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The potential energy curves appropriate for rare gas atoms have been analysed. Relative merits 
of these curves (in particular Morse hybrid potential functions) have been tested by calculating the 
values of the vibrational energy eigenvalue differences and comparing them with the experi-
mental ones. Reliable estimates of the function parameters have been collected and compared with 
those obtained from molecular beam experiments. 

Introduction 

Knowledge of intermolecular forces is necessary for an understanding of many 
of the physical properties of rare gas systems. A number of recent studies, both 
theoretical and experimental, have contributed to this knowledge. The calculation 
of potential energy curves can in principle be accomplished by means of quantum 
mechanical calculations. However, computational difficulties prevent these curves 
from being calculated routinely for rare gas molecules. The short-range repulsive 
portion of these curves has been obtained from either Self-Consistent-Field or 
Thomas-Fermi-Dirac calculatios. In addition, the long-range attractive portion 
of these curves is known to have the form — C 6 r - 6 — C 8 r - 8 — C10r~10 [1]. In the last 
few years approximate theoretical calculations of the short-range repulsions [2-5] 
and accurate estimates for the C6 , C8 and C10 coefficients for a variety of pairwise 
interactions of rare gas atoms have been reported [6-8]. Other advances have in-
creased our knowledge of rare gas interactions. Potential energy curves have been 
obtained from ab initio calculations based on an electron gas model [9]. Also, ab initio 
potential curves for He2 have been obtained [10-12]. The vacuum ultraviolet ab-
sorption spectra have been reported for a variety of rare gas systems [13, 38]. 
Molecular beam experiments have been carried out and the results have been analysed 
to obtain the potential energy curves of a number of combinations of rare gas atoms 
[34, 36, 37]. Other workers have produced semi-empirical potential functions by 
fitting a model potential form to experimental data. 

* On leave from the Institute of Physics, Technical University of Lodz, Wolczanska 219, 
93—005 Lodz, Poland. • 
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The primary difficulty with such semi-empirical schemes is in the choice of the 
potential function model. 

In this paper we analyse the potential energy curves appropriate for the rare gas 
atoms. Relative merits of these curves have been tested by calculating the values of 
the vibrational energy eigenvalue differences, and comparing them with the experi-
mental values. Reliable estimates of the function parameters have been collected 
and compared with those obtained from molecular beam experiments. 

Potential energy functions appropriate for rare gas atoms 

The Lennard-Jones ( 1 2 - 6 ) potential has been widely used in the study of inter-
molecular forces [ 1 3 - 1 5 ] . This potential has the form: 

Here £ and 5 are parameters which represent an energy and a length which is 
characteristic of the system under consideration. This potential was widely used 
previously because of its simple analytic form, but has since been considered too 
inflexible to reproduce of dilute gas properties [ 1 7 - 2 1 ] , therefore, some attempts 
to evaluate low density equilibrium and transport data have been directed towards 
finding more flexible functions [19]. Notable, among these are the Kihara poten-
tial [22]: 

= «> r ^ 2a. 

In Eq. 2 a third parameter " a " is added to represent the molecular core size, the 
Guggenheim-Mc Glasham potential [23], which introduces additional anharmonic 
terms in the neighbourhood of the potential minimum in order to explain solid 
properties, the formulation of BOYS and S H A V I T ' [ 2 4 ] which expands the potential 
in a complete set of Gaussian function, and the potential functions of D Y M O N D , 
R I G B Y and SMITH [25 ] which represent the intermolecular energy by two-parameter 
in five terms, inverse power expression: 

U(r) = e[o.331 ( Y ) -1 .2584 +2.07151 ( Y ) - 1 . 7 4 4 5 2 ( ^ j - 0 . 3 9 9 5 9 ( ^ j ] 
r ^ 

where rm is the intermolecular separation at the minimum energy — e. The attractive 
term in r - 2 4 has no theoretical basis but was found necessary to give a broad bowl 
to the potential function to fit experimental data. This potential gave a sound 
treatment of second virial coefficients and gave the correct lattice energies when 
used in conjunction with AXILROD'S nonparwise corrections [ 26 ] . It also gave satis-
factory agreement when applied to the calculation of third virial coefficients [25]. 
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B U C K I N G H A M [ 1 6 , 1 7 ] and B U C K I N G H A M - C O R N E R [ 2 7 ] have proposed three 
parameter potential functions. These potentials are respectively given by: 

U{r) = e[a/(a —6)]{(6/a)exp[a(l—rr"1)] —r® r - 6 }, (4) 

U(r) = e{gl(a, / ? ) e x p [ a ( l - ^ - ) ] - g 2 ( a , x [ l + / ? ( ^ ) ]}, r ^ rm.(5) 

m = /9 e x p a ( l x [ l +/? ] exp4(1 - } . 

f < f ' — ' m • 
g l ( a , P) = (6 + 8/3)/[a(l + / ? ) - ( 6 + 8/0], 

ft(a,/Q = « / [ « ( l + / 9 - ( 6 + 8/D], 

where a is the parameter which is a measure of the steepness of the exponential 
repulsion. The parameters a, (i, e, rm have been determined from the crystal data, 
second virial and the Joule-Thomson coefficient data. (The function of Eq. (4), 
in fact, is that portion of the modified Buckingham (exp —6) potential which is 
defined for r^r m a ] l . Here /-max is the position of the spurious maximum in the poten-
tial due to the unrealistic importance of the r~6 term for small r; rmax is the smallest 
root of e x p [ a ( l - r " 1 r i n a x ) ] = rm/--a

1
x [28]). 

The success and failures of three-parameter potential functions are well known 
[29]. They have the advantage of their flexibility-but two limitations, in particular, 
restrict their use for the prediction of data [30]. On the basis of the data available 
at this time one finds: 

1. For any property, a set of parameters used to fit the data taken in a given tem-
perature range cannot be relied upon to predict this property correctly in another 
temperature range. 

2. A set of parameters used to fit one kind of property (e.g. viscosity) cannot be 
relied upon to predict correctly data for another property (e.g. second virial 
coefficient). 

Furthermore parameters chosen with a model function do not always agree with 
values obtained from direct independent information such as the results of scattering 
experiments. Several authors have tried to remove the limitations of the three-para-
meters functions by proposing more elaborate potentials. 

Successful examples are the semitheoratical Barker potential [31] and the 
m-6-8 potential based Barker one [30]. 

Barker function has the form: 

U(r) = e { e x p [ a ( l - r ) ] JC 2 i + 6 / ( ,5 + r)2 '+6}- (6) 
<• 1=0 (=0 J 

Here r—R/Rm, where R is the internuclear distance, Rm is the separation between 
atoms which corresponds to the minimum of the potential well, and e is the value 
of the potential at its minimum. The C6, C8 and C10 coefficients are set equal to 
their calculated values. The remaining parameters are used to fit the function to 
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second virial coefficient data, molecular beam scattering measurements and low-
pressure gas transport properties. The resulting potentials afford excellent agreement 
with a variety of experimental results other than those used in fixing their parameters. 
However, the method is limited by the large amount of experimental data which is 
needed. 

Other semi-empirical schemes have been proposed by BERNSTEIN and MORSE [ 3 2 ] , 
B R U C H and M c G E E [ 3 3 ] and K O N O W A L O W and ZAKHEIM [1] . These workers used 
a Morse function of the form: 

U(r) = 4 e(y*-y), (7) 

^ = exp ( l -

Here <5 is the value of the separation of the nuclei such that U(r)—0. 
LEE [34] has proposed a hybrid potential function which he has fit to molecular 

beam scattering data. This potential is called the exponential-spline-Morse-spline-
van der Waals (ESMSV) potential and has the following form: 

f ( x ) = U(r)/s, x = rfrm. 

f{x) = yiexp[— a(x — 1)], 0 ^ x g xx . 

/ 0 ) = exp (flj + (x - Xj) {a2 + (x - x2) [a3.+ (x - xx) a4]}), 

exponential spline function, x 1 s x ^ x 2 . 

f ( x ) = b1 + (x- x3) {b2 + (x - x4) [¿3 + (x - x3) ¿J}, (8) 

spine function, x3 ^ x s x4 . 

. f ( x ) = —Cer~6 — Csr~8 — C10r~10, x4 ^ X s 

This potential gives goocl results for Ne2 when compared with experimental data 
other than the solid state measurements from which its parameters were deduced [35]. 
For the heavier rare gas systems, instead of ESMSV potential, Morse-spline-van der 
Waals (MSV) potential [36, 38] was used. This potential has the form [36]: 

f ( x ) = Uir)le, 

f i x ) = exp [—2/?(x — 1 ) ] - 2 e x p [ - j 8 ( x - 1)], 0 =g x ^ xt. 

f i x ) = ¿x + (x — x t) (Z>2 + (x - x2) [¿3 + (x - xx) ¿J}, (9) 

spline function, x1 ^ .v ^ x2 . 

f i x ) = - c 6 x - 6 - c s x - 8 - c 1 0 x - 1 0 , X2 ^ X « oo, 
" — 

where c^CJer 'm. 

Other workers have reported potential functions which are constructed from 
a Morse function, a long-range tail function, and an interpolating polynomial to 
join the two segments [5, 28]. K O N O W A L O W and ZAKHEIM [1] have reported Morse-6 
hybrid potentials. Their potentials were constructed from three parts: 1) A short-
range term of the form Uir)—A exp (— Ir), 2) a long-range dipole-dipole dis-
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persion attraction U(r) = —C6r~6, where the C6 coefficients are obtained from 
highly accurate semiempirical estimates; 3) A Morse function of the form: 

U(r) = e { e x p [ - 2 y ( r - r m ) ] - 2 e x p [ - | - ( r - o ] } , (10) 

which is used to connect the long and short-range segments. 
Recently, K O N O W A L O W and co-workers described a modification of their 

procedure [41]. The "term — C 6 r - 6 is replaced by —C6r~6 — Csr~8 — C10r~10, which * 
is a more accurate representation of the long-range behaviour. The parameters 
A, X, C6, C8 and C10 are available from theoretical calculations [3-8]. The other 
parameters : e, c, Ô or rm, and q0, where q0 is the contact point between the Morse 
function and the long-range portion of the curve, are obtained by fitting second 
virial coefficient data. 

Experimental second virial coefficient have traditionally been used in the study 
of intermolecular forces because of their ready availability and the ease at which 
they can be calculated for model potentials. The virial equation state for real gases 
is [14]: 

pV0 = RT(l + B(T)IV0 + C(T)/Vl+ ...), 

where B and C are the second and third virial coefficients, respectively and V0 is 
the molar volume. It is shown from statistical mechanics [14] that 

B(T) = BnÇD + ^B^T), (11) 
m 

where : 

Bn(T) = 2nNA f [1 - exp ( - U ( r ) / k T ) ] r * d r 
o 

and 

{ ^ ^ ( - m i k T V d r 

Ba(T) is the classical second virial coefficient and Bt(T) is the first quantum 
correction to it. Here NA is Avogadro number, k is Boltzman constant, h is 
Planck constant, m is the mass of the particle and U(r) is some central field 
potential function. U(r) is usually expressed in terms of a number of parameters. 

In order to calculate the second virial coefficients at a given temperature T, 
the form of the potential must be specified. The potential under consideration has 
the form [41]: 

C7(r) = £ { e x p [ - 2 | ( r - / - m ) ] - 2 e x p [ - | ( / - o ] } , 0 ^ r ^ q0. (12) 

U(r) = -C6r-«-Car-s-C10r-w, 
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Another equivalent formula for the Morse potential is [1]: 

U(r) = 4e {exp [le ( 1 - j ) ] - exp [c ( 1 - -£•)]}. 

In order to determine the parameters c, <5, e, C6 , C8 , C10 and Q0 K O N O W A L O W and 
co-workers applied the following procedure [41]: The C6, C8 and C10 coefficients 
set equal to their theoretical value. The repulsive portion of the Morse potential 
is set equal to the short-range repulsion [40] of the form: A exp {—).r), where 
A and X are obtained from quantum mechanical calculations. 

Then 

and 

The parameter q0 is found by finding the largest root of the equation: 

- C 6 r - 6 - C8r~* - C10r~" - 4e {exp \lc (l - i - j ] - exp [c ( l - -£-)]} = 0. 

The largest root is chosen because the long-range portion of the curve is valid only 
for large values of r. The parameter c is varied until the minimum of the difference 
between the sum of the squares of the calculated and experimental second virial 
coefficient is obtained. If c is obtained e and <5 can be calculated by means of 
Eqs. (13) and (14). The value of rm is found by use of the relation: 

rm = (<5/c)(c + ln 2) [42]. 

The parameters of the potential energy functions for nonpolar molecules were cal-
culated without using the first quantum correction [41]. Here we include the esti-
mates, where the first quantum correction was used in the calculation of the second 
virial coefficient also. From these potentials vibrational energy eigenvalue differences 
are calculated and are compared to experimental spectroscopic evidence [38, 39]. 
The function's parameters are compared to those obtained from various recent 
intramolecular potential calculations [1, 28, 30, 31, 41-58]. 

Empirical, semiempirical and theoretical parameters of the potential energy functions 
for nonpolar molecules 

Reliable estimates of the parameters potential energy curves for nonpolar 
molecules are collected in Tables I—III. 

A exp (—Ar) = 4s exp M'-i)]-
A = 4e exp (2c) 

A = 2c/ô. 

(13) 

(14) 
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Table I 

Summary of parameters for the Lennard-Jones, Buckingham, Buckingham-Corner and Morse 
potential models for rare gas atoms* 

Po
si

-
tio

n Potential 
function System Parameters Method of 

calculation Ref. 

Lennard-
Jones 
(12-6) 
Eq. (1) 

e rm 

1. 

Lennard-
Jones 
(12-6) 
Eq. (1) 

Ne-Ne 
Ar-Ar 
Kr-Kr 
Xe-Xe 

50.113 
164.698 
219.506 
314.763 

3.16 
3.87 
4.04 
4.46 

Crystal 
data (CD) [42] 

a £ rm CD, second 
viria! coef-
ficient 
(SVC) and 
viscosity 
coefficiént 

2. 
Buckingham 
(Exp-6) 
Eq. (4) 

Ne-Ne 
Ar-Ar 
Kr-Kr 
Xe-Xe 

14.5 
14.0 
12.3 
13.0 

52.460 
170.082 
218.539 
319.181 

3.147 
3.866 
4.056 
4.450 

CD, second 
viria! coef-
ficient 
(SVC) and 
viscosity 
coefficiént 

[27] 

Buckingham 
Corner 
(exp. 6-8) 
Eq. (5) 

ß a s rm 

3. 
Buckingham 
Corner 
(exp. 6-8) 
Eq. (5) 

Ne-Ne 
Ar-Ar 
Kr-Kr 
Xe-Xe 

0.2 13.9 
13.6 
11.7 
12.8 

51.218 
170.082 
219.230 
324.703 

3.87 
3.16 
4.08 
4.45 

CD and 
SVC [17] 

c ô rm e 
The combina-
tion of CD 
and SVC 
data 

4. Morse 
Eq. (7) 

Ne-Ne 
Ar-Ar 
Kr-Kr 
Xe-Xe 

5.1 
5.0 
4.5 
4.9 

2.775 
3.386 
3:510 

" 3.872 

3.152 
3.855 
4.038 
4.420 

60.729 
199.902 
252.224 
379.234 

The combina-
tion of CD 
and SVC 
data 

[42] 

* e in units of 10~23 J; S and rm in units of 10_ 1 0m. 

Discussion 

Table III clearly shows the effect of adding higher-order terms in the long-range 
London dispersion potential. The effect of adding the C8 and then the C10 term 
was to decrease the depth of the well as the additional terms were included. In 
addition the value of <5 and rm was increased by 0.0003-0.0004 nm with the addi-
tion of the C8 term and by about 0.0001 nm with the addition of the C10 term t a 
the —C6r~6—C8r~s tail. The effect of adding the C8 term to the — C 6 r _ 6 tail is more 
pronounced than the addition of the C10 term to the tail which already includes the 
— C 6 r - 6 — C 8 r - 8 term. Potentials which include the quantum corrections have 
smaller c values than those without this correction. The smaller c value implies 
that the well depth will be greater and that <5 and rm will be smaller for the poten-
tials with the corrections. For example, in the case of Ar2 the change in the well 
depth in the order of 1.38 XlO - 2 3 J. (Values for the depth of the ground state 
potential well of Ar2 and Kr2 found from various intramolecular potential calcula-
tions [1, 28, 30, 31, 41-58] are summarized in Table IV.) 



Table II 
Summary of optimal parameters for the Morse-6 hybrid potential 

System 
No 

poten-
tial 

Parameters 

Method of 
calculation Ref. 

System 
No 

poten-
tial c S 

1 0 - ' ° m 
rm 

1 0 - 1 0 m 
8 

IO- 2 3 J 
A 

1 0 - " J 
X 

1010m-> 
c, 

10~28 Jnm6 40 
10- 1 0 m 

Method of 
calculation Ref. 

1 2 3 4 5 6 7 8 9 10 

Method of 
calculation Ref. 

Ne-Ne 1 6.0444 3.1993 3.5661 70.294 5.0011 3.7785 60.3012 6.0966 Parameters ' [1] 2 6.0472 3.2007 3.5676 69.902 5.0011 3.7785 67.2884 5.9697 A, X, C„ 
[1] 

3 6.0276 3.1904 3.5572 72.696 5.0011 3.7785 0 5.9924 from SCF 
4 6.0014 2.7295 3.0447 67.714 4.4204 4.3974 60.3012 4.0945 calculations, 
5 6.0020 2.7298 3.0450 67.628 4.4204 4.3994 67.2884 3.8937 other ones 
6 5.9433 2.7031 3.0183 76.059 4.4204 4.3974 0 4.0138 from second 
7 6.2574 2.6584 2.9529 73.256 7.9794 4.7075 60.3012 3.6621 virial 
8 6.2255 2.6449 2.9394 78.072 7.9794 4.7075 67.2884 3.4473 coefficient 
9 6.2048 2.6361 2.9306 81.380 7.9794 4.7075 0 3.5371 (SVC) data. 

10 6.2015 2.6650 2.9629 72.012 6.9750 4.6541 60.3012 3.7066 
(SVC) data. 

11 6.1740 2.6532 2.9511 76.076 6.9750 4.6541 67.2884 3.4873 
12 6.1468 2.6415 2.9393 80.339 6.9750 4.6541 0 3.5928 
13 6.1696 2.6698 2.9696 71.285 6.5151 4.6218 60.3012 3.7383 
14 6.1454 2.6593 2.9593 74.823 6.5151 4.6218 67.2884 3.5173 
15 6.1137 2.6456 2.9456 79.727 6.5151 4.6218 0 3.6306 

Ar-Ar 1 5.8608 3.2323 3.6146 226.2981 11.1522 3.6264 622.1549 4.7456 
2 5.8576 3.2305 3.6128 227.7476 11.1522 3.6264 663.3129 4.5866 
3 5.8285 3.2145 3.5967 241.4150 11.1522 3.6264 0 4.6740 
4 5.2046 3.3343 3.7783 196.1195 2.6013 3.1219 622.1549 5.8015 
5 5.2077 3.3363 3.7803 194.9046 2.6013 3.1219 663.3129 5.6602 
6 5.1742 3.3148 3.7589 208.3925 2.6013 3.1219 0 5.7336 
7 5.8037 3.4179 3.8261 209.1656 9.1958 3.3961 622.1549 5.5912 
8 5.8062 3.4194 3.8276 208.1302 9.1958 3.3961 663.3129 5.4733 
9 5.7746 3.4008 3.8090 221.6871 9.1958 3.3961 0 5.5318 

10 5.5020 3.4814 3.9200 195.7329 4.7064 3.1608 622.1549 6.1302 
11 5.5945 3.4830 3.9216 194.7389 4.7064 3.1608 663.3129 6.0122 
12 5.4765 3.4653 3.9039 205.9627 4.7064 3.1608 0 6.0634 

Kr-Kr . 1 6.1843 3.4904 3.8816 325.9455 30.6722 3.5437 1225.1666 5.1371 
2 6.1825 3.4894 3.8806 327.1051 30.6722 3.5437 1340.0260 4.9463 
3 6.1588 3.4759 3.8672 343.0228 30.6722 3.5437 0 5.0056 
4 5.1162 3.5906 4.0771 271.3865 3.0163 2.8497 1225.1666 6.5834 
5 5.1195 3.5930 4.0795 269.5504 3.0163 2.8497 1340.0260 6.3880 
6 5.0941 3.5751 4.0616 283.6181 3.0163 2.8497 0 6.4437 

Xc-Xe 1 6.2268 3.5434 3.9379 538.2725 55.1554 3.5140 2641.7656 4.7009 
2 6.2071 3.5322 3.9267 559.9332 55.1554 3.5146 0 4.8711 



Table III 

Summary of parameters for the Morsc-6, -8, -JO hybrid potentials 

Parameters 
R e f . System INO 

Pot. C S r m e A A Ce cs c10 «0 
1VIC11IUU Ul 
calculation R e f . 

10~10m 10-!° m 10"23J to - 1 6 J lO10!«"1 t o - 2 6 J nm1 10-28J nm8 10 - 3 0 J nm10 10-1» m 

Ar-Ar 1 5.2075 3.3362 3.7802 194.9598 2.6012 3.1219 647.9983 3025.9683 0.0 5.5340 Parameters 
2 5.2087 3.3369 3.7810 194.5181 2.6012 3.1219 647.9983 3025.9683 18462.52 5.2436 A, C„, C*8 
3 5.8149 3.4245 3.8327 204.5408 9.1957 3.3961 647.9983 3025.9683 ' 0.0 5.1819 C10, from 
4 5.8163 3.4253 3.8335 203.9610 9.1957 3.3961 647.9983 3025.9683 18462.52 5.0821 SCF calcu-
5 5.5065 3.4843 3.9229 193.9658 4.7064 3.1608 647.9983 3025.9683 0.0 5.8079 lations,* 
6 5.5071 3.4846 3.9232 193.7587 4.7064 3.1608 647.9983 3025.9683 18462.52 5.7574 5, c, rm, e, [41] 

Kr-Kr 1 5.1159 3.5905 4.0769 271.4970 3.0163 2.8497 1273.0247 6630.8642 0.0 6.2277 from SVC 
2 5.1164 3.5908 4.0773 271.2347 3.0163 2.8497 1273.0247 6630.8642 46231.35 6.1694 data without 

quantum 
corrections 

Ne-Ne 1' 5.9980 2.7280 3.0432 68.1724 4.3974 4.3974 62.6940 153.3085 0.0 3.5604 
2' 5.9622 2.7117 3.0269 73.2335 4.3974 4.3974 62.6940 153.3085 523.8552 
3' 6.1872 2.6286 2.9231 84.2930 7.9795 4.7075 62.6940 153.3085 0.0 
4' 6.1914 2.6304 2.9249 83.5820 7.9795 4.7075 62.6940 153.3085 523.8552 SVC 
5' 6.1296 2.6341 2.9319 83.1527 7.0147 4.6541 62.6940 153.3085 0.0 
6' 6.1338 2.6359 2.9338 82.4514 7.0147 4.6541 62.6940 153.3085 523.8552 with 
7' 6.0967 2.6338 2.9382 82.4720 6.5151 4.6218 62.6940 153.3085 0.0 
8' 6.0967 2.6338 2.9382 82.4271 6.5151 4.6218 62.6940 153.3085 523.8552 quantum 

Ar-Ar 1' 5.2051 3.3346 3.7787 195.8986 2.6012 3.1219 647.9983 3025.9683 0.0 5.3619 corrections 
2' 5.2062 3.3353 3.7794 195.4706 2.6012 3.1219 647.9983 3025.9683 18462.52 5.2536 
3' 5.8120 3.4228 3.8310 205.7418 9.1957 3.3961 647.9983 3025.9683 0.0 5.1898 
4' 5.8133 3.4236 3.8318 205.1758 9.1957 3.3961 647.9983 3025.9683 18462.52 5.0918 
5' 5.5040 3.4827 3.9213 19.4.9322 4.7064 3.1608 647.0083 3025.9683 0.0 5.8133 
6' 5.5046 3.4830 3.9216 194.7251 4,7064 3.1608 647.9983 3025.9683 18462.52 5.7633 

Kr-Kr 1' 5.1152 3.5900 4.0764 271.8697 3.0163 2.8497 1273.0247 6630.8642 0.0 6.2295 
2' 5.1157 3.5903 4.0768 271.6212 3.0163 2.8497 1273.0247 6630.8642 46231.35 6.1714 

* The guide to the literature Ref. [1] 
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The effect of adding higher-order terms to the long-range portion of the potential 
on the vibrational energy levels of Ar2 and Kr2 we can see from Tables V-VI. These 
tables compare the vibrational spacings calculated from Morse hybrid potentials 
with experimental spectroscopic evidence [38, 39] and in the case of Kr2 with the 
MSV scattering potential results [57]. Tables V-VI show that vibrational levels are 
predicted by all the present potentials which include a Csr~8 term in the long range 
portion. The best results are obtained for the Morse hybrid 2' (M-hybrid 2') potential. 
Parameters of this potential are compared with experimental data in Table VII. 

Table IV 

Potential well depth e [J] for Ar2 and Kr2 

Ar 3 K r , 

Potential e -10"!1 Ref. Potential e -10-" Ref. 

Kihara 2.032 [43] Kihara 2.959 [52] 
Kihara 1.973 [44] Kihara 2.977 [53] 
Lennard—Jones(l 6-6) 2.056 [25] Lennard—Jones (12-6) 2.366 [54] 
Morse 1.831 [45] Morse 2.527 [42] 
exp-6 2.099 [43] exp-6 2.959 [43] 
Morse-6-hybrid 2.084 [1] Morse-6-hybrid 2.700 [1] 
M-6-8 2.112 [28] M-6-8 2.715 [41] 
M-6-8-10 1.955 [41] . M-6-8-10 2.712 [41] 
Kingston 2.022 [46] Dymond-Adler 2.716 [53] 
Munn—Smith 2.112 [47, 48] Rigid—Morse— 
Barker—Pompe 2.039 [31] Mie—van der Waals 2.561 [56] 
Dymond—Alder 1.908 [50] Barker—Bobetic 2.725 [49] 
Barker—Bobetic 1.936 [49] MSV 2.746 [57] 
Barker—Fisher 1.962 [51] Gordon—Kim 2.485 [58] 
Watts 
MSV 1.993 [36] 

Table V 

Comparison of the experimental data for the vibrational spacings for the ground electronic state 
of Ar2 with calculated from Morse hybrid potentials 

V* 
c(,+± ) [cm-1] 

V* 
Experiment 1' 2' y 4 ' 5' 6' 

0 2 5 . 4 2 4 . 3 6 4 2 4 . 3 3 8 2 7 . 1 6 2 2 7 . 1 2 4 2 4 . 6 0 7 2 4 . 5 9 4 
1 2 0 . 2 2 0 . 2 4 6 2 0 . 2 2 4 2 2 . 5 7 0 2 2 . 5 3 9 2 0 . 4 4 7 2 0 . 4 3 7 
2 15 .5 16 .111 1 6 . 0 9 4 17 .961 1 7 . 9 3 6 1 6 . 2 7 2 1 6 . 2 6 3 
3 10 .3 1 1 . 6 7 6 1 1 . 6 6 4 13 .017 1 2 . 9 9 9 1 1 . 7 9 2 1 1 . 7 8 7 
4 7 . 9 9 6 . 9 4 6 6 . 9 3 9 7 . 7 4 4 7 . 7 3 3 7 . 0 1 5 7 . 0 1 2 
5 3 . 6 9 7 3 . 6 9 3 4 . 1 2 1 4 . 1 1 5 3 . 7 3 3 3 . 7 3 1 
6 1 . 4 6 5 1 . 4 6 4 1 .633 1 . 6 3 1 1 : 4 8 0 1 . 4 7 9 
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Table VI 

Comparison of the experimental data for the vibrational spacings for the ground electronic state 
of Kr2 with calculated from Morse hybrid potentials and MSV scattering potentials. 

o' o' 
Experiment l' 2' MSV»> MSV") 

0 21.56 20.995 21.015 21.17 21.39 
1 19.09 19.237 19.229 19.15 19.26 
2 • 16.76 17.479 16.237 16.86 16.81 
3 14.76 15.719 14.602 . 14.65 14.74 
4 12.23 13.961 12.969 12.69 13.10 
5 10.49 12.201 11.334 10.80 11.07 
6 8.92 10.437 9.700 8.96 9.00 
7 6.92 8.662 8.050 7.12 7.11 
8 5.54 6.671 6.200 5.38 5.42 
9 4.09 4.412 4.10 4.01 3.94 

10 2.87 2.982 2.77 2.83 2.69 
11 1.86 1.819 1.69 1.80 1.68 
12 1.07 0.968 0.90 1.00 0.90 

•> rm = 0.411 [nm] 
b) rm = 0.403 [nm] Ref. [38] 

Table VII 

Experimental results for Ar2 and Kr2 

Substance Potential 
Parameters 

Ref. Substance Potential 
s 10"2 1J rmnrn ô nm 

Ref. 

Ar2 Barker—Fisher—Watts 
MSV-II 
MSV-III 
M-hybrid 2' 

1.962 
1.993 
1.942 
1.954 

0.37612 
0.3715 
0.376 
0.37794 

0.33605 
0.3330 
0.3354 
0.3353 

[51] 
[36] 
[36] 

Kr2 Barker—Bobetic 2.725 0.40152 0.35944 [49] 
MSV 2.746 0.411 [57] 
M-hybrid 2' 2.716 0.40768 0.35903 

The compar i son of the Morse hybrid potent ia ls with experimental d a t a a n d 
potent ials obta ined by other workers reveals tha t the method of calculation of the 
parameters of the Morse hybrid potent ia l func t ion is adequa te fo r the heavier rare 
gas systems. F o r this reason Morse hybrid potent ia ls appea r t o war ran t fu r the r 
applicat ion in the description of van der Waa l s molecules. As a successful example 
we refer t o the K O N O W A L O W - M U H L H A U S E N paper [ 5 9 ] . 

2* 
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ФУНКЦИИ МЕЖМОЛЕКУЛЯРНОЙ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ 
ДЛЯ НЕПОЛЯРНЫХ МОЛЕКУЛ 

Ц. Малиновска - Адамска 

В данной работе обсуждается проблема кривых потенциальной энергии применимых 
для неполярных молекул. Правильность этих функций (прежде всего Морзе-гидридных кри-
вых) доказывается сравнением вычисленных расстояний между осцилляционными уровнями 
с экспериментальными значениями. Результаты полученные для параметров межмолекуляр-
ных функций применимых для неполярных молекул собранье вместе с экспериментальными 
данными. 


