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The potential energy curves appropriate for rare gas atoms have been analysed. Relative merits
of these curves (in particular Morse hybrid potential functions) have been tested by calculating the
values of the vibrational energy eigenvalue differences and comparing them with the experi-
mental ones. Reliable estimates of the function parameters have been collected and compared with
those obtained from molecular beam experiments.

Introduction

Knowledge of intermolecular forces is necessary for an understanding of many
of the physical properties of rare gas systems. A number of recent studies, both
theoretical and experimental, have contributed to this knowledge. The calculation
of potential energy curves can in principle be accomplished by means of quantum
mechanical calculations, However, computational difficulties prevent these curves
from being calculated routinely for rare gas molecules. The short-range repulsive
portion of these curves has been obtained from either Self-Consistent-Field or
Thomas-Fermi-Dirac calculatios. In addition, the long-range attractive portion
of these curves is known to have the form — Cgr—¢— Cgr=8— C,,r 720 [1]. In the last
few years approximate theoretical calculations of the short-range repulsions [2-5]
and accurate estimates for the Cq, C3 and C,, coefficients for a variety of pairwise
interactions of rare gas atoms have been reported [6-8]. Other advances have in-
creased our knowledge of rare gas interactions. Potential energy curves have been
obtained from ab initio calculations based on an electron gas model [9]. Also, ab initio
potential curves for He, have been obtained [10-12]. The vacuum ultraviolet ab-
sorption spectra have been reported for a variety of rare gas systems [13, 38].
Molecular beam experiments have been carried out and the results have been analysed
to obtain the potential energy curves of a number of combinations of rare gas atoms
[34, 36, 37]. Other workers have produced semi-empirical potential functlons by
fitting a model potential form to experimental data.

* On leave from the Institute of Physics, Technical Uhiversity of Lodz, Wolczanska 219,
93—005 Lodz, Poland. -
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The primary difficulty with such semi-empirical schemes is in the choice of the
potential function model.

In this paper we analyse the potential energy curves appropriate for the rare gas
atoms. Relative merits of these curves have been tested by calculating the values of
the vibrational energy eigenvalue differences and comparing them with the experi-
mental values. Reliable estimates of the function parameters have been collected
and compared with those obtained from molecular beam experiments.

Potential energy functions appropriate for rare gas atoms

The Lennard-Jones (12-6) potential has been widely used in the study of inter-
molecular forces [13-15]. This potential has the form:

wo-a[(&") K

Here ¢ and § are parameters which represent an energy and a length which is
characteristic of the system under consideration. This potential was widely used
previously because of its simple analytic form, but has since been considered too
inflexible- to reproduce of dilute gas properties [17-21], therefore, some attempts
to evaluate low density equilibrium and transport data have been directed towards
finding more flexible functions [19]. Notable, among these are the Kihara poten-

tial [22]: b .
o=l (2] =

= oo r = 2a.

In Eq. 2 a third parameter “a” is added to represent the molecular core size, the
Guggenheim—Mc Glasham potential [23], which introduces additional anharmonic
terms in the neighbourhood of the potential minimum in order to explain solid
properties, the formulation of Boys and SHAvIT [24] which expands the potential
in a complete set of Gaussian function, and the potential functions of DYMOND,
RiGBY and SmiTH [25] which represent the intermolecular energy by two-parameter
in five terms, inverse power expression: :

28 24 18 8 6
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where r,, is the intermolecular separation at the minimum energy —e. The attractive
term in r~2 has no theoretical basis but was found necessary to give a broad bowl
to the potential function to fit experimental data. This potential gave a sound
treatment of second virial coefficients and gave the correct lattice energies when
used in conjunction with AXILROD’s nonparwise corrections [26]. It also gave satis-
factory agreement when applied to the calculation of third virial coefficients [25].



INTERMOLECULAR POTENTIAL FUNCTIONS FOR NONPOLAR MOLECULES 11

BUCKINGHAM [16,17] and BUCKINGHAM-CORNER [27] have proposed three-
parameter potential functions. These potentials are respectively given by:

U(r) = g[o/(x—6)]{(6/o) exp [ (1 —rra )] — ffnr‘“} . @)

0e) = e Hoxp [2(1-L)] - et (22 =)' [1+5 (2 ]]},‘rérm.(S)

U(r)—e{gl(a,ﬁ)expoz(l——] ~&:(c, ﬁ)( ] [1+ﬁ[ )Zlexp4[l—%]3}.

=y

g1(% B) = (6+ 8p)/[a(1 + ) —(6+8p)],
g2(% B) = ofla(1+5)—(6+8p)),

where o is the parameter which is a measure of the steepness of the exponential
repulsion. The parameters «, 8, ¢, r,, have been determined from the crystal data,
second virial and the Joule-Thomson coefficient data. (The function of Eq. (4),
in fact, is that -portion of the modified Buckingham (exp—6) potential which is
defined for r=r,,,. Here r,,, is the position of the spurious maximum in the poten-
tial due to the unrealistic importance of the r~¢term for small r; r,,, is the smallest
root of expa(l —r; Foa)] =Fmrmac [28]).

The success and failures of three-parameter potentlal functions are well known
[29]. They have the advantage of their flexibility -but two limitations, in particular,
restrict their use for the predlctlon of data [30]. On the basis of the data available
at this t1me one finds:

1. For any property, a set of parameters used to fit the data taken in a given tem-
perature range cannot be relied upon to predict this property correctly in another
temperature range.

2. A set of parameters used to fit one kind of property (e.g. viscosity) cannot be
relied upon to predict correctly data for another property (e.g. second virial
coefficient).

Furthermore parameters chosen with a model function do not always agree with

values obtained from direct independent information such as the results of scattering

experiments. Several authors have tried to remove the limitations of the three-para-

meters functions by proposing more elaborate potentials.

: Successful examples are the semitheoratical Barker potential [31] and the
m-6-8 potential based Barker one [30].

Barker function has the form:

U6) = sfexpla(l =) 3 A1~ 3 o627}, ©

Here r=R/R,,, where R is the internuclear distance, R,, is the separation between
atoms which corresponds to the minimum of the potential well, and & is the value
of the potential at its minimum. The Cg, C; and C,, coefficients are set equal to
their calculated values. The remaining parameters are used to fit the function to
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second virial coefficient data, molecular beam scattering measurements and low-

" pressure gas transport properties. The resulting potentials afford excellent agreement
with a variety of experimental results other than those used in fixing their parameters.
However, the method is limited by the large amount of experimental data which is
needed.

‘ Other semi-empirical schemes have been proposed by BERNSTEIN and MORSE [32],
BrucH and Mc GEk [33] and KoNnowaLow and ZAKHEIM [1]. These workers used
a Morse function of the form:

U(r) = 4e(y*—y), @)

-

Here J is the value of the separation of the nuclet such that U(r)=0.

LEE [34] has proposed a hybrid potential function which he has fit to molecular
beam scattering data. This potential is called the exponential-spline-Morse-spline-
van der Waals (ESMSV) potential and has the following form:

Sx) =U@)e, x=rlry,..
f(x) = Adexp[—a(x—1)}, 0=x=x,.
f(x) = exp (al +(x—xy) {02 +(x—x5)[az+ (x— xl)a4]}),

exponential spline function, x; =x=x,.

S = b+ (x—x) {bo+ (x—x)[bs+ (x—x)b}, @®
spine function, x; = x =Xx,.
FO) = —Cor 8 —Cer=8—Cpor™1, x, = x = . '

This potential gives good results for Ne, when compared with experimental data
other than the solid state measurements from which its parameters were deduced [35].
For the heavier rare gas systems, instead of ESMSV potential, Morse-spline-van der
Waals (MSV) potential {36, 38] was used. This potential has the form [36]:

S = U@, |
) =exp[-28(x—D]—2exp[-B(x—1)], 0=x = x,.
S(x) = by+(x = x){ba + (x — X2) b+ (x — x1) bal},s ®
spline function, x, =x=x,.
f(x) = —cex P —csx7¥8—1ox7 1, xp =X = oo, -
where ¢;=C;feri,.

~ Other workers have reported potential functions which are constructed from
a Morse function, a long-range tail function, and an interpolating polynomial to
join the two segments [5, 28]. KonowALOwW and ZAKHEIM [1] have reported Morse-6
hybrid potentials. Their potentials were constructed from three parts: 1) A short-
range term of the form U(r)=Aexp(—4ir), 2) a long-range dipole-dipole dis-
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persion attraction U(r) = —Cgr™%, where the C; coefficients are obtained from
_highly accurate semiempirical estimates; 3) A Morse function of the form:

Ur) = s{exp [— 5 r— ,,,)] 2exp[ (r——r,,,)]} (10)‘

which is used to connect the long and short-range segments.

‘Récently, KONOWALOW and co-workers described a modification of their
procedure [41]. The term — Cgr—® 'is replaced by — Cygr=¢— Cgr~8—Cyor2°, which.
is a more accurate representation of the long-range behaviour. The parameters
A, A, Cs, Cy -and C,, are available from theoretical calculations [3-8). The other
parameters: g, ¢, or r,, and q,, where g, is the contact point between the Morse
function and the long-range portion of the curve, are obtained by fitting second
virial coefficient data. :

Experimental second virial coefficient have traditionally been used in the study
of intermolecular forces because of their ready availability and the ease at which
they can be calculated for model potentials. The virial equation state for real gases
is [14]:

~ ~ pVo = RT(1+B(T)/Vo+C(T)/V2 + )

where B and C are the second and third virial coefficients, réspectively and V, is
the molar volume. It is shown from statistical mechanics [14] that

B(T) = Ba(D)+ 2 5,1, | (11

where: .
Bo(T) = 2nN,, [ [1—exp (—~U()/kT)]dr

and

B(T) = 4:;;],3 Of (de’)] exp (—U(r)/k_T)rédr

B,(T) is the classical second virial coefficient and = By(T) is the first quantum
correction to it. Here N, is Avogadro number, k£ is Boltzman constant, 4 is
Planck constant, m is the mass of the particle and U(r) is some central field
potential function. U(r) is usually expressed in terms of a number of parameters.

In order to calculate the second virial coefficients at a given temperature 7,
the form of the potential must be specified. The potential under consideration has
the form [41]:

U@ = e{exp [fzg(r—rm)]—zexﬁ [—-g—(r—r,,,)]}, 0=r=q. (iz) |

U(r)y = —Cer 8 —Cgr 5 —Cyor™, gy =7r = oo,
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Another equivalent formula for the Morse potential is [1]:

wir= sl 1= -0l (-3}

In order to determine the parameters c, é, ¢, Cq, Cg, Gy, and g, KoNowaLOW and
co-workers applied the following procedure [41}: The Cg, Cy and C, coefficients
set equal to their theoretical value. The repulsive portion of the Morse potential
is set equal to the short-range repulsion [40] of the form: Aexp (—2r), where
A and A are obtained from quantum mechanical calculations.

Aexp (—‘Ar) = 4gexp [20 (1— %)] .

Then )
’ A = 4gexp (20) (13)
and

A= 2¢/s. : (14)

The parameter g, is found by finding the largest root of the equation:

—CGrI‘G—CSr‘s—Clor‘1°—4s {exp [2c [l —%)].— exp [c [1 —%]]} =0,

The largest root is chosen because the long-range portion of the curve is valid only
for large values of r. The parameter c¢ is varied until the minimum of the difference
between the sum of the squares of the calculated and experimental second virial
coefficient is obtained. If ¢ is obtained ¢ and § can be calculated by means of
Egs. (13) and (14). The value of r,, is found by use of the relation:

rm = (3/c)(c+In2) [42].

The parameters of the potential energy functions for nonpolar molecules were cal-
culated without using the first quantum correction [41]). Here we include the esti-
mates, where the first quantum correction was used in the calculation of the second
virial coefficient also. From these potentials vibrational energy eigenvalue differences
are calculated and are compared to experimental spectroscopic evidence [38, 39].
The function’s parameters are compared to those obtained from various recent
intramolecular potential calculations [1, 28, 30, 31, 41-58].

Empirical, semiempirical and theoretical parameters of the potential energy functions
for nonpolar molecules

Reliable estimates of the parameters potential energy curves for nonpolar
molecules are collected in Tables I-111.
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Table 1

Summary of parameters for the Lennard-Jones, Buckingham, Buckingham-Corner and Morse
potential models for rare gas atoms*

é :_g. l;s;i?igill System Parameters . gﬁ?ﬁfﬁfﬁ Ref.
& . Yo
Lennard- :
1 Jones Ne-Ne 50.113 3.16 Crystal [42]
* ] (12-6) Ar-Ar 164.698 3.87 data (CD)
Eq. (1) Kr-Kr 219.506 4.04 :
Xe-Xe 314.763 4.46
o ] £ ¥r CD, second
. - virial coef-
2. | (BoioEham| Ne-Ne 14.5 52.460 3.147 | ficient 27
| E 1’(4) Ar-Ar 14.0 170.082 3.866 (SVC) and
q. - | Kr-Kr 12.3 218.539 4.056 viscosity
) Xe-Xe 13.0 319.181 4.450 coefficient
B o g Fin
Buckingham - : .
3 | Corner Ne-Ne 0.2 13.9 51.218 3.87 CD and 17
* | (exp. 6-8) Ar-Ar 13.6 170.082 3.16 svC
1 Eq. (5) Kr-Kr 11.7 219.230 4.08
1 - Xe-Xe 12.8 324.703 . 445
c ) Frm 3
. The combina-
4 Morse Ne-Ne 5.1 2.775 3.152 60.729 tion of CD [42]
1 Eq. (D Ar-Ar 5.0 3.386 3.855 199.902 and SVC
Kr-Kr 4.5 3.510 4.038 252.224 data
Xe-Xe 49 3.872 4.420 379.234

* ¢ in units of 10-22J; § and r,, in units of 10— m,

Discussion

Table III clearly shows the effect of adding higher-order terms in the long-range
London dispersion potential. The effect of adding the Cg and then the C;, term
was to decrease the depth of the well as the additional terms were included. In
addition the value of § and r, was increased by 0.0003-0.0004 nm with the addi-
tion of the Cg term and by about 0.0001 nm with the addition of the C,, term to
the — Cgr—8%— Cygr~#8 tail. The effect of adding the Cy term to the — Cgr—° tail is more
pronounced than the addition of the C;, term to the tail which already includes the
—Cegr~8—Cgr~® term. Potentials which include the quantum corrections have
smaller ¢ values than those without this correction. The smaller ¢ value implies
that the well depth will be greater and that & and r, will be smaller for the poten-
tials with the corrections. For example, in the case of Ar, the change in the well
depth in the order of 1.38X10-23J. (Values for the depth of the ground state
potential well of Ar, and Kr, found from various intramolecular potential calcula-
tions [1, 28, 30, 31, 41-58] are summarized in Table 1V.) '



Table 11
Summary of optimal parameters for the Morse-6 hybrid potential -

No Parameters
System poten- Method of
tial ¢ lo-‘iom loi%m 10—‘;3] 101418] lololm-l 10—2%?""“8 10—1?)“1 calculation Ref.
1 2 3 4 b 8 7 8 9 10
Ne-Ne 1. 6.0444 3.1993 3.5661 70.294 5.0011 3.7785 60.3012 6.0966 | Parameters * | [1]
2 6.0472 3.2007 3.5676 69.902 5.0011 3.7785 67.2884 59697 | A4, 4, C,
3 6.0276 3.1904 3.5572 72.696 5.0011 3.7785 0 5.9924 | from SCF
4 6.0014 2.7295 3.0447 67.714 4.4204 4.3974 60.3012 4.0945 | calculations,
5 6.0020 2.7298 3.0450 67.628 4.4204 4.3994 67.2884 3.8937 | other ones
6 5.9433 2.7031 3.0183 76.059 4.4204 4.3974 0 4.0138 | from second
7 6.2574 2.6584 2.9529 73.256 7.9794 4.7075 60.3012 3.6621 | virial
8 6.2255 2.6449 2.9394 78.072 7.9794 4.7075 67.2884 3.4473 coefficient
9 6.2048 2.6361 2.9306 81.380 7.9794 | 4.7075 0 3.5371 | (SVC) data.
10 6.2015 2.6650 2.9629 72.012 6.9750 4.6541 60.3012 3.7066
i1 6.1740 2.6532 2.9511 76.076 6.9750 4.6541 67.2884 3.4873
12 6.1468 2.6415 2.9393 80.339 6.9750 4.6541 0 3.5928
13 6.1696 2.6698 2.9696 71.285 6.5151 4.6218 60.3012 3.7383
14 6.1454 2.6593 2.9593 74.823 6.5151 4.6218 67.2884 3.5173
15 6.1137 2.6456 2.9456 79.727 6.5151 4.6218 0 3.6306
Ar-Ar 1 5.8608 3.2323 -3.6146 226.2981 | 11.1522 3.6264 622.1549 4.7456
2 5.8576 3.2305 3.6128 227.7476 | 11.1522 3.6264 663.3129 4.5866
3 5.8285 3.2145 3.5967 241.4150 | 11.1522 3.6264 0 4.6740
4 5.2046 3.3343 3.7783 196.1195 2.6013 3.1219 622.1549 5.8015
5 5.2077 3.3363 3.7803 194.9046 2.6013 3.1219 663.3129 5.6602
. 6 5.1742 3.3148 3.7589 208.3925 2.6013 3.1219 0 5.7336
7 5.8037 3.4179 3.8261 209.1656 9.1958 3.3961 622.1549 5.5912
8 5.8062 3.4194 3.8276 208.1302 9.1958 3.3961 663.3129 5.4733
9 5.7746 3.4008 3.8090 221.6871 9.1958 3.3961 0 5.5318
10 5.5020 3.4814 3.9200 195.7329 4.7064 3.1608 622.1549 6.1302
11 5.5945 3.4830 3.9216 194.7389 4.7064 3.1608 663.3129 6.0122
12 5.4765 3.4653 3.9039 205.9627 4.7064 3.1608 0 6.0634
Kr-Kr | 6.1843 3.4904 3.8816 . 325.9455 | 30.6722 3.5437 | 1225.1666 5.1371
2 6.1825 3.4894 3.8806 327.1051 | 30.6722 3.5437 | 1340.0260 4,9463
3 6.1588 3.4759 3.8672 343.0228 | 30.6722 3.5437 0 5.0056
4 5.1162 3.5906 4.0771 271.3865 3.0163 2.8497 | 1225.1666 6.5834
5 5.1195 3.5930 4.0795 269.5504 3.0163 2.8497 | 1340.0260 6.3880
6 5.0941 3.5751 4.0616 283.6181 3.0163 2.8497 0 6.4437
Xe-Xe 1 6.2268 3.5434 3.9379 538.2725 | 55.1554 3.5140 | 2641.7656 4.7009
2 6.2071 3.5322 3.9267 559.9332 [ 55.1554 3.5146 0 4.8711

91
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Table 111

Summary of paramelers for the Morse-6, -8, -10 hybrid potentials

Parameters

Method of

System ll;f)[:. - 5 e R 4 1 Ce Cy Cio o calculation | o
10°m | 10-1m 10-37. 10-183 | 10'*m-* | 10-26Jnm® | -10-28Jnm8 | 10-3°Fnm' | 10710 m
Ar-Ar 1| 5.2075 | 3.3362 | 3.7802 | 194.9598 | 2.6012 | 3.1219 | 647.9983 3025.9683 0.0 5.5340 | Parameters
2 | 5.2087 | 3.3369 | 3.7810 | 194.5181 | 2.6012 | 3.1219 | 647.9983 3025.9683 [18462.52 5.2436 | A4, 4, C;, C;
3 | 5.8149 | 3.4245 | 3.8327 | 204.5408 | 9.1957 | 3.3961 | 647.9983 3025.9683 00 - [ 5.1819 | Cy, from
4| 5.8163 | 3.4253 | 3.8335 | 203.9610 | 9.1957 | 3.3961 | 647.9983 3025.9683 118462.52 5.0821 | SCF calcu-
5| 5.5065 | 3.4843 | 3.9229 | 193.9658 | 4.7064 | 3.1608 | 647.9983 3025.9683 0.0 5.8079 | lations,*
6 | 5.5071 | 3.4846 | 3.9232 | 193.7587 | 4.7064 | 3.1608 | 647.9983 3025.9683 [18462.52 57574 | b, ¢, rm, &, 41]
Kr-Kr 1] 5.1159 | 3.5905 | 4.0769 | 271.4970 | 3.0163 | 2.8497 {1273.0247 6630.8642 0.0 6.2277 { from SVC
2 | 5.1164 | 3.5908 | 4.0773 | 271.2347 | 3.0163 | 2.8497 |1273.0247 6630.8642 |46231.35 6.1694 | data without
quantum
corrections
Ne-Ne 17} 5.9980 | 2.7280 | 3.0432 68.1724 | 4.3974 | 4.3974 62.6940 153.3085 0.0 3.5604
2’1 5.9622 | 2.7117 | 3.0269 73.2335 | 4.3974 | 4.3974 62.6940 153.3085 523.8552
3] 6.1872 | 2.6286 | 2.9231 84.2930 | 7.9795 | 4.7075 62.6940 153.3085 0.0
4’| 6.1914 | 2.6304 | 2.9249 83.5820 | 7.9795 | 4.7075 62.6940 153.3085 523.8552 SvC
51 6.1296 | 2.6341 | 2.9319 83.1527 | 7.0147 | 4.6541 62.6940 153.3085 0.0 .
6’| 6.1338 | 2.6359 | 2.9338 82.4514 | 7.0147 |.4.6541 62.6940 153.3085 523.8552 with
7’| 6.0967 | 2.6338 | 2.9382 82.4720 | 6.5151 | 4.6218 62.6940 153.3085 . 0.0
8’| 6.0967 | 2.6338 | 2.9382 82.4271 | 6.5151 | 4.6218 62.6940 153.3085 523.8552 quantum
Ar-Ar 171 5.2051 | 3.3346 | 3.7787 | 195.8986 | 2.6012 | 3.1219 | 647.9983 3025.9683 0.0 5.3619 | corrections
2’| 5.2062 | 3.3353 | 3.7794 | 195.4706 | 2.6012 | 3.1219 | 647.9983 3025.9683 (18462.52 5.2536
3] 5.8120 | 3.4228 | 3.8310 | 205.7418 | 9.1957 | 3.3961 | 647.9983 3025.9683 0.0 5.1898
4’| 5.8133 | 3.4236 | 3.8318 | 205.1758 | 9.1957 | 3.3961 | 647.9983 3025.9683 118462.52 5.0918
5’1 5.5040 | 3.4827 | 3.9213 | 194.9322 } 4.7064 | 3.1608 | 647.0083 3025.9683 0.0 "5.8133
6’ 5.5046 | 3.4830 | 3.9216 | 194.7251 | 4,7064 | 3.1608 | 647.9983 3025.9683 [18462.52 5.7633
Kr-Kr 17] 5.1152 | 3.5900 | 4.0764 | 271.8697 | 3.0163 | 2.8497 [1273.0247 6630.8642 0.0 6.2295
. 2’1 5.1157 | 3.5903 | 4.0768 | 271.6212 | 3.0163 | 2.8497 [1273.0247 6630.8642 (46231.35 6.1714

* The guide to the literature Ref. [1]

"STTNOTTOW YVIOINON U0 SNOLLONNI TVIINILOd VINDFTOWHILNI
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" The effect of adding higher-order terms to the long-range portion of the potential
on the vibrational energy levels of Ar, and Kr, we can see from Tables V-VI. These
tables compare the vibrational spacings calculated from Morse hybrid potentials
with experimental spectroscopic eévidence [38; 39] and in the case of Kr, with the
MSYV scattering potential results [57]. Tables V-VI show that vibrational levels are
predicted by all the present potentials which include a Cgr—8 term in the long range
portion. The best results are obtained for the Morse hybrid 2’ (M-hybrid 2”) potential.

Parameters of this potential are compared with experimental data in Table VII.

Table IV

Potential well depth ¢ [J) for Ar, and Kr,

Ar, Kry

Potential g-10-2 Ref. Potential e-10-21 Ref.
Kihara 2.032 [43] Kihara 2.959 [52]
Kihara 1.973 [44) Kihara 2.977 [53]
Lennard—Jones(16-6) 2.056 [25] Lennard—Jones (12-6) 2.366 [54]
Morse 1.831 [45] Morse 2.527 [42]
exp-6 2.099 [43] exp-6 2.959 [43]
Morse-6-hybrid 2.084 [11 | Morse-6-hybrid 2.700 {1] .
M-6-8 2.112 28] M-6-8 2.715 [41]
M-6-8-10 1.955 [41] | M-6-8-10 2.712 [41]
Kingston 2.022 [46] Dymond-Adler 2.716 [53)
Munn—Smith 2.112 | [47, 48] | Rigid—Morse—
Barker—Pompe 2.039 [31] Mie—van der Waals 2.561 [56]
Dymond—Alder 1.908 [50] Barker—Bobetic 2.725 [49]
Barker—Bobetic 1.936 [49] MSV 2.746 [57
Barker—Fisher 1.962 [51] Gordon—Kim 2.485 [58]
Watts
MSV 1.993 [36}

Table V

Comparison of the experimental data for the vibrational spacings for the ground electronic state
of Ar, with calcillated from Morse hybrid potentials

G (u’+%) {cm™1)

Experiment 1 2’ kid 4’ 5 6
0 25.4 24.364 24.338 27.162 27.124 24.607 24.594
1 20.2 20.246 20.224 22.570 22.539 20.447 20.437
2 15.5 16.111 16.094 17.961 17.936 16.272 16.263
-3 10.3 11.676 11.664 13.017 12.999 11.792 11.787
4 7.99 6.946 6.939 7.744 7.733 7.015 7.012
5 3.697 3.693 4121 4115 3.733 3.731
6 1.465 1.464 1.633 1.631 1:480 1.479
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Table VI
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Comparison of the experimental data for the vibrational spacings for the ground electronic state
of Kr, with calculated from Morse hybrid potentials and MSV scattering potentials.

G (v’+%) [cm~1)

Experiment 1’ 2 MSva) MSVb)
0 21.56 20.995 21.015 21.17 T 21.39 -
1 19.09 19.237 19.229 19.15 19.26
2. 16.76 17.479 16.237 16.86 16.81
3 14.76 15.719 14.602 . 14,65 14.74
4 12.23 13.961 12.969 12.69 13.10
5 10.49 12.201 11.334 10.80 11.07
6 8.92 10.437 9.700 8.96 9.00
7 - 6.92 8.662 . 8.050 7.12 7.11
8 5.54 6.671 6.200 5.38 5.42
9 4.09 - 4,412 4.10 4,01 3.94
10 2.87 2.982 2.77 2.83 2.69
11 - 1.86 1.819 1.69 1.80 1.68
12 1.07 0.968 0.90 1.00 0.90
2 r,,=0.411 [nm]
® r.=0.403 [nm] Ref. [38]
Table VI
Expe};imental results for Ar, and Kr,
. Parameters
Substance Potential Ref,
£-10-21J r,nm | énm
Ar, Barker—Fisher—Watts 1.962 0.37612 . 0.33605 [511
MSV-I1 1.993 0.3715 0.3330 [36]
MSV-III 1.942 0.376 0.3354 [36]
M-hybrid 2’ 1.954 0.37794 0.3353
Kr, . Barker—Bobetic 2.725 0.40152 0.35944 [49]
MSV 2.746 0.411 : [57]
M-hybrid 2’ 2.716 0.40768 0.35903

The comparison of the Morse hybrid potentials with experimental data and
potentials obtained by other workers reveals that the method of calculation of the
parameters of the Morse hybrid potential function is adequate for the heavier rare
gas systems. -For this reason Morse hybrid potentials appear to warrant further
application in the description of van der Waals molecules. As a successful example
we refer to the KONOWALOW-MUHLHAUSEN paper [59].

2%
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®YHKHUUHU MEXMOJIEKY JIIPHO MOTEHUUWAJIBHON BHEPT UM
AJ1s4 HEINOJISAPHBIX MOJIEKYJI

II. Maaunoscka — Adamcka

B nannoit pa6orte 06Cy)ImaeTcsa MpobiieMa KPMBHIX TMOTEHUHABHON HEPTHM NMPAMEHAMEIX
IUIsE HETTOJIAPHBIX MoOJiekyJl. TIpaBuiabHOCTD 3THX ByHKUuM (Opexae Boero Mop3e-rHaAPHAHBIX KpU-
BEIX) JOKA3BIBAETCA CPABHEHHEM BBIYMCIECHHBIX PACCTOSHWN MEXAY OCLMIUTALMOHHBIMK YPOBHAMH
C 9KCIIEPUMEHTAIbHBIMU 3HAYEHUAMM. Pe3yiIbTaThl MONyYeHHBIE IS NAPAMETPOB MEKMOIEKYIAp-
HbIX QYHKUMA ONPHMEHHMBIX AJI HETIOJIAPHBIX MONEKYJI COGpAHbe BMECTE C 3KCTIECPHMEHTAIbLHBIMHA
IaHHBIMH.



