 
is gaining in importance, particularly in deep drilling. 

Our task was to investigate the experimental possibilities of producing quartz-
free bentonite as a filler for the production of machine greases by settling. 

The experiments were carried out in a continuously-operating settling apparatus. 
The settling was desired to produce a fraction with radius under 2 ¡um which, as has 
been shown in separate experiments, is free of quartz. For the evaluation of the 
experimental data and the mathematical modelling of the apparatus a simplified 
model of the settling process was considered. 

Principle of calculation 

Let it be supposed that a liquid containing solid particles is flowing laminarly 
as a layer of thickness L on top of a static bulk liquid, as shown in Fig. 1. Within 
the layer the linear rate of flow decreases from its maximum value v(L) = vmax at L 
to v(0)=0 at L=0; accordingly, the path of a solid particle entering the continuous 
settler at (h=0, l=L) will be a parabola as long as the settling takes place in the 
moving medium, and a straight line, normal to the direction of flow, in the static 
bulk. If the overflow is taken only from the moving layer, a residence time t*(r) 
can be defined for every particle with radius r by 
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where vscd is the rate of sedimentation, characterized by the following property: 
if the settling time t as determined by the applied input flow rate and the size of the 
settling apparatus is equal to or greater than t*(r), i.e. tst*(r), then the particle 
will settle; otherwise it leaves the settler in the overflowing liquid. 
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Fig. I. Sketch of the settling apparatus 

Now, in possession of the density function of the particle size distribution, 
f(r), for the original suspension and assuming ideal functioning of the settler, it 
would be a very simple task to find the particle size distribution of the suspension 
in the overflowing liquid and that remaining in the settler as well, it can easily be 
shown that, taking the mean residence time ï of the flow 

where H is the length, 
a is the width of the settler and 
w is the volumetric flow rate, 

a sedimentation rate vseA{r) and hence a particle radius r may be obtained via equ. 
(1). Particles having radii equal to or greater than r will settle, while the others will 
leave the settler. In non-interacting suspensions the rate of sedimentation vsei(r) 
is described best by Stokes' law [1]. 

Unfortunately, the density function of the residence time of flow in real settling 
apparatus, £ ( / ) , deviates to various extents from that valid for ideal laminar condi-
tions because the actual flow pattern is never free of small backward currents: 

£(/) * £(/),„ = ^ (/ ë t0) 

where l0 = — i s the time necessary to reach the end of the settler with the maximum 
m̂ax 

flow rate. Additionally, the input and output of the suspension correspond only ap-
proximately to the conditions set at the beginning. To overcome this difficulty the 
distribution of the residence time should be determined empirically. However, this 
semiempirical approach becomes so complicated that actual calculations have to 
be carried out using a computer. 
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Experiments and calculations 

The experiments and calculations were performed according to the scheme shown 
in Fig. 2. 

Fig. 2. Flow sheet 

The flow-sheet contains the segments of the computer programme (Bl, B2, 
B3, B4), the blocks of the input data (II, 12,13) and the symbolic blocks of the experi-
mental methods (Ml, M2). 

As may be seen from the Figure, the experimental work consisted of two steps: 
analysis of the particle size distribution of the suspension fed into and leaving the 
apparatus, and the fluid mechanical description of the apparatus. 

The granulometric curves (Yg(r)) of the suspensions (11, 13) were measured 
by means of Andreasen's static settling apparatus (Ml) [2]. In block Bl the particle 
size distribution is calculated from the granulometric curves by the equation: 

Y(r)= 1-Yg(r). 

The density function of the particle size distribution according to mass,/(r) , is deter-
mined by numerical derivation, applying the Douglass—Avakian method [3]. (The 
Douglass—Avakian procedure fits a fourth-degree polynomial to seven points 
of a curve by the method of least squares and takes the derivative analytically.) 

The fluid mechanical study of the apparatus comprised the other part , of the 
experimental work. By measuring the residence time of the fluid flow, it was possible 
to determine empirically how closely the flow pattern in the apparatus approaches 
ideal laminar flow. For this purpose the impulse method was the most suitable (M2). 
Briefly, an aqueous solution of an appropriate dye (in our case erioglaucin A) is 
injected into the liquid at the place of input (the amount was M g), and the concent-
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ration of the dye, c(f), is measured in the overflowing fluid (12). In segment B2 of 
the computer programme the calculation of the density function of the residence 
time distribution, £(/) , is carried out according to the formula: 

£ ( , ) S J ? L c ( 0 . 

The residence time distribution function, G(t), is calculated by numerical integration 
according to the trapezoidal rule [3] : 

r 
G ( / ) = f E(x)dx. 

'o 
The mean residence time, t, can also be calculated by numerical integration, applying 
Simpson's rule [3] : 

t = f xE(x) dx. 
<0 

By definition the average thickness of flow is calculated from equ. (2) using t: 

The time t*(r) necessary for particles with a radius between r and r+dr to settle 
with a sedimentation rate vsci in the moving layer can be calculated by means of 
Stokes' law: 

= Ln__ 
2r2(es-Qf)g 

where Qs is the density of the suspended solid particles, 
Qf is the density of the dispersion medium, 
g is the gravitational constant, 
r\ is the coefficient of internal friction of the medium. 

In block B3, which is of key importance in the computer programme, the expec-
ted particle size distribution in the suspension leaving the apparatus is calculated. 

The particles remaining in the flowing layer for time t, which is less than that 
needed to pass the distance L (i.e. t<t*), will get into the fine fraction (product), 
their mass ratio* in it being G(t*) •/(r)dr. To obtain the total mass ratio in the 
overflow, this function has to be integrated numerically in some interval (0, rmax): 

rmax 

Q = f G(t\r)).f(r)dr. 
0 

The particles having an actual residence time t ^ t * will leave the moving layer 
and settle in the static bulk liquid filling part of the settling channel. To get as good 
a value as possible for G(/*(r)) at every point t*, G{t*(r)) is calculated most suitably 
by quadratic interpolation. 

* The mass of suspension in unit mass of feed, both on a water-free basis. 
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The density function of the particle size distribution in the suspension leaving 
the settler, q>(r), is determined by the relative mass of the fraction with particle 
sizes between r and r + dr: 

An analogous calculation can be used for the determination of the particle 
size distribution for the suspension remaining in the apparatus. 

The numerical integration of cp(r) (e.g. using the trapezoidal rule) provides 
the particle size distribution function of the product: 

r 

J > ( r ) = / « P ( T ) D T . 
0 

The granulometric curve is computed from: 

= l-<P(r) . 

In the last segments of the computer programme, B4 and 13, the measured and 
calculated particle size distributions and the granulometric curves of the product 
are compared. 

Fig. 3. Granulometric curves 
of the suspension fed into and leaving the settler 

A A — : suspension fed in 
suspensions settled with various volumetric flow rates: 

V V — : w=4.66-10~6 m3 s~ l 

• — • — : w=3.16-10-" m3 s"1 

O O — : w = 1.08• I0 - 6 m3 s - 1 
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Experimental results and their discussion 

The experimental results are listed in Table I. It is seen from the accumulations 
in the settler at various flow rates that optimum separation could be achieved at the 
lowest input flow rate. The quality of fractionation is illustrated far more impressively 
in Fig. 3, where the granulometric curves of the product obtained at various flow 
rates are shown. In this fraction no quartz could be detected by A'-ray or optical 
methods. 

Fig. 4. Granulometric curves (results of the computerized approximation) 
w=1.08-10"6 m3 s - 1 

O O — : suspension fed in 
• — • — : calculated 
X X — : measured 

Figure 4 shows the results of the computerized approximation. The measured 
and calculated granulometric curves do not entirely coincide. This can be explained 
by the fact that the thickness of flow, L, as calculated from the mean residence time, 
i, is an average value. In the calculation of the settling times t* pertaining to the 
radii r of individual particles, this value was taken as the sedimentation height. As 
mentioned earlier, this is an idealized picture from which the true flow pattern in 
the apparatus shows considerable deviations. Nevertheless, the computerized ap-
proach is still statisfactory and can be used for the description of the settling process 
in a given apparatus. . 

The principle of calculation and the computer programme outlined above can 
be used for modelling similar settling problems, in the planning of settling apparatus, 
and for the optimization of the operational parameters of existing apparatus. 
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Table I 

Experimental data 

Volumetric flow rate [ 10—6 m3 s _ 1 ] 1.08 3.16 4.66 

Mean residence time [s] 402.3 353.1 187.9 

Mean thickness of flow [10~2-m] 0.218 0.555 0.384 

Reynolds number 42.34 116.2 175.0 

Solid content of the suspension in the feed 
[lO"4 kg m- 3 ] 1.006 1.006 0.926 

Solid content of the suspension leaving the 
apparatus [ 1 0 _ 4 k g m _ 3 ] 0.766 0.826 0.805 

Accumulation [10 - 4 kg ni - 3 ] 0.240 0.180 0.121 

Mass ratio leaving the apparatus [%] 76.1 82.1 86.9 
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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ 
ОСАДИТЕЛЬНОГО ОБОРУДОВАНИЯ НЕПРЕРЫВНОГО ДЕЙСТВИЯ 

Ш. Катона и П. Фейеш 

Цель работы заключалась в получении суспензии бентонита без кварца, которая может 
использоваться в качестве наполнителя смазки. Разработана математическая модель неп-
рерывного осадительного оборудования. Оценка результатов измерений, а так же их сравнение 
с рассчитанными данными были нроведены на ЭВМ. Хотя экспериментально определенный 
характер потока различается более или менее от теоретически иредпологаемого ламинарьного 
потока, измеренные и рассчитанные гранулометрические составы продукта довольно сходны. 
Описанный метод может использоваться для моделирования и оптимализациия непрерывних 
осадительных оборудований. 


