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Densities and heats of mixing at several concentrations ot liquid alkali alloys are calculated
using “mixed”” model potentials for the ions wiht a jellium as a boundary condition. The results
reproduce trends that are present in experimental data, though calculated and measured values are
considerably different, especially-when size-effects play an important role.

Introduction

Itis empirical]y well known that the alloying process in metallic 'systems is govern-
ed by differences in electronegatlvnty and in atomic size.

A quantitative and more or less “ab initio” description of this process, however
is rather complicated. It was shown by G. SoLTt [1] that even the first structure-depend-
ent approximation for the anisotropic atomic displacement field in dilute alloys of
simple metals must include non-linear 3rd order response functions of the electron °
liquid.

The model and the method used in this paper can be considered as a ,,zeroth
order” approximation to the problem of mixing liquid alkali metals. Ton cores des-

- cribed by model potentials are embedded into a positive jellium background and into
an electron liquid and the energy of this system is then calculated by means of a sim-
ple version of the density functional formalism [2].

The density functional method [3] has proved to be a very useful tool for calculat-

_ing various electronic properties of metals, e.g. formation energies of surfaces [3, 4]
and vacancies, [5, 6]. In fact, our results reproduce the main features that are present
in the experimental data [7] and in the numerical data obtained by CHRISTMAN [8—10}.

The Model and the. Method of Calculation
When calculating: the density and formation energy of a hquxd metal consxstmg :
of atoms A, the following simple picture is accepted

Let a spherical hole of radius r, be formed in a homogeneous pos1t1ve back-
ground, upon which the neutralizing electron liquid have a similar step-like density:

n+'(vr)=vn0@(r—-rs)v, no‘llzf;irf. . R ¢))
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Let the ion core of atom A at the centre of the hole be characterized by the model

potential
2

e
—Z— r=rp

Va(r) = @

2
—uZ £ r<rg.
o
The parameters r, and « were adjusted so as to lead to the correct density and elastic
constants for the pure metals, in second order perturbation theory [11], and are listed
in Table I [12].

Table 1.

Parameters of the maodel potential (11, 121, and results of density, cell energy and cohesive energy
Jor pure alkali metals

Potential parameters Jellium density Cohesive energy/Ry/atom/{
Metal - Energy -
V4 : I, u Ca:i::;:\la— E:;‘;:::- Ryfatom Calculation EXD[C{ |3r]nent
Li 1 1.512 0.334 3.29 3.23 —0.54983 0.154 0.122
Na 1 2.074 0.3632 4.08 3.93 —0.46042 0.080 0.083
K 1 2.9725 - 0.5399 5.05 4.88 —0.38428 0.064 0.069
Rb 1 3.384 0.64 5.36 5.21 —0.36489 0.058 0.064
Cs 1 3.795 0.68 5.77 5.62 ~0.34209 0.055 0.061

The bonding electrons of atom A are added to the neutralizing electron liquid
which is then allowed to relax resulting an electron density n(r). The “formation
energy”’ is defined as the energy associated with n(r) with respect to that of the homo-
geneous electron liquid of density #,.

A natural tool to calculate this “formation energy” is the density functional
method [3], which is based on the fact, that the ground state energy of a system is

" the minimum of an energy functional with respect to the electron density. The energy,
as a functional of the electronic density, can be written (in atomic units) as

En = [Vi©n@®)do+— /f”(’)”(’)d v dv’ + Gl )

where for G[n] we have taken

1/3 . .
G[n] :T?’O_(3n2)2/3fns/3dv_%(%] fn4/3dv+%v_f (V’;z) do—

4n )P ’
—f[00575+00155 1n(-3— J ]ndv )

with the Noziéres—Pines expression for the correlation energy. The constant 2, in the
gradient term was chosen to be 0.45 [6).
To find the actual electfon density associated with the minimum of the functional
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given in Eq. (3) a variational method was applied, assuming n(r) to_be of the simple

form _ ’

‘ n(1-a)exp[B(r—r)]l = r=<r,

n(r) = { _ _ . )
ny(l—aexp[—|Bl(r—r)]) r=>r,.

Here the value of o is determined by the neutrality condition, and f, together with
r, are the variational parameters.

In this way the energy functional has to be replaced by an energy function depend-
ing on variables f# and r,. Minimization of the “formation energy” with respect
these parameters Jeads to the calculated density parameter r,, and to the cell energy
E,,’which apart from the ionization potential of atom A, is the cohesive energy.
As to a mixture of atoms 4 and B with concentrations ¢,=c and cz=1 —c, respec-
tively, a mixed model potential )

Vi = (1= Vs - ©

is introduced into the hole of radius rg, as usual in a virtual crystal model. Following
the procedure described above for the pure “metal”, the density parameter rg, and
the cell energy E,, of the mixture can be calculated. The heat of mixing is given by

E=Ey—cE,—~(1—c)Eg. ' )

Results and discussion

To show the quality of the described model and method, we listed results for
the pure alkali metals in Table 1. It can be seen that, except for Li, there is a good
agreement between the calculated and measured values of the densities and that of
the cohesive energies,
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Fig. |. Fercent change cn mixing ¢f atomic volume as a
function o “concentraticn. The concentration
refers 1o the first ccomponent of the mixture
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Table I1.

The calculated density parameters (r, in atomic units), cell energies (E,; in Rydbergs) and heats
of mixing (AE in 10~=% Rydbergs), c is the fraction of the first component

c l 0.125 l 0.250 i 0.375 0.500 l 0.625 I 0.750 | ' 0.875
Ty 3.405 3.512 3.616 3.715 3.812 3.905 3.995
Na—Li E,  |-0.53501]-0.52157 |—0.50929 |- 0.49800 | —0.48756 | —0.47788 | —0.46886
4E 3.64 5.91 7.01 7.12 6.39 4.01 2.73
. r, 4.941 4.830 4.716 4.598 4.476 4.350 4219
Na—K Ey -0.39149 }—0.39920 | - 0.40746 | —0.41636 | — 0.42598 [ — 0.43643 | — 0.44785
4E 2.31 4.11 5.3 599 5.839 4.96 3.05
oo 5.221 5.078 4.929 4.775 4.614 4446 | 4270
Na—Rb  Epy —0.373271-0.38235~0.39225-0.40210 | - 0.41508 | — 0.42841 | —0.44339
4E 3.56 6.42 8.46 9.56 9.52 8.13 5.09
re 5.593 5.409 5.218 5.016 4.805 4.580 4.341
Na—Cs Eu —0.35153|—0.36193 | —0.37346 { — 0.38638 | — 0.40099 | —0.41774 | —0.43724
: 4E 5.35 9.75 13.0 14.87 15.06 13.1 8.39
r, 5.321 5.283 5.245 5.206 5.167 5.128 5.088
K—Rb Ey —0.36713 | —0.36942 | ~0.37176 | —0.37415'| -0.37660 | — 0.37910 | — 0.38166
4E 0.18 0.32 040 | 044 0.41 0.33 0.20
r, 5.685 5.600 5.213 5.424 5.333 5.240 5.145
K—Cs Ey —0.34652{—-0.35115 [—0.35600 | —0.36109 [ — 0.36643 | - 0.37206 | —0.37800
4E 0.83 1.49 1.91 2.10 2.03 1.67 1.01
ry 5.720 5.670 5.620 5.569 5.517 5.465 5.412
Rb—Cs Ej —0.34468 | —0.34734 | —0.35006 | —0.35286 | ~ 0.35574 | —0.35870 | — 0.36175
4E 0.26 0.45 0.58 0.63 0.60 0.49 0.29

Calculated values of the density parameters, the cell energies and the heats of
mixing for binary systems appear in the Table II. Values of these quantities are given
for seven concentrations ¢ of the first component.

In our model r, equals to the radius of a cell, so we can calculate the average
atomic volume Q. If the two components were alloyed according to the laws of ideal
mixing, the atomic volume Qy,, for the mixture would be given by Vegard’s law;

Qi = Q4+ (1—c)Qp ' ®

where Q, and Qj are the cell volumes for the pure metals. Calculated values of the
average cell volume Q,, differs from the ideal value Q) as shown in Fig. I. All
deviations are negative and the magnitudes are in correlation with the density differ-
ence of the pure components. Experimental data are available only for the 50—50%
- Na—K mixture at 100 °C [8]. This value, marked with a circle in Fig. 1. agrees well
. both in sign and in magnitude with the calculated one. Our results are similar in
tendency to those of Christman [9, 10], with the exception of the K—Rb mixture for
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which Christman obtained small positive deviations. As to the magnitude our results
are about the half of those of Christman in all cases.

Another featuré of the results shown in Table II is the similarity between the'
mixture energy E,, and the average of the pure component energies. For our model
this similarity reflects the reality of using the “mixed” potentials. Small differencies
result in nonzero heats of mixing given by Eq. (7):

Calculated values of AE as a function of concentration are shown in Figs. 2—7
together with the heats of mixing measured by YOKOKAWA AND KLEPPA [7]. Agree-
ment in sign is clearly shown except for the Rb—Cs mixture, where calculated values
are positive and the experimental ones are negative. In addition, the shape of theoreti-
cal and experimental curves are very similar, but at the same time magnitudes of
calculated heats of mixing are much higher then the experlmental ones. It can be seen
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th 2. Sodium—Potassium heat of mixing as a
function of sodium concentration
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Fig. 3. Sodium—Rubidium heat of mixing.
as a function of sodium concentration
€na (—calculated © experimental [7])
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Fig. 4. Sodium—Cesium heat of mixing as a function
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Fig. 5. Potassium—Rubidium heat of mixing as a function of
potassium concentration cx (—calculated, ©® experimental [7])
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Fig. 7. Rubidium—Cesium heat of mixing as a function
of rubidium concentration cgy, (—calculated, ® experimental [7])
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that the great numerical differencies between the theory and experiment occur in cases:
of large difference in densities of the two components, i.e. when size effects play an
essential role.

These differences are not surprising according to our approximations namely
to the inflexibility of the density profile given by Eq. (5), which has lead in all cases.
to a nearly flat electron distribution.

Furthermore, the mixed potential given by Eq (6) with a jellium as a boundary' :
condition, can not- describe properly the screening effects [14].

Conclusions

In the present paper we studied the mixing process of binary alkali systems.
Despite the 51mp11ﬁcations of the model i.e. the statistical treatment of the density
functional formalism and the use of the jellium picture, as well as the low flexibility
of the trial density function, the calculated density parameters and average atomic
volumes are realistic. As regard the heats of mixing this model can reproduce the
diverse features of experimental data.
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TDIOTHOCTHU W TEIUJIOThI CMEIMEHWUA CITJIABOB XXHUIAKHUX HIEJIOYHBIX
METAJIJIOB

H. Bawuwu u . Jvemanm

PaccumTanbl IUIOTHOCTH W TEMIOTEI CMEMEHHA CIUIABOB JKHIKAX INENOYHBIX METANIOB
‘IPA Pa3THYHBIX KOHUEHTPAUHAX BOCHOMB3YACHh CMEHMIAHHBIME MOJEARHBIMH DOTEHIHANAMH IUIA
‘AOHOB K Tejlelf AfA rpaHw¥sbiX ycnosmii. Pelybrarsi mMOKa3biBalOT TEHIEHIWA NPOSBIAIOINAECS
B JKCHEPHMMEHTA/HbIX OAHHBIX, HO 3HA4YeHHS H3MEDEHHW 3HAYATETHHO pa:um'lalo‘rcx ocoberHO
~Torfa, KOTAa pa3MepHEle 3GHEKTHl ATPAOT BaXHYIO OO,



