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Densities and heats of mixing at several concentrations ot liquid alkali alloys are calculated 
using "mixed" model potentials for the ions wiht a jellium as a boundary condition. The results 
reproduce trends that are present in experimental data, though calculated and measured values are 
considerably different, especially when size-effects play an important role. 

Introduction 

It is empirically well known that the alloying process in metallic systems is govern-
ed by differences in electronegativity and in atomic size. 

A quantitative and more or less "ab initio" description of this process, however 
is rather complicated. It was shown by G. SOLT [1] that even the first structure-depend-
ent approximation for the anisotropic atomic displacement field in dilute alloys of 
simple metals must include non-linear 3rd order response functions of the electron 
liquid. 

The model and the method used in this paper can be considered as a „zeroth 
order" approximation to the problem of mixing liquid alkali metals. Ion cores des-

• cribed by model potentials are embedded into a positive jellium background and into 
an electron liquid and the energy of this system is then calculated by means of a sim-
ple version of the density functional formalism [2]. 

The density functional method [3] has proved to be a very useful tool for calculat-
ing various electronic properties of metals, e.g. formation energies of surfaces [3, 4] 
and vacancies, [5, 6]. In fact, our results reproduce the main features that are present 
in the experimental data [7] and in the numerical data obtained by CHRISTMAN [8—10]. 

The Model and the Method of Calculation 

When calculating, the density and formation energy of a liquid metal consisting 
of atoms A, the following simple picture is accepted: 

Let a spherical hole of radius rs be formed in a homogeneous positive back-
ground, upon which the neutralizing electron liquid have a similar step-like density: 

«+(/-) = n„0(r-rs), «o"1 = — r®. (1) 
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Let the ion core of atom A at the centre of the hole be characterized by the model 
potential 

v*(r) = 

e' 

" z 7 

— uZ— 
r0 

•r0 

(2) 

The parameters r0 and u were adjusted so as to lead to the correct density and elastic 
constants for the pure metals, in second order perturbation theory [11], and are listed 
in Table I [12]. 

Table I. 

Parameters of the model potential [11, 12], and results of density, cell energy and cohesive energy 
for pure alkali metals 

Metal 
Potential parameters Jellium density 

Energy 
Ry/atom 

Cohesive energy/Ry/atom/ 
Metal 

Z U Calcula-
tion 

Experi-
ment 

Energy 
Ry/atom Calculation Experiment 

[13] 

Li 
Na 
K 
R b 
Cs 

1 
1 
1 
1 
1 

1 .512 
2 . 0 7 4 
2 . 9 7 2 5 
3 . 3 8 4 
3 . 7 9 5 

0 . 3 3 4 
0 . 3 6 3 2 
0 . 5 3 9 9 
0 . 6 4 
0 . 6 8 

3 . 2 9 
4 . 0 8 
5 .05 
5 .36 
5 .77 

3 .23 
3 .93 
4 . 8 8 
5.21 
5 . 6 2 

- 0 . 5 4 9 8 3 
- 0 . 4 6 0 4 2 
- 0 . 3 8 4 2 8 
- 0 . 3 6 4 8 9 
- 0 . 3 4 2 0 9 

0 . 1 5 4 
0 . 0 8 0 
0 . 0 6 4 
0.Ö58 
0 . 0 5 5 

0 . 1 2 2 
0 . 0 8 3 
0 . 0 6 9 
0 . 0 6 4 
0 . 0 6 1 

The bonding electrons of atom A are added to the neutralizing electron liquid 
which is then allowed to relax resulting an electron density w(r). The "formation 
energy" is defined as the energy associated with n(r) with respect to that of the homo-
geneous electron liquid of density n„. 

A natural tool to calculate this "formation energy" is the density functional 
method [3], which is based on the fact, that the ground state energy of a system is 
the minimum of an energy functional with respect to the electron density. The energy, 
as a functional of the electronic density, can be written (in atomic units) as 

EM = f VA(r)n(i)dv + j j j dvdv' + G[n] 

where for (?[«] we have taken 

(3) 

1/3-, 

(Vnf dv-

0575 + 0.0155-1 ]n dv (4) 

with the Nozieres—Pines expression for the correlation energy. The constant l w in the 
gradient term was chosen to be 0.45 [6]. 
To find the actual electron density associated with the minimum of the functional 
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given in Eq. (3) a variational method was applied, assuming «(r) to be of the simple 
form 

f "o(l - «) exp [0(r - /•,)] r < rs 

" ( r ) " l « o ( l - « e x p [ - | y ? | (r-rs)]) r>rs. ( > 

Here the value of a is determined by the neutrality condition, and /?, together with 
rs are the variational parameters. 

In this way the energy functional has to be replaced by an energy function depend-
ing on variables ¡i and rs. Minimization of the "formation energy" with respect 
these parameters leads to the calculated density parameter rsA and to the cell energy 
EA, 'which apart from the ionization potential of atom A, is the cohesive energy. 
.As to a mixture of atoms A and B with concentrations cA — c and cB=l — c, respec-
tively, a mixed model potential 

VM = cVA+X\-c)VB (6) 

is introduced into the hole of radius rs, as usual in a virtual crystal model. Following 
the procedure described above for the pure "metal", the density parameter rsM and 
the cell energy EM of the mixture can be calculated. The heat of mixing is given by 

E = Em-CEa-(]-C)EB. (7 ) 

Results and discussion 

To show the quality of the described model and method, we listed results for 
the pure alkali metals in Table I. It can be seen that, except for Li, there is a good 
agreement between the calculated and measured values of the densities and that of 
the cohesive energies. 

c » 

Fig. I. Fercent chanfe cn mixinr cf atomic volume as a 
funciion o"concentration. T! econcentration 
refers to the first component of the mixture 
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Table II. 

The calculated density parameters (r, in atomic units), cell energies (EM in Rydbergs) and heats 
of mixing (AE in 10~3 Rydbergs), c is the fraction of the first component 

c 0.125 0.250 0.375 0.500 0.625 0.750 0.875 

r, 
Na—Li EM 

AE 

3.405 
-0.53501 

3.64 

3.512 
-0.52157 

5.91 

3.616 
-0 .50929 

7.01 

3.715 
-0 .49800 

7.12 

3.812 
-0 .48756 

6.39 

3.905 
-0 .47788 

4.01 

3.995 
-0 .46886 

2.73 

r, 
Na—K EM 

AE 

4.941 
-0.39149 

2.31 

4.830 
-0 .39920 

4.11 

4.716 
-0 .40746 

5.37 

4.598 
-0 .41636 

5.99' 

4.476 
-0.42598 

5.89 

4.350 
-0 .43643 

4.96 

4.219 
-0.44785 

3.05 

rs 
Na—Rb. EM 

AE 

5.221 
-0.37327 

3.56 

5.078 
-0.38235 

6.42 

4.929 
-0.39225 

8.46 

4.775 
-0 .40210 

9.56 

4.614 
-0.41508 

9.52 

4.446 
-0.42841 

8.13 

4.270 
-0 .44339 

5.09 

r, 
Na—Cs EM 

AE 

5.593 
-0.35153 

5.35 

5.409 
-0.36193 

9.75 

5.218 
-0 .37346 
13.0 

5.016 
-0.38638 
14.87 

4.805 
-0.40099 
15.06 

4.580 
-0 .41774 
13.1 

4.341 
-0 .43724 

8.39 

rs 

K—Rb EM 

AE 

5.321 
-0.36713 

0.18 

5.283 
-0 .36942 

0.32 

5.245 
-0.37176 

0.40 

5.206 
-0.37415 

0.44 

5.167 
-0 .37660 

0.41 

5.128 
-0 .37910 

0.33 

5.088 
-0.38166 

0.20 

r. 
K—Cs EM 

AE 

5.685 
-0.34652 

0.83 

5.600 
-0.35115 

1.49 

5.213 
-0 .35600 

1.91 

5.424 
-0.36109 

2.10 

5.333 
-0.36643 

2.03 

5.240 
-0 .37206 

1.67 

5.145 
-0 .37800 

1.01 

r, 
Rb—Cs EM 

AE 

5.720 
-0.34468 

0.26 

5.670 
-0.34734 

0.45 

5.620 
-0 .35006 

0.58 

5.569 
-0 .35286 

0.63 

5.517 
-0 .35574 

0.60 

5.465 
-0 .35870 

0.49 

5.412 
-0.36175 

0.29 

Calculated values of the density parameters, the cell energies and the heats of 
mixing for binary systems appear in the Table II. Values of these quantities are given 
for seven concentrations c of the first component. 

In our model rs equals to the radius of a cell, so we can calculate the average 
atomic volume i2. If the two components were alloyed according to the laws of ideal 
mixing, the atomic volume Q I M for the mixture would be given by Vegard's law; 

Q,M = CQA + ( \ - C ) Q B ( 8 ) 

where QA and QB are the cell volumes for the pure metals. Calculated values of the 
average cell volume QM differs from the ideal value Q I M as shown in Fig. I. All 
deviations are negative and the magnitudes are in correlation with the density differ-
ence of the pure components. Experimental data are available only for the 50—50% 
Na—K mixture at 100 °C [8]. This value, marked with a circle in Fig. 1. agrees well 
both in sign and in magnitude with the calculated one. Our results are similar in 
tendency to those of Christman [9, 10], with the exception of the K—Rb mixture for 
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which Christman obtained small positive deviations. As to the magnitude our results 
are about the half of those of Christman in all cases. 

Another feature of the results shown in Table II is the similarity between thev 

mixture energy EM and the average of the pure component energies. For our model 
this similarity reflects the reality of using the "mixed" potentials. Small differencies 
result in nonzero heats of mixing given by Eq. (7). 

Calculated values of AE&s a function of concentration are shown in Figs. 2—7 
together with the heats of mixing measured by Y O K O K A W A A N D K L E P P A [7]. Agree-
ment in sign is clearly shown except for the Rb—Cs mixture, where calculated values 
are positive and the experimental ones are negative. In addition, the shape of theoreti-
cal and experimental curves are very similar, but at the same time magnitudes of 
calculated heats of mixing are much higher then the experimental ones. It can be seen 

Fig. 2. Sodium—Potassium heat of mixing as a 
function of sodium concentration , 

cN a (—calculated, © experimental [7]) 

Fig. 3. Sodium—Rubidium heat of mixing, 
as a function of sodium concentration 
cN o (—calculated O experimental [7]) 
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of sodium concentration cN a (—calculated, O experimental [7]) 

RB ' K , 

Fig. 5. Potassium—Rubidium heat of mixing as a function of 
potassium concentration cK (—calculated, © experimental [7]) 

Fig. 6. Potassium—Cesiumheat of mixing as a function of 
potassium concentration cK (—calculated, © experimental [7]) 
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1-0.08 

(10 Ry) 

-0.04 

-0.12 

0.0 

0.4 J 

(10 Ry) 

00 
Cs o 

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.0 
Rb 

Fig. 7. Rubidium—Cesium heat of mixing as a function 
of rubidium concentration cRb(—calculated, © experimental [7]) 

that the great numerical différencies between the theory and experiment occur in cases 
of large difference in densities of the two components, i.e. when size effects play an 
essential role. 

These differences are not surprising according to our approximations, namely 
to the inflexibility of the density profile given by Eq. (5), which has lead in all cases 
to a nearly flat electron distribution. 

Furthermore, the mixed potential given by Eq. (6) with a jellium as a boundary 
condition, can not describe properly the screening effects [14]. 

In the present paper we studied the mixing process of binary alkali systems. 
Despite the simplifications of the model i.e. the statistical treatment of the density 
functional formalism and the use of the jellium picture, as well as the low flexibility 
of the trial density function, the calculated density parameters and average atomic 
volumes are realistic. As regard the heats of mixing this model can reproduce the 
diverse features of experimental data. 
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ПЛОТНОСТИ И ТЕПЛОТЫ СМЕШЕНИЯ СПЛАВОВ ЖИДКИХ ЩЕЛОЧНЫХ 
МЕТАЛЛОВ 

И. Вашш и И. Дьемант 

Рассчитаны плотности и теплоты смешения сплавов жидких щелочных металлов 
-при различных концентрациях воспользуясь смешанными модельными потенциалами для 
ионов и гелей для граничных условий. Результаты показывают тенденции проявляющиеся 
в эксперименталных данных, но значения измерений значительно! различаются, особенно 

тогда, когда размерные эффекты играют важную поль. 


