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A study of ideal-vacancy induced deep levels and changing in the density of states in two III—V 
compound semiconductors (GaP and InP) is presented. The Koster-Slater Green's-function technique 
is used in conjunction with a linear combination of atomic orbitals description of the electronic 
structure of the perfect solid. 

Introduction 

The electronic structure of localized defects in pure and III—V compound semi: 
conductors is of crucial interest in the understanding of optical and electrical pro-
perties of a class of materials of major importance in most field of pure and applied 
solid-state physics. Excellent review of the various methods for the study of deep-
level impurities and defects has been published by PANTELIDES [1]. 

In this paper the Green's-function method has been used to study the ideal-
vacancy-induced deep levels and the change in the density of states in GaP and InP 
for both cation and anion vacancy. 

In the calculation Köster and Slater method has been applied. They showed [2] 
that the electronic energy levels introduced in the band gaps by a localized perturba-
tion could be calulated from a knowledge of the Green's function for the perfect 
crystal and the matrix elements of the potential, both calculated in the Wànnièr 
representation. 

The method was developed further by CALLAWAY [3] and calculations of the 
electronic states in the band gap have been performed for the vacancy [4] and diva-
cancy [5] of Si in the Wannier representation. The numerical determination of Wann ier 
function turned out to be very tedious and difficult and for this reason only a few 
subsequent calculations have been made [6]. 

LANOO AND LENGLART [7] observed that the Köster—Slater method can be, 
applied using a conveniently chosen localized basis set. They performed a semiempi-
rical tight binding band structure calculation for Si. The ideal vacancy was defined 
by removing all the Hamiltonian matrix elements between orbitals localized about 
the central atom with all basis states describing the system. 
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This method has been extended by BERNHOLC and PANTELIDES [8], and our 
calculation is based on this technique. 

The outline of the development is as follows. In section A the tight binding for-
malism is described. Section B contains the Green's function in LCAO-basis. In 
section C the ideal vacancy potential is defined and section D contains the numerical 
results. 

A. Tight binding formalism 

A brief review of the Linear Combination of Atomic Orbitals (LCAO) Tight 
Binding Method will be given because the bulk solid electronic structure is calculated 
within the framework of this approximation [9]. 

Atomic orbitals are symbolized by (p^r—R£) where ¡i signifies both angular and 
spin angular momentum quantum numbers of the atomic wave function and R* 
is the position of the orth atom in the nth primitive cell. Bloch sums, <Pl(k, r) are 
formed by taking combinations of each of these atomic orbitals in each primitive 
cell, with the coefficients being fixed by the periodicity of the lattice: 

& (k, r) = N-W Z e ' W c p f i - f y , (1) 
11 = 1 

where the summation is over primitive cells. The perfect crystal wave functions, 
!P5(ie, r) are then linear combinations of the above Bloch functions: 

^(k, f)= 2 c;{), k)n(k, f), (2) 

where j signifies the band index and C*(j\ k) are determined by minimizing the 
expectation value of the Hamiltonian. Solving the resulting secular equations, 

Z ( Z e - i f k ) = 0 (3) 
fita n 

we get the ,/th band energy at wave vector k, Ej(jc) and the expansion coefficients, 

B. Green's function 

\ Let H° be the perfect crystal Hamiltonian and V the vacancy potential, then 
the Hamiltonian of the crystal consisting of the vacancy can be written as 

H=H°+V. (4) 

The Green operator of the perfect crystal's Schrddinger equation is: 

G° (£) = Hm (E-H°+ie) (5) 

The Schrddinger equation for the imperfect crystal can then be replaced by the 
Lippmann—Schwinger [10] equation 

TjfJi, f ) = <P°j(k, r) + G0{E)V¥j(ic, r), (6) 
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or equivalently 
[1 -G°(E)F] Wj(k, r) = Wjik, r). (7) 

In the band gap r )=0 , therefore the condition for the existence of a bound state 
becomes 

D = det || 1 — G°(E)V\\ = 0. (8) 

Within the energy bands of the perfect crystal D is nonzero and a phase shift [3] 
can be defined as follows: 

It can be shown [3] that the change in the density of states is given by 

AN{E) = (10) 

G°(E) can also be expanded in the !P®(/c, r) basis set: 

Using Eq. (2) an expansion in the (n, a) basis set is 

"ou,'v/,m ft E-Ej(k)+ie ' ( } 

where N is the number of the unit cells. 

C. The Ideal Vacancy Potential 

The ideal vacancy is viewed as the absence of the appropriate atom in the nth 
unit cell leaving all other atoms at the same positions, the atomic-like orbitals are 
retained on all other atoms, and their interactions are assumed unaltered. As we have 
seen in part B Eq. (8) is the condition that must be satisfied for a bound state to 
exist. In the (ji, a) LCAO basis it becomes 

det 11V,v/,- 2 G l ^ V ^ ^ W = 0 (13) 

If the functions are localized about atomic site and the perturbation potential V 
has a finite range the matrix element V^<x>iVp will be nonzero if both (p* and overlap 
with the potential and the size of the determinant reduces to the size of the nonzero 
part of the potential matrix [2]. The V for ideal vacancy within the tight-binding 
description using large cluster [11] represents a matrix which annuls all the interaction 
between the atom placed at vacancy site and all other atoms of the solid. In this me-
thod the perfect crystal Hamiltonian's matrix form is sheared four blocks (Fig. l.a) 
where the vacancy site is taken to be X a n d H" is the m * m submatrix and m is the 
number of orbitals chosen for atom removed to form vacancy, and the imperfect 
crystal Hamiltonian is H=H X . To achive that let H and H° be of the same size, 
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H is rewritten in the form of Fig lb, where £0 is arbitrary chosen outside the range 
of interest and since V=H—H°, V has the form of Fig. lc. An equivalent way to 
obtain a matrix representation of V is to take the limit 2?0—00 and use arbitrary 
matrices in the off-diagonal blocks. This can't change the eigenvalues of H [8]. Choos-
ing H in the form of Fig. l.d where M=H°+£" 0 1 with £"0—°°, we obtain for V 
(Fig. I.e.) 

_ (HS H\) (£„10} (~n + E0\ - H I ) 
" ~ i H i H°J " " l o h J V " I —Ha 0 ) 

a b c 

I h s l H ^ ; v ~ { 0 oJ 

d 

Fig. 1. 

The net result is that no electron is allowed to reach the site of this atom. Since the 
perturbation matrix has the above form and the matrix of the Green's operator is 

the matrix of the operator 1 — G°V becomes 

3 
From this it follows that 

de t | | l -G°V | | = d e t | | l - G M , (14) 

so that the size of the determinant reduces to the size of the nonzero part of the 
potential matrix. 

D. Calculations and results 

In the present study s, px,py, pz atomic orbitals were used, which, combined with 
the fact that GaP and InP have two atoms in the unit cell, yield an 8 X 8 secular matrix 
for the calculation of the band structure for the ideal crystal (Four valence and the 
four lowest conduction bands can be obtained). 

For numerical calculations of the energy levels of the ideal vacancy we need to 
compute the Green's-function matrix elements G^iE) on the atom X where ¡x=s or 
p and 
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This expression can also be written as follows 

dF' 

7 

(16) 

E(aV) 

Fig. 2. Real parts of G*„(E) and G°PP(E) 
of GaP in the case of cation vacancy. 
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where the quantity Cllll(Er) is given by 

^„(£0 - 2 C„(j, k)C;(j, lc)5(E'—E(J, k)). 

Using the Dirac identity (15) becomes 

G°,(E) = P jCgW-dE'-inC^E). 

- 15 - 1 0 - 5 0 5 

E(eV) 

E(eV) 
Fig. 3. Real parts of G°S,(E) and G°P(E) 

of InP in the case of cation vacancy. 
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For our present calculations we have used the method of GILAT and RAUBENHEIMER 
[12] to evaluate the integral (17) for C^(E'). Principal value integrals were evaluated 
using the identity [13] 

P f ^ d E ' -r J E = E ' a h ~ J E-E 
^dE'-g(E) In 

b-E 
E-a' 

(19) 

200.00 

E(eV) 

100.0 j 

- 15 -10 - 5 0 5 

E<eV) 
Fig. 4. Real parts of G".,(E) and GJP(E) 

of GaP in the case of anion vacancy. 
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Having evaluated the real parts of G^^E), their zeros within the band gaps were 
located and identified as bound states. The changes in the densities of states within 
the energy bands were then evaluated using Eq. (10). 

Calculations have been carried out for the ideal vacancy in GaP and In P. 
The parameterization of the energy bands of these materials is that of das SARMA 
and MADHUKAR [14] which retains the first and second nearest-neighbor interactions. 

- 15 -10 - 5 0 5 

Re G88 InP 

300.00 

200.00 

100.00 

-100.00 • ' I 

N ^ 

- 15 - 1 0 - 5 -0 5 

E(eV) 

- 15 - 1 0 - 5 0 5 

E(eV! 

Fig. 5. Real parts of G°„(E) and G°PP(E) 
of InP in the case of anion vacancy. 
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This parameterization were used to describe only the vacancy bound states of the 
same metarials. 

Figs. 2—3 show the real parts of Green's functions for GaP and for InP in the 
case of Ga and In vacancies, respectively. Figs. 4—5 show the real parts of Green's 
functions for GaP and for InP in the case of anion vacancies, respectively. The zeros 

¿Nss 
. <..00 

2.00 : 

0.0 :' 

, -2.00 ( 

-4.00 

- 15 " " -10 - 5 0 " 5 

E(eV) 

- 1 5 -10 - 5 0 5 

2.00 

0.0 

- 2 . 0 0 

- 15 -10 - 5 - - - - - - . 5 

E(eV) 

Fig. 6. A1 and T2 contributions to the change in-density 
of states induced by an Ga vacancy in GaP. 
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of in the regions of band gaps correspond to bound states of A1 symmetry and 
the zeros of G°pp in the regions of the band gaps correspond to bound states of T2 
symmetry. 

The positions of the bound states within the gaps of materials are given in Table I. 
The changes in the densities of states are given in Figs. 6—9. 

ÛNS8 

-2.00 

¿Npp 

r 

3.00 

-3.00 

E(eV> 

Fig. 7. At and Tt contributions to the change in density 
.of states induced by an P vacancy in GaP. 
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Conclusion 

The modified Koster-Slater technique has recently been widely used to calculate 
localized deep levels in semiconductors. A related quantity, the change in the density 
of states is investigated in this paper. The optical properties of the deep levels, which 
are of most important in many measurements and applications do depend on the 

- 1 5 - 1 0 - 5 0 5 

- 1 5 - 1 0 - 5 0 5 

E(eV) 

E(eV) 

Fig. 8. At and T2 contributions to the change in density 
of states induced by an In vacancy in InP. 
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band states too from where transition takes place. From our calculations it is seen 
that in case of a reasonable "localized" transition significant structure can occur due 
to the sharp peaks in the change of the density of states. This, similarly to the "inter-
nal" transitions of the d-electrons in the crystal field for transition metal impurities 
might rise to unexpected structures even in case of an ordinary deep level if this 
energy difference is smaller then the forbidden gap. It remains to find an appropriate 
system where this effect should be seen experimentally. 

A N S S 
2.B0 

-2.00 ; 

-«.00 : 

¿Npp 

E(eV) 

Fig. 9. Ai and Tt contributions to the change in density 
of states induced by an P vacancy in InP. 
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Table 1 

. A1 and T2 levels obtained in this work. Energy in eV. 
(The energy zero is at the top of the valence band) 

GaP InP 

Ai Tt 

Van ion 
^cat ion 

1.70 2.0 
0.5 

1.36 1.66 
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ИЗМЕНЕНИЯ В ПЛОТНОСТИ СОСТОЯНИЙ ВСЛЕДСТВИЕ ВАКАНСИЙ 
В ваР и 1пР 

. Г. Папп и Ф. Белезнаи 

Исследуются глубокие уровни, созданные идеальной вакансией и изменения в плот-
ности состояний в двух П1—V полупроводниках (ваР и 1пР). Используется техника гринов-
ских функций Костера—Слетера вместе с ЛКАО для электронной структуры идеального 
твердого тела. 


