THEORY OF CHEMIEXCITATION: PHOTONIC vs. CHARGE TRANSFER EXCITATION

By

C. P. KESZTHELYI*

Department of Experimental Physics, Attila József University, Szeged 6720 Hungary

and

Academy of Sciences of the GDR, Central Institute for Optics and Spectroscopy, Rudower Chaussee, 1199 Berlin, GDR

(Received June 15, 1979)

The creation of electronically excited moieties in fluid solution in certain redox processes, commonly termed ECL, has been systematically investigated for over a decade. The heterogeneous and the homogeneous charge transfer steps are generally separable; the former can be classically treated according to electrochemistry, and the latter as molecular fluorescence. Attention is focussed presently on a series of ECL quantum efficiency determinations which indicate that the time scale difference between the photon absorption and diffusional homogeneous charge transfer can lead to very large variations in quenching losses stemming from intersystem crossing.

The creation of electronically excited moieties by certain redox processes in fluid solution was reviewed at the Athens International Conference on Chemiluminescence and Bioluminescence by HOJTINK [1] who was generally credited as the first to propose the path

$$R^- + R^+ \to R + R^* \tag{1}$$

Experimental evidence of characteristic solute fluorescence under conditions of Eq. (1) was presented by HERCULES [2] and a number of other investigators subsequently. A general survey of the principal reactions of electrogenerated chemiluminescence (ECL) is presented in Table I. It should be remarked at the outset that although the heterogeneous charge transfer steps comprise a relatively small part of Table I, many of the complexities, peculiarities, and outright difficulties of the ECL process are inherently related to the electrochemical reactions. Accordingly, *in situ* generation of the ECL parent ions by cyclic square waves at inert metal electrodes has paralleled advances in non-aqueous solvents and instrumentation [3]. The workable range in any given solventsupporting electrolyte system, the "electrochemical window" as indicated in Table II, is of fundamental concern, and requires rigorous exclusion of oxygen and moisture.

The diffusion controlled character of the electrogeneration of R^- and R^+ has been recognized early, and this recognition has led to rigorous mathematical models of the ECL process [4-11]. Apart from minor observations of "pre-annihilation"

^{*} U. S. National Academy of Sciences visiting exchange professor to Hungary and East Germany, 1979/1980.

Table I

Principal Reactions of Electrogenerated Chemiluminescence

Reaction	Comment			
$R^+e_{(e1)} \rightarrow R^-$	electroreduction at cathode to monoanion			
$R^+2e_{(e^1)} \rightarrow R^=$	electroreduction at cathode to dianion			
$R - e_{(e_1)} \rightarrow R^+$	electrooxidation at anode to monocation			
$R - 2e_{(e1)} \rightarrow R^{++}$	electrooxidation at anode to dication			
$R^ e_{(a1)} \to R$	electrooxidation of anion to parent at anode			
$R^{=} - 2e_{(e1)} \rightarrow R$	electrooxidation of dianion to parent at anode			
$R^+ + e_{(e1)} \rightarrow R$	electroreduction of monoanion to parent at cathode			
$R^{++} + 2e_{(\bullet 1)} \rightarrow R$	electroreduction of dication to parent at cathode			
$A + e_{(e1)} \rightarrow A^-$	electroreduction at cathode to monoanion in a MIXED ECL SYSTEM			
$D - e_{(e1)} \rightarrow D^+$	electrooxidation at anode to monoanion			
$R^- + R^+ \rightarrow 2R + hv$	over-all scheme of ECL light generating step			
$A^- + D^+ \to A + D + hv$	over-all scheme of ECL light generating step in a MIXED ECL SYSTEM			
$A^- + D^+ \to {}^1A^* + D$	formation of excited singlet of A in homogeneous charge transfer step			
$A^- + D^+ \rightarrow A + {}^1D^*$	formation of excited singlet of D in homogeneous charge transfer step			
$A^- + D^+ \rightarrow {}^{3}A^* + D$	formation of triplet of A in homogeneous charge transfer step			
$A^- + D^+ \rightarrow A + {}^3D^*$	formation of triplet of D in homogeneous charge transfer step			
$^{3}A^{*}+D \rightarrow A + ^{8}D^{*}$	formation of triplet of D via sensitization			
$A + {}^{3}D^{*} \rightarrow {}^{3}A^{*} + D$	formation of triplet of A via sensitization (direction ECL system			
	dependent)			
${}^{3}A^{*} + {}^{8}A^{*} \rightarrow {}^{1}A^{*} + A$	triplet-triplet fusion (TTF)			
$^{8}D^{*} + ^{3}D^{*} \rightarrow ^{1}D^{*} + D$	TTF			
$A^* + A \rightarrow A^*(A)_2^*$	excimer formation in Singlet-route step			
${}^{3}A^{*} + {}^{3}A^{*} \rightarrow {}^{1}(A)_{2}^{*}$	excimer formation in TTF step			
${}^{8}D^{*} + {}^{8}D^{*} \rightarrow {}^{1}(D)_{2}^{*}$ $A^{-} + D^{+} \rightarrow [A^{-} \dots D^{+}]$	excimer formation in TTF step solvent separated ion pair formation in MIXED ECL SYSTEM			
$A^- + D^+ \rightarrow (AD)^*$	exciplex formation in redox step			
$A^* + D \rightarrow (AD)^*$	exciplex formation from ${}^{1}A^{*}$			
$A^+D^* \rightarrow (AD)^*$	exciplex formation from ${}^{1}D^{*}$			
$A^* + Q \rightarrow A + Q + q$	thermal quenching of ${}^{1}A^{*}$			
$D^* + \tilde{Q} \rightarrow D + \tilde{Q} + q$	thermal quenching of ${}^{1}D^{*}$			
${}^{3}A^{*} + \widetilde{Q} \rightarrow A + \widetilde{Q} + q$	thermal quenching of $^{*}A^{*}$			
$^{8}D^{*} + \widetilde{Q} \rightarrow D + \widetilde{Q} + q$	thermal quenching of $^{\circ}D^{*}$			
$(AD)^* + Q \rightarrow A + D + Q$	$+q$ thermal quenching of $(AD)^*$			
$(D)_{2}^{*} + Q \rightarrow 2D + Q + q$	thermal quenching of $(D)_2^*$.			
$(A)_2^* \longrightarrow {}^3A^*$	intersystem crossing of ¹ A [*]			
$^{1}D^{*} \sim 3D^{*}$	intersystem crossing of ${}^{1}D^{*}$			
$R^- + Q \to X$	decomposition of anion			
$R^+ + \bar{Q} \to X$	decomposition of cation			
$X \xrightarrow{\bullet} X^* \qquad \dots \qquad \dots$	excitation of decomposition product by ECL intermediers			
$R^- + R^+ \to R + R + q$	general representation of 'dark path' in ECL			
$A^* \to A + hv$	fluorescence of A			
$D^* \rightarrow D + hv$	fluorescence of D			
$(AD)^* \rightarrow A + D + hv$	exciplex fluorescence			
$(A)_2^* \rightarrow 2A + h\nu$	excimer fluorescence			
$(D)_{2}^{*} \rightarrow 2D + hv$	excimer fluorescence			
$X^* \to X + hv$	decomposition product fluorescence			
$^{3}A^{*} \rightarrow A + hv$ $^{3}D^{*} \rightarrow D + hv$	phosphorescence in ECL (rare) phosphorescence in ECL (rare)			
$D \rightarrow D + \Pi V$	phosphorescence in ECL (rare)			

Table II

Solvent (MP)	Electrolytea	Oxidation-Reduction Limit ^b (V. vs. Ag Reference Electrode)
DMF	TBAP	+1.5/-2.7
ACN	TBAP	+1.5/-2.7 +2.2/-2.8
THF :	TBAT	+2.27 - 2.03 + 1.57 - 3.0
PPO (70-72)	TBAP	+1.5/-2.2
PHEN (100-101)	TBAP	+1.4/-2.2
PPD (140-141)	TBAP	+1.8/-2.0
TH (154—156)	TBAP	+1.2/-2.4
TBAP (217—218)	—	+2.8/-3.0

Electrochemical Window of Some of the Solvents Used in ECL Research

Abbreviatiohs: DMF: N,N-dimethylformamide, ACN: acetonitrile; THF: tetrahydrofuran; PPO: 2,5-diphenyloxazole; PHEN: phenathrene; PPD: 2,5-diphenyl-1,3,4-oxadiazole; TH: thianthrene; TBAP: tetra-n-bytylammonium perchlorate.

a) The supporting electrolyte concentration was 0.10 M in all cases.

b) The potential where current due to background decomposition (in the absence of added solute, using a current setting that would have been typical if 3 mM solute were present) was at least 1/10th the i_p current usually observed in a 3 mM DPA solution at the same 100 mV/sec CV scan rate.

type ECL [12-14], the thermodynamics of the homogeneous charge transfer process Eq. (1) is determined by the heterogeneous charge transfer steps. Quantitatively,

$$-\Delta H_r^0 = E_{R/R^+}^0 - E_{R/R^-}^0 - 0.10 \,\mathrm{eV} \tag{2}$$

at room temperature, where the first term is the reaction enthalpy, the second and third terms give the standard redox potentials of the ECL parent (solute), and the last term is the commonly used estimate of entropy losses. When $|\Delta H_r^0| \ge E_s$, where E_s is the first excited singlet energy of the ECL emitter, the system described in Eq. (1) is called "energy sufficient", otherwise as "energy deficient". A novel possibility arises in "mixed" ECL systems, where the cation and anion are derived from different com₅ pounds (cf. Table I): now the redox reaction may be energy sufficient with respect to one emitter, yet remain energy deficient with respect to the other [15].

The energy doubling process leading to fluorescence in the energy deficient case is termed "triplet-triplet annihilation", or, preferably, "triplet-triplet fusion" [16] to emphasize the energy building aspect of

$$3_{R^*} + 3_{R^*} \to 1_{R^* + R}$$
 (3)

The intermediacy of triplets has been also proposed for those puzzling ECL systems which work under a step function excitation, *i.e.* only a DC reduction potential needs to be applied [17-19]. Luminescence properties of several ambient and elevated temperature ECL systems are presented in Tables III and IV, respectively. Such results are typical for general investigation of new ECL systems. One of the recognized aims of preliminary investigations is to find efficient ECL systems, *i.e.* where excited state production according to Eq. (1) is a significant reaction channel in comparison

2*

Table III

Luminescence Properties of Several ECL Systems at Room Temperature

ECL System [#]	Emitters [@]	Relative* Intensity	Comments&
PPD/TH	$(AD)^*$	1.00	2-electrode, 3-electrode mode of electrogeneration
РРО/ТН	$1_{A^*}, 1_{D^*}, 1(A)_{\mathfrak{s}}^*$ (?)	0.1	2-el, 3-el, unstable A ⁺ ; in all these mixed systems the 4300 Å emission, attributed to ¹ TH [*] , was the most intense emission peak
PPO	$1_{A^{*}}, 1_{(A)_{2}^{*}}$ (?)	0.01	2-el, 3-el; A ⁺ is unstable; filming upon oxidation
PPO	$1_{A^{*}}, 1_{(A)_{2}^{*}}(?)$	0.005	DMF solvent, 2-el, 3-el; very unstable A ⁺ ; spectral shifts, complications
PPO/WB	$1_{A^*}, 1_{(A)_2^*}$ (?), X^* (?), D^* (?), $(AD)^*$ (?)	0.05	2-el, 3-el; broad emission structurelless; stable ions
PPO/WB	${}^{1}_{A^{*}}, {}^{1}_{(A)_{2}^{*}}$ (?), (AD)*, ${}^{1}D^{*}$ (?)	0.05	DMF solvent, 2-el, 3-el, stable ions
α-ΝΡΟ	1 _{A*} , X* (?)	0.1	stable A ⁺ , filming upon generating A ⁺ ; light inten- sity drops quickly
РОРОР	1 <i>A*</i> , <i>X*</i> (?)	0.01	stable A ⁻ , filming upon generating A ⁺ ECL intensity falls rapidly
POPOP	1 <i>A</i> * (?), X*	0.01	DMF solvent; stable A .
BBOT	1 <i>A</i> *, <i>X</i> * (?)	0.05	solutility problem; A [†] film very strongly
BBOT/TH	1 <i>A</i> *, 1 <i>D</i> *, <i>X</i> * (?)	0.1	2-el, 3-el; BBOT interferes with D ⁺
BBOT/WB	1 <i>A*, X*</i> (?)	0.1	2-el, 3-el; there is significant broadening of the spectrum, exact cause cannot be specified from data
PTP	1 <i>A*, X*</i> (?)	. 0.005	the cathodic limit of ACN is insufficient for reducing this compound, the emission is under undesirable electro-chemical conditions

ECL System#	Emitters ^e	Relative* Intensity	Comments&	·
FTD	1 _{A*, X*} (?)	0.01	2-el, 3-el; anodic reaction leads to filming	
FTD	1 _' A*, X* (?)	0.005	DMF solvent; anodic range available in DMF is too short, the process is in the 'background'	
ATD	1 _{A*, X*} (?)	0.01	2-el, 3-el; A ⁺ highly unstable	
APD	1 A*, X* (?)	0.05	2-el, 3-el; A ⁺ is relatively stable (compared to PPD)	•
BTD -	1 _{A*} , x* (?)	0.005	2-el, 3-el; severe filming of the electrode, the ECL intensity is falling	
FTD/TH	$(AD)^*$ (?), X^* (?)	0.5	2-el, 3-el; stable emission	. •
ATD/TH	$1_{A^*}, 1^{D_*}, X^*$ (?)	0.5	2-el, 3-el; 1 _{A*} emission is very small	
APD/TH	1 _{A*} , 1 _{D*} , X* (?)	1.1	2-el, 3-el; very stable ECL emission	
BTD/TH	1 _{A*} , 1 _{D*} , X* (?)	1.0	2-el, 3-el; very stable ECL emission	
APD/WB	1 <i>4</i> *, <i>x</i> *	0.01	2-el, 3-el; as in most similar systems, the ECL ascribable to 1_{A^*} is of a very low intensity by comparison to the rest of the structureless band	

Table III — CONT.

The concentration of A and D was 1 mM unless solubility problems existed; the supporting electrolyte was 0.1 M TBAP or TBABF₄. The frequency of electrogeneration was always swept between 1 Hz and 1 kHz, the maximum ECL emission usually occurring between 50 and 200 Hz. Unless specified as 2-electrode ("2-el"), 3-electrode ("3-el"), only the controlled potential mode of electrogeneration was used.

^e Assignments of longer wavelength emitters are tentative, some of the emitters labeled X^* (?) may well be dimeric in nature such as $(A...D)^*$ for example.

* These are based on 1 mM PPD/1 mM TH in ACN-TBAP as standard; the values reported correspond to the maximum obtainable intensity in a given system by varying f or E_p (or ΔE in "two-electrode" mode of electrogeneration) in a routine manner.

& For structures of additional scintillator materials cf. I. B. Berlman, "Handbook of Fluorescence Spectra of Aromatic Molecules", Academic Press, Newsork, N. Y., 1965.

No.	Solvent ^a	Electrolyte	Solute(s)	Temperature ^b T °C	Exp. Conditions	Results and Remarks
	ТВАР		— —	220	CV; potential steps; voltage pulses	no luminescence detected
2	TBAP	·	RUB	220	CV; potential steps; voltage pulses	no luminescence; unstable RUB cation and anion
3	ТВАР		DPA	220 `	CV; potential steps; voltage pulses	no luminescence; unstable DPA cation and anion
4	TBAC1		DPA	· 80 ·	CV; potential steps	no luminescence; stable DPA ⁻ , TBAC1 unsuitable for DPA ⁺
5	PPO	TBAP	—	80	potential steps; voltage pulses	no luminescence
6	РРО	ТВАР	RUB	80	CV	stable R^+ and R^- ;
7.	PPO	TBAP	RUB	80	potential steps	RUB ECL detected
8	рро	TBAP	RUB	80	voltage pulses	RUB ECL, brighter than above
9	РРО	TBAP	RUB	80	voltage pulses sine wave at 60 cps	RUB ECL for 30 days continuous, intensity fell
. 10	рро	TBABF	RUB	80	voltage pulses	RUB ECL
rı	РРО	TMABF	RUB	80	voltage pulses	RUB ECL
12	РРО	TEAP	RUB	80	voltage pulses	RUB ECL
13	РРО	ТМАР	RUB	80	voltage pulses	RUB ECL
14	PPC	ТВАР	TH and PPD	80	potential steps	no luminescence
15	РРО	ТВАР	DPA	80	CV; potential steps, voltage pulses	stable R^+ and R^- ; DPA ECL
16	PPO/PPD	ТВАР	RUB	115	voltage pulses	RUB ECL
17	ΡΡΟ/ΡΤΡ	твар	RUB	95	voltage pulses	RUB ECL
18	ТН	ТВАР		150	CV; potential steps	no luminescence
19	ТН	ТВАР	PPD	150	potential steps	no luminescence
20	PHEN	TBAP	RUB	100	voltage pulses	RUB ECL

.

Luminescence Properties of Several ECL Systems at Elevated Temperatures

12

(A)			-			
21	PPD	TBAP	RUB	140	voltage pulses	RUB ECL
22	PTP	TBAP	RUB	220	voltage pulses	RUB ECL
23	PPO/1-methyl- naphthalene	твар	RUB	80	potential steps; voltage pulses	RUB ECL; brighter than using PPO alone
24	PPO/2-methyl- naphthalene	TBAP	RUB	80	potential steps; voltage pulses	RUB ECL; brighter than using PPO alone
25	N,N-diphenyl- formamide	TBAP	RUB	80	voltage pulses	no luminescence
26	РРО	ТВАР	TPP	80	CV; potential steps; voltage pulses	TTP ECL of very low intensity

Abbreviations: RUB: rubrene; TBABF₄: tetra-n-butylammonium tetrafluoborate; TBACI: tetra-n-butylammonium chloride; TEAP: tetra-n-ethylammonium perchlorate; PTP: p-terphenyl;

a) The typical ratio of solvent to electrolyte to solute was 100:10:1, resulting in solutions approximately 5 mM in solute. When a mixed solvent was used, the component added to PPO was approximately 25% by wt.

b) Estimated sample temperatures in the vicinity of the electrode. The bath temperature was considerably higher than these values, e.g., in the case of molten TBAP the bath had to be higher than 235 °C to prevent solidification of the sample in the vicinity of the electrode. Since the electrodes are good heat conductors, the temperature in the vicinity of the electrode is lower than that of the rest of the ECL solution.

to "dark reactions" (cf. Table I). The various types of ECL afficiency that have been used in the scientific literature are summarized in Table V.

The multi-step ECL process in prone to lose efficiency in a number of ways including the spin-statistical contribution [20], solvent and supporting electrolyte effects [21-22], ion-annihilation at the electrode [23], and intersystem crossing [24]. A large Stokes (0, 0) loss, characteristic of many ECL parent dyes, can also be a source of non-radiative loss of electronic excitation energy [25-26]. Counteracting such losses, endothermic steps are thermodynamically permitted in both the heterogeneous and homogeneous electron transfer reactions; yet on the other hand these were shown [27] to fall in the *ignis fatuus* category for energetically significant utilization with available ECL reactions.

Rigorous determination of the quantum efficiency of an ECL system is an exacting task that makes clear the intersectional nature of this research area: it involves, on the one hand, the standard repertoire of electrochemical techniques [28-31], and, on the other hand, spectroscopic methods and considerations. [20], [32-35]. A survey of representative Φ_{ecl} values is given in Table VI. By the commonly accepted definition [36-40] the ECL quantum efficiency is

$$\Phi_{ecl} = \frac{\text{number of photons emitted}}{\text{number of } e^{-} \text{ transferred in the homogeneous (redox) step}}.$$
 (4)

Emphatically, Φ_{ecl} is not simply based on the number of heterogeneous electron transfer events, but on the number of redox events occurring between electrogenerated cations and anions; hence the occasional notion in the research literature that (photons emitted/electrons input) would be a measure of Φ_{ecl} is a mistaken one, and any semblance to the classical definition of fluorescence quantum efficiency

$$\Phi_f = \frac{\text{number of photons emitted}}{\text{number of photons absorbed}}$$
(5)

is superficial and misleading. How profoundly the electrochemical steps affect the entire ECL process is demonstrated by the variation of Φ_{ecl} values as a function of experimental conditions (Table VII); the results plainly indicate that uniformity of results depends on rigorous methodology of the researcher, well beyond the mere selection of suitable fluorescors.

Table	V
-------	---

Various Types of ECL efficiency

Type & Symbol	I (light intensity)	i (current)	Footnote
Power Practical Φ_{prac} Electrical Φ_{elec} Coulombic Φ_{coul} ECL Φ_{ecl}	$I_t @eV$ I_t I_c I_c I_c I_c	i, @V i, i, i, N	a) b) c) d)

a) Total emitted light/total current.

b) I_t is corrected for solution losses, reflectivity...

c) The current *i* is corrected for charging and background processes.

d) Correction for number of electrogenerated species which are lost.

THEORY OF CHEMIEXCITATION

Compound (concentration)	Solvent ^a	Method	Efficiency ^b	Ref
MADI (1 mM)	DMF	2-elec. 60 Hz sp. wave IS—PM (s. s.)	$\Phi_{prac} = 0.1 - 0.2$	d
Rubrene	ØCN	pulsed	$\Phi_{coul(?)} = 1.5; 0.87^{\circ}$	e
DPA (2 mM)	DMF	RRDE-Direct PM	$\Phi_{ecl} = 0.08$	f
DPA—TMPD (1 mM—1 mM)	DMF	RRDE-Direct PM	$\Phi_{ecl} = 0.006$	f
Rubrene (1 mM)	DMF	RRDE-Direct PM	$\Phi_{ecl} = 0.007$	f
PYRENE-TMPD (3.5 mM—2 mM)	DMF	RRDE-Direct PM	$\Phi_{ecl} = 0.007$	f
DPA (0.27 mM—2.7 mM)	DMF	3-elec. (1 sec. pulses) (2nd pulse used for ISPM; F-plot)	$\Phi_{ec1} = 0.05 - 0.15$	g:
Rubrene (0.4—1 mM)	DMF	3-elec. (1 sec. pulses) (2nd pulse used for IS—PM; F-plot)	$\Phi_{ecl} = 0.05$	g:
Rubrene (0.6—1.2 mM)	ØCN	3-elec. (1 sec. pulses) (2nd pulse used for IS—PM; F-plot)	$\Phi_{ocl}=0.1$	g. ,
FA-10 MP (0.21.5 mM)	DMF	3-elec. (1 sec. pulses) (2nd pulse used for IS—PM; F-plot)	$\Phi_{ecl} = 0.006 - 0.01$	g

 Table VI

 A Survey of Representative Φ_{ect} Values

Abbreviations: MADI, N-methyl-1,3-p-anisyl-4,7-isoindole; FA, fluoranthene; PM, photomultiplier; F-plot, Feldberg-plot; s. s., steady state; 3-elec., potentiostated electrogeneration; IS, integrating sphere; Direct PM, the ECL intensity was insufficient for direct actinometric calibration, but it was referred back to an actinometric calibration using an artificial light. source.

- a) The solvent contained 0.1 M TBAP as supporting electrolyte in all cases.
- b) The efficiency is given in %, 100% being the possible maximum.
- c) The efficiency varies with stepping positive or negative.
- d) A. Zweig: Advances in Photochemistry, 6, 425 (1968).
- e) D. M. Hercules: Accounts Chem., Res. 2, 301 (1969); "Physical Methods in Organic Chemistry", 4th ed., Part II, A. Weissberger and B. Rossiter; Eds., Academic Press, New York, N. Y., 1971.
- f) J. T. Maloy: Ph. D. thesis, The University of Texas at Austin, 1970; J. T. Maloy and A. J. Bard: J. Amer. Chem. Soc., 93, 5968 (1971).
- g) R. Bezman and L. R. Faulkner: J. Amer. Chem. Soc., 94, 6317, 6324, 6331 (1972).

Table VII

ECL System [#] Concentrations (mM)	Method*	Ф _{есі} (%)	Comments
DPA/TH -(7.77)/(11.11)	Pulsed	18.1	maximum Φ_{sci} value, using the same solution that gave 4.9% under steady state (ss) condition (cf. below in Table)
DPA/TH -(7.77)/(11.11)	Pulsed Actinometry	4.3	75 minute exposure time continuous
· ·	Actinometry	(~10)	peak value, estimated from photodiode monitoring
DPA/TH •(7.77)/(11.11)	· Pulsed ss	3.5	.16 hrs continuous
DPA/TH √(7.77)/(11.11) _	Pulsed ss	2.6	2 hrs at 300 Hz; same solution as in 16 hr experiment
DPA/TH (7.77)/(11.11)	Pulsed ss	4.9	solution in which 18.1% was obtained; the 4.9% refers to a 14 hr experiment, applying optimal potentials
DPA/TH (7.77)/(11.11)	RRDE Actinometry	6.4	975 seconds duration with several 30 second stops (not counted in the 975 seconds) for recovery of ECL intensity
DPA/TH / ·(7.77)/(11.11)	RRDE Actinometry	(~13)	peak value, estimated from photodiode monitoring during actinometry
DPA •(7.77)	RRDE	5.4	averaged
(2.20)	RRDE	11.3	averaged
·(-+0)	RRDE	(~13)	extrapolated maximum
DMA/TPTA (0.100 mM each)	RRDE	(7)	in THF, extrapolated;
rubrene (2.00)	Pulsed	1.3	in benzonitrilev solvent

A Survey of Φ_{ocl} Values Obtained Under Various Experimental Conditions

Abbreviations: ss: steady state; RRDE: rotating ring-disk electrode; TPTA: tri-*p*-tolylamine. # Pulsed method implies 60 Hz as the frequency of electrogeneration unless specified otherwise under 'comments'.

* The solvent — supporting electrolyte system was (50% ACN: $33\% \otimes H$: $17\% \otimes CH_3$) — $\cdot 0.1 M$ TBAP unless specified otherwise under 'comments'.

A fine point with major consequences which needs to be taken into consideration in adoptin fluorescence principles in ECL research stems from a great difference in bimolecular excited state formation; in case of photon absorption, diffusion of the excited molecule (R^*) to within the interaction sphere of a suitable moiety (R) follows creation of R^* :

$$R + hv \longrightarrow R^* \tag{6-a}$$

$$R^* + R \xrightarrow{\text{diffusion}} (R \dots R)^*$$
 (6-b)

whereas in ECL the order is reversed:

$$R^{+} + R^{-} \xrightarrow{\text{diffusion}} (R^{+} \dots R^{-}) \rightarrow (R \dots R)^{*}$$
(7)

similar considerations obviously extend to mixed ECL systems and creation of $(A...D)^*$, indicating that the redox path is preferential, in a sense even ideal, for production of excimers and exciplexes. The prominence of dimeric emission has been reported indeed in a number of ECL systems [15], [41-42], well in accord with observations in chemiluminescence [43-45].

Purposeful variations, and enhancement of Φ_{ecl} is an important topic on both theoretical and practical grounds. The systematic increase of Φ_{ecl} in case of the 9,10dimethylanthracene/tri-*p*-tolylamine/tetra-*n*-butylammonium perchlorate/tetrahydrofuran system (Table VIII) suggests that the supporting electrolyte concentration has an unusually significant role in this system. An explanation of the empirical observation stems from increase of the reaction enthalpy, ΔH_r^0 , with decreasing concentration of the tetra-*n*-butylammonium perchlorate supporting electrolyte (Table IX), whereby the formerly triplet-route ECL system becomes energy sufficient with respect to the 9,10-dimethylanthracene first excited single state ($E_s = 3.06 \text{ eV}$). The by-passing of quenching problems associated with the triplet state are, in turn, demonstrated by these selfsame results. It would be unlikely to encounter a similar quantum yield increase in photonic excitation, where the A^- and D^+ energetics do not enter via Eq. (2).

A further distinction between photonic and redox excitation concerns the timeevolution of the energetic molecules [46—47]. The homogeneous electron transfer in fluid solution occurs several orders of magnitude slower than the photon absorption, shown by the potential energy curves (G vs. Reaction Coordinate) in the cohesive theoretical formulations of MARCUS [48—50]. Yet in attempting to approach the ECL problem from the fluorescence side, we find that the quantum yield of fluorescent solutions as given by Stepanov's formula [51—52], or its corrected version [53]

$$f(v) = Cn_a(v)k(v)v^3e^{-hv/kT}$$

where f(v) is the normalized fluorescence energy spectrum, C a constant, k(v) the

Table VIII

Increase of Φ_{eet} as Function of Supporting Electrolyte Concentration in the 9,10-dimethylanthracene/ tri-p-tolylamine/tetra-n-butylammonium perchlorate/tetrahydrofuran System

DMAª	ТРТА	TBAP ^a ,	Ø _{eci} t
0.100	0.100	200	0.6
0.100	0.100	120	· 2.5
0.100	0.100	60.0	4
0.100	0.100	5.00	6

a) All concentrations are in mM.

-b) Measured at f=0.5 Hz, λ =4300 Å

(8)

7	abl	e l	'X

Increase of ECL Reaction Enthalpy as a Function of Supporting Electrolyte Concentration in the 9,10-dimethylanthracene/tri-p-tolylamine/ tetra-n-butylammonium perchlorate/tetrahydrofuran System

TBAP (mM)	DMA (mM)	TPTA (mM)	mV/sec	- <i>Ē_P_c</i> (m	Ep _a V)	∆E _P c	⊿ <i>E_P_a</i> (mV)	<i>∆H</i> (eV
200	1.00	1.00	100	2.165		70		
100	1.00	1.00	200	2.105	0.856	70	. 70	2 00
10	1.00	1.00	200	2.675	0.050	843	. 70	2.86
200	0.100	0.100	200	2.160		. 68		
200	0.100	0.100	200	2.100	0.940	00	80	2.94
200	0.100	0.100	100	2.116	0.940	78	80	2.94
200	0.100	0.100	100	. 2.110	0.921	10	75	2.88
120	0.100	0.100	50	2.155		70	15	2.00
120	0.100	0.100	50	2.155	0.883	70	67	2.88
100	0.100	0.100	100	2.106	0.005	57	07	2.00
100	0.100	0.100	100	2.100	0.893	57	73	10
60.0	0.100	0,100	100	1.269	0.075	67	75	2.84
60.0	0.100	0.100	100	1.207	0.860	07	83	2.0-
10.0	0.100	0,100	.100	2.294	0.000	169	00	2.97
10.0	0.100	0,100	100	2.274	1.004		116	2.04
10.0	0.100		200 .	2.228	1.004	166	110	3.05
10.0	0.100	0.100	200 .	2.220	1.019	100	134	2 00
1.0	0.100	0'100	200	2.357	1.019	522	134	3.09

28

absorption coefficient, does not carry a temporal factor. Irrelevant as it may be for the photon-in/photon-out reaction channel, which for a given species, solvent conditions and temperature, is uniquely defined, the ECL process in general is not well approximated without the time scale. The reason is that molecular geometry changes and solvent cage shifts occur after creation of R^* in the case of photonic excitation, but may be significantly complete *before* creation of R^* in ECL. Due to this timescale inhomogeneity of the two reaction channels, it has been reported that the ECL quantum efficiency cannot be expressed properly as a product of an efficiency quotient leading to R^* production and Φ_f , the ordinary fluorescence quantum yield of the ECL emitter [54]; hence the interaction between electrochemistry and spectroscopy in ECL is a higher order one, and, mathematically speaking, the variables are not separable. Paraphrased, the set of relevant quantum states that describe the time-evolution of R^* depends on the reaction channel. Such a set of quantum states has been formally treated as a Markov chain [25], or the problem can be approached by adopting the multicomponent luminescent solution treatment of KETSKEMÉTY [55]. It should be noted that, unlike in ordinary multi-component luminescent systems, in the ECL reaction some transient components contribute according to their lifetime, *i.e.*, appear in the summation with an extra Gaussian or pre-exponential factor.

How significant are the issues raised here can best be gauged from direct experiments, where the time-scale inhomogeneity between the photonic and redox reaction channel leads to conspicuous changes. A promising system to demonstrate the difference would (1) have a large change in solute geometry between the ground (R) and excited (R^*) state, (2) the time-evolution of R^* should bypass in an unequivocal manner (at least some) of the quantum states that cause the loss in efficiency. This opens the exciting possibility that $\Phi_{ecl} > \Phi_f$ may be observed, although the losses commonly encountered in charge transfer excitation mitigate against this very strongly.

Mixed ECL systems based on the solute thianthrene (TH) meet the rather specific requirements set forth: (1) TH has a large change in geometry in going from R to R^* [56], (2) the geometry change upon photon absorbtion leads to very dominant inter system crossing (Bonnier and Jardon report 96% triplet yield and only 3.6% singlet yield), (3) the redox excitation path avoids the large geometry change and concomitant

Table X

Anionª	<i>E</i> _{1/2} (V vs. SCE)	$-\Delta H_r^0$ (eV)	Ø _{eci}
DPA	-1.85	2.97	1
PD	-2.14	3.26	0.1
PO	-2.25	3.37	0.01
HEN	-2.41	3.53	0.005
H	-2.54	3.66	0.000

Increase of Φ_{ecl} as a Function of Reaction Enthalpy in Mixed ECL Systems Based on the Thianthrene Cation and Different Anions

a) All solute concentrations were 7 mM in dry, de-aerated ACN--0.1 M TBAP, except [DPA] was 0.75 mM due to low solubility.

intersystem crossing that follows photonic excitation, because the order of planarity is $TH^+ > TH^* > TH$ [15]. An extensive study [24] summarizes the results of a series of ECL efficiency determinations; it seems conspicuously evident that as the chemical excitation energy (ΔH_r^0) is lowered towards 2,86 eV (the first excited singlet energy of thianthrene as determined from fluorescence emission), the photon yield increases (Table X.). The experimental observations demonstrate that the excitation process in electrochemiluminescence can differ profoundly from photon absorbtion, the effective fluorescence quantum yield of a solute may vary significantly pending both mode of excitation and chemical energy input, and that the relatively slow time scale of charge transfer excitation can play an important role. In closing it is comfortable to note that the diametrically opposite relationship between ΔH_r^0 and Φ_{ecl} , as seen from Tables VIII-IX vs. X, is not outside the realm of scientific explanation; indeed they provide valuable insight into the multifarious ECL process.

Helpful discussions with DR. F. PRÄGST are gratefully acknowledged. Financial support during part of this study was received from the National Science Foundation. Material was presented at the International Conference on Chemi- and Bioenergized Processes, Guarujá, Sao Paulo, Brasil, August 5-8, 1978.

References

- [1] Hojtink, G. J.: In "Chemiluminescence and Bioluminescence", M. J. Cormier, D. M. Hercules and J. Lee, Eds., Plenum Press, London-New York. (1973).
- [2] Hercules, D. M.: Science 145, 808 (1964).
 [3] Mann, C. K.: In "Electroanalytical Chemistry", A. J. Bard, Ed., Vol. 3, Marcel-Dekker, Inc., New York, 1969. Ch. 2.
- [4] Feldberg, S. W.: J. Amer. Chem. Soc. 88, 390 (1966).
- [5] Cruser, S. A. and A. J. Bard: Anal. Letters 1, 11 (1967).
- [6] Cruser, S. A. and A. J. Bard: J. Amer. Chem. Soc.; 91, 267 (1968).
- [7] Prater, K. B. and A. J. Bard: J. Electrochem. Soc. 117, 207-210 (1970).
- [8] Maloy, J. T.: Comput. Chem. Instrum. 2, 241 (1972).
- [9] Measures, R. M.: Appl. Optics 13, 1121 (1974).
- [10] Keszthelyi, Cs. P. and W. B. Edwards: Proc. Louisiana Acad. Sci. 38, 102 (1975).
- [11] Keszthelyi, Cs. P.: Egypt. J. Chem. 19, 4 (1976).
- [12] Hercules, D. M., R. C. Lansbury and D. K. Roe: J. Amer. Chem. Soc. 88, 4578 (1966).
- [13] Maricle, D. L. and A. H. Maurer: J. Amer. Chem. Soc. 89, 188 (1967).
- [14] Keszthelyi, Cs. P. and A. J. Bard: J. Electrochem. Soc. 120, 242 (1973).
- [15] Reszthelyi, Cs. P., H. Tachikawa and A. J. Bard: J. Amer. Chem. Soc. 94, 1522 (1972).
 [16] Almgren, M.: In "Solar Energy Photochemical Conversion and Storage", S. Celasson and L. Engstrøm, Eds., LiberTryck, Stockholm 1977. [17] Chandross, E. A. and F. I. Sonntag: J. Amer. Chem. Soc., 86, 3179 (1964).
- [18] Keszthelyi, Cs. P. and A. J. Bard: J. Org. Chem. 39, 2936 (1974).
- [19] Boto, K. G. and A. J. Bard: J. Electroanal. Chem. 65, 945 (1975).
- [20] Keszthelyi, Cs. P.: Bull. Chem. Soc. Japan. 48, 1083 (1975).
- [21] Keszthelyi, Cs. P., N. E. Tokel-Tokvoryan, H. Tachikawa, and A. J. Bard: Chem Phys. Letters 23, 219 (1973).
- [22] Keszthelyi, Cs. P., A. T. Kessel, W. B. Edwards, and G. D. Clark: Proc. Luisiana Acad. Sci. 39, 65 (1976). -- -

. . .

- [23] Keszthelyi, Cs. P.: Proc. Louisiana Acad. Sci. 38, 107 (1975).
- [24] Keszthelyi, Cs. P.: J. Amer. Chem. Soc. 96, 1243 (1974).
- [25] Keszthelyi, Cs. P.: Acta Phys. et Chem. Szeged, 19, 221 (1973).

- [26] Keszthelyi, Cs. P.: Spectrosc. Letters 7, 19 (1974).
- [27] Keszthelyi, Cs. P.: Croat. Chem. Acta 48, 25 (1976).
- [28] Keszthelyi, Cs. P.: Acta Phys. et Chem. Szeged, 20 365 (1974).
- [29] Keszthelyi, Cs. P.: J. Electrochem. Soc. 122, (1975).
- [30] Keszthelyi, Cs. P., B. A. Kenney, and S. M. Swinney: Proc. Louisiana Acad. Sci 39, 69 (1976).
- [31] Keszthelyi, Cs. P.: 26th IUPAC Congress, Tokyo 111-489, 1977.
- [32] Keszthelyi, Cs. P.: Spec. Letters 7, 409 (1974).
- [33] Keszthelyi, Cs. P. and A. T. Kessel: Proc. Louisiana Acad. Sci 38, 98 (1975).
- [34] Keszthelyi, Cs. P. and H. L. Gardiner: Proc. Louisiana Acad. Sci 39, 59 (1976).
- [35] Keszthelyi, Cs. P.: J. Phys. Chem 81, 2009 (1977).
- [36] Hercules, D. M.: Acc. Chem. Res. 2, 301 (1969).
- [37] Weller, A.: Nobel Symposium, Stockholm, 1968.
- [38] Grabner, E. W. and E. Bauer: Ber. Bunsenges. Ges. 76, 106 (1972).
- [39] Keszthelyi, Cs. P., N. E. Tokel-Tokvoryan and A. J. Bard: Anal. Chem. 47, 249 (1975).
- [40] Keszthelyi, Cs. P.: J. Electrochem. Soc., 122, 1643 (197).
- [41] Keszthelyi, Cs. P. and A. J. Bard: Chem. Phys. Letters 24, 300 (1974).
- [42] Park, S. M. and A. J. Bard: J. Amer. Chem. Soc. 97, 2978 (1975).
- [43] Weller, A.: Chem. Phys. Letters 10, 197 (1971).
- [44] Weller, A.: Chem. Phys. Letters 10, 429 (1971).
- [45] Weller, A.: Chem. Phys. Letters 10, 590 (1971).
- [46] Keszthelyi, Cs. P.: Spec. Letters 7, 27 (1974).
- [47] Keszthelyi, Cs. P.: Spec. Letters 8, 931 (1975).
- [48] Marcus, R. A.: Ann. Rev. Phys. Chem. 15, 155 (1964).
- [49] Marcus, R. A.: J. Chem. Phys. 43, 679 (1965).
- [50] Marcus, R. A.: J. Chem. Phys. 43, 2654 (1965).
- [51] Stepanov, B. J.: Dokl. Akad. Nauk. SSSR, 112, 839 (1957).
- [52] Stepanov, B. I.: Izv. Nauk. SSSR, Ser. Fiz. 22, 1367 (1958).
- [53] Budo, A. and I. Ketskeméty: Acta Phys. Polonica, 26, 385 (1964).
- [54] Keszthelyi, Cs. P.: Appl. Optics 14, 1710 (1975).
- [55] Kecskeméty, I. and J. Kusba: Acta Phys. et Chem. Szeged 23, 375 (1977).
- [56] Bonnier, J. M. and R. Jardon: J. Chim. Phys. Physicochim. Biol. 68, 428 (1971).

ТЕОРИЯ ХИМИЧЕСКОГО ВОЗБУЖДЕНИЯ: СРАВНЕНИЕ ФОТОННОГО И ЭЛЕКТРОННОГО ВОЗБУЖДЕНИЙ

Ч. П. Кестхели

Больше десятилетия изучают уже регулярно в жидких растворах возникновение электронно-возбужденного состояния в некоторых окислительно-восстановительных процессас (ЕСЛ). Гетерегенную и гомогенную передачу заряда обычно удается разделить, первую можно рассматривать с позиций классической теории электрохимических явлений, вторую как молекулярную флюоресценцию. Результаты полученные по изучению квантового выхода показывают, что смещение времени между адсорбцией фотонов и гомогенной диффузионной передачей заряда может привести к значиельно отличающимся потерям гащения, происхождения. межсистемных переходов.