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The optical transmittance of thin films is calculated assuming slowly varying thickness. The 
approximate expression, deduced here is compared with computer simulated spectra. It is shown that 
with this expression the error due to uneven layer thickness can be estimated. A new method is sug-
gested for the determination of the optical constants, extending previous procedures, wich are only 
valid for films of even thickness. 

Introduction 

Several authors have proposed the determination of optical parameters from 
transmission measurements only [1—6]. The procedure is based on the interference 
structure of the spectra, i.e. on a resolved series of maxima and minima of transmit-
tance. In general, three equations of transmittance, more specifically two for the en-
velop curves and the third for the extrema condition are sufficient to determine three 
unknown parameters: the real and immaginary parts of the refractive index and the 
layer thickness. 

This method supposes that (i) the optical constants are slowly varying functions 
of the wavelength and (ii) the film thickness is exactly constant. These conditions are 
seldom fully satisfied, for example in the case of slabs split from special laminated 
crystals [4] or vacuum deposited films of certain materials [5]. With most of the cur-
rent technologies, e.g. with the CVD method one cannot obtain a constant layer 
thickness with the accuracy required by the method. At slowly varying thickness the 
deformation of spectra can be minimized by reducing the diameter of the light beam, 
however, this possibility is limited due to the signal-to-noise ratio, Thus, we deter-
mined the error caused by thickness uneveness and developed an improved method 
to obtain the optical constants of such real layers. 
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Theory 

i) The model. The transmittance of a homogeneous film of varying thickness 
is given by the following expression, 

where T(x, y), and J(x, y) are the local transmittance and the distribution of light 
density, respectively. The coordinates are perpendicular to the incident light. The 
dependence of the local transmittance on the coordinates x and y is caused by the 
variation in thickness wich can often be described in case of real films by rather com-
plicated functions. 

As the number of unknown parameters increases in the expression of the thick-
ness, the evaluation of the measurement becomes contestable. By reducing the dia-
meter of the light beam, the change in thickness of the measuring area becomes small 
enough and the bounding surfaces of the films can be approximated by two planes 
in the interesting range. For the sake of simplicity it is assumed that the light density 
is constant inside the rectangular measuring area and the thickness varies linearly 
along the edges. The measured transmittance can be approximated by an average 
function 

where h is the largest deviation from the mean thickness d0. It can be shown that this 
approximation is valid for less rigorous conditions, too. 

In the following discussion the films with e=h/d0>0 will be referred to as real 
samples, whereas those of e=0 as perfect samples. 

Let us consider a weakly absorbing thin film deposited onto a thick transparent 
substrate. Under typical experimental conditions the interference takes place only 
within the film and the interference between the incident light beam and the reflected 
beam from the backside of the substrate can be disregarded [1]. The compex refrac-
tive index of the film is denoted by n=n2( 1 +ix) and generally the indices 1, 2 and 3 
stand for air, film and substrate, respectively. No special attention will be paid for 
free films (thin crystalline sheets, without substrate) since all the expressions below 
are also valid for those by substituing n 3 = n 1 = \ . 

The transmittance of the sample can be given by the expression [1]: 

where T f , Ts and Rf,Rs denote the transmission and reflexion coefficients of the 
film and the substrate, respectively. The corresponding expressions are derived in 
many monographs, for example in [7—9]. Our treatment is based mainly on [7]. 

Substituting the transmission and reflexion coefficients into Eq. (2) we obtain 

T 1 n meas — 
/ J(x, y)T{x, y)dxdy 

• f J{x, y ) dx dy 

(1) 

T — 
P 

(3) Qxe**x + Qie-ao*-\-Mcos(çt+ô) ' 
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where the following abbreviations are introduced: 

^ = (l-f??2)(l-i?l3)(l+K2)7;, (4a) 

fi1 = ( l - i y . r f „ (4b) 

fi. = -eis, (4c) 

M = 2\Q12 • g231 • (l+R2
s-2Rs cos (p12y'2 • sgn (n 3-n 2) , (4d) 

Rssin2<P 

l—Rscos2<p12 

a = a 0+(p12 + cp23 = ^ j ^ d + Vu + Vn = yd + Vu + cpzs, (4f) 

All the other notations are the same as in Ref. [7]: _ (m-njY+nlx» 
3 1 ~ (ni+ny+nW W 

2 n ; tij x 
t g ^ ' = + + • ( 5 b ) 

We note in passing that only the denominator of Eq. (3) is thickness dependent. 
The average value of the transmission can be obtained by inserting Eq. (3) into 

Eq. (5). For practical purposes an expression is needed which is as simple as possible, 
with an accurancy somewhat better than that of the measurements. It would be useful 
if the transmittance of the corresponding perfect layer having the same thickness as 
the average thickness of the real film could be calculated from the measured values. 
In this case the method, wich has been elaborated for the determination of the optical 
.constants of perfect layers should remain applicable with a slight modification for real 
layers, too. Such an expression can be obtained by expanding the integrand of Eq. 
(1) with regard to The result takes the following form: 

r h2" I I 
r a v = 7-0[i+tf(na , n3, £)] = T0 [ l + N-2 (2N+1), J. (6) 

where T0 is the transmission of the film of thickness d0, and N(£) denotes the denomi-
nator of Eq. (3) with d=d0 + £. The correction function K(n2, x, n3, e) is expected 
to be small, Utility of Eq. (6) depends on the fact, how many terms of the 
series have to be considered to obtain an acceptable approximation. 

(ii) Mathematical considerations. Let us consider the following derivate: 

0W(aii=o = /x*Qx*+(-yx)ke-*<>*+(- 1)INT ( ~ ) yk • M • {^J (a+a). 
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By combining this expression with Eq. (6) it can be seen that the quantity y occurs 
in each case in the product hy~a0e. Taking into account that a0=mn, with 
m=\, 2, ..., at the wavelengths corresponding to the extrema of the transmittance, 
we conclude that even for 6 « 1 the convergence of the expansion (6) may be rather 
slow. For weakly absorbing materials x<scl therefore the derivates of the exponen-
tial functions become soon negligible but the terms, which ordiginate from the tri-
gonometric part of denominator decrease tiresome-slowly. In order to get a practi-
cable expression from Eq. (6), we need to sum the trigonometric terms in closed form. 

To get an convenient overlook of the terms in expansion (6), let us arrange the 
derivates of as follows: 

N' 
{ N ' i y = - w 

> N2 N3 ' 

(N-1)'" = 

(N-1)"" = ' 

N" 
N' 

N"" 
N2 

6N" • N' 3N'3 

N 3 iV4 

8N'"-N' + 6N"2 

N 3 
36N"-N'2 + 247V'4 

N* N5 (7) 

During our subsequent considerations we shall use indices referring to the rows and 
columns of this table. 

Terms of the g-th row and r-th column of the table wich are not multiplied by 
powers of x can be summed as 

or 

MrN~(r+1) 1 2 c; (q) • cos p-(a+Ô), (for even q's) p 

MrN-e+» y« 2 S p (?) - sin p -{a + <5), (for odd q's). 

(8a) 

(8b) 

Fig. 1. The function M(n2, n3, x) (at x = 0 
and at «3=1.4, 1.6, 1.8 and 2 for curve 1,2,3 
and 4, respectively) for estimation of the order 

of terms in Eq. (11) 

The sum runs over p = r — 2 k ^ 0 , with 
k—0, 1, 2, .... The subsequent columns in 
the table are multiplied by increasing 
power of t], where t] = M/N, and rj<Bcl, 
therefore they give a decreasing contri-
bution to the correction function. It will 
be useful to rearrange the terms of the 
expansion according to the powers of?; and 
x. For weakly absorbing materials N ^ 1, 
therefore knowing the value of 
M(«2, x, n3) the contributions of different 
terms can be estimated. The values of M 
are plotted against n2 for x—0 and at 
different n3 in Fig. 1. 

The terms of each column can be 
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summed by deducing a generalised fomula for each coefficient of Eq. (8a) and (8b). 
It can easily be seen that 

5î(2n + l) = (—1)" and C1
1(2n) = (—l)n+1, 

and so the term of the highest value in the correction function can be expressed as : 

~ l y + i f « PV" 
r, cos («+<5). 2 1 ¿ n + 1)! = w ( a ° e ) •C 0 S "*' 

where a*=a+<5 and the function cp(x) is introduced 

. . x—sin* <p(x) = . (9) 

Any coefficient of the expression standing in any row of the second column can 
be calculated from the coefficients of the first and second column standing in the 
previous row. After some algebra we obtain: 

C0
2(2n+2) = SJ(2n + l), 

Cf (2n+2) = 2 • SI (2B +1) •- SI (2n +1), 

Si (2n +1) = 2 • C | (In)+C} (2 n). 

This set of equations leeds to recursion formulae and finally we get: 

C„2 (2«) = (-1)""1 , 

C | ( 2 « ) = (—1)"-(22"_ 1—1), 

S | ( 2 n + 1) = (—l) n + 1(2 2"—1). 

The summation over all the terms in the second column yields the following contri-
bution to the correction function: 

I2 {[<P («oe) - y 9 (2a0e)J • cos 2a + (p(a0fi)J. 

Coefficients of the trigonometric functions of the 3rd and 4th rows were determined 
by similar procedure as the previous one and the corresponding expressions are lis-
ted below: 

CI (In) = ( - 1 ) " + 1 • 4 ~ 1 ( 9 " - 3 . 4 " + 3 ) , 

Cf(2n) = ( - 1 ) " • 3 • 4 - 1 • (4"—4), 

5|(2n + l) = (—1)" • 3 •4~1 • (9"-2 2 n + 1+1), 

Si3(2« + 1) = (—l)n + 1 • 3 • 2~1(4B—1), 

Ci(2n) = ( - 1 ) " • 8 - 1 • (16"—4 • 9"+6 • 4"—4), 

Ci(2n) = (-l)n+1 • (9" -4 • 4"+7), 

Co (2n) = (—1)"3 • 4 - 1 • (4n—4). 
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The result of the summation over the terms in these columns is expressed in Eq. 
(11) as a function of (pipe), again. The graph of <p(x) can be seen in Fig. 2. 

The mixed terms in the expansion wich depend on both rj and x are also collect-
ed as increasing power of t]. The (rj • x) type terms originate from the second column, 
where the numerator can be expressed as 

^ ( ¡ ^ • ( « • ( a ' - ' A O . ( i o ) 

Fig. 2. The function <p(x) for the estimation the error 
according to Eq. (12) 

The index q refers to the row of the table, again. Since only the terms of the first 
derivate of N(£) appear in the sum the summation can readily be performed. The 
terms multiplied by rfx originate from the third row. The previously calculated values 
of Cr

p(q) and Sr
p(q) were utilized for facilitation of the collection. Finally, the correction 

function defined by Eq. (6) can be written as: 

K(n2,x,n3,e) = ri<p(J?) • cos a* + r/2{cp(P)+[tp (p)+0.5 • <p (2)3)] • cos 2a*}+ 

+ T]3{[3<p (P)-0.75(p (2/?)] cos a* + [0.75?» (P)-0.75<p (2p)+0.25<p (3)?)] cos 3a*}+ 

+rii{3(p(P)-0.75(p(2p)]+0.5[7(p(P)-4(p(2P)+(p(3P)] • cos 2a*+ 

+0.125 [4<p 0?) - 6<p (2/0+4<p (30) - 4q> (4p)] • cos 4a*}+ 

+ IrjxN'1 [cp (P)+cos P-1] • (Q1 e*>x-Q2e-*>*)- sin a * -

+ 0.7SifxN'1 [4<p(P)+4 cos P~3-cos 2p~<p(2p)] • (Q1e"<"'-Q2e~a'>x) sin 2a* + 

+ x*pW-2[(2Ql+x2p*)e*"°*-NQ1e*°*-4Q1Qi+NQ2e-*°*], (11) 

where the abbreviation P=OC0E is used. With the assumption that max xSri2, 
as well as Q2 has the same order as t]2, the neglected terms in Eq. (11) are in the order 
of rj5. For practical calculations many terms of this expression can be neglected 
depending on the values of n2, n3, x and s. At the extrema of the transmittance fur-
ther simplification is possible since a*%7t, and the mixed terms cancel. 
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It is interesting to note that the first term in the correction function has a simple 
physical meaning stating that the thickness uneveness should fade the interference 
pattern. Restricting the approximation only to the first term and writting M instead 
of t] we have: 

1 +M(p(P) cos a* 
"" ' e ' ^ + M c o s a * " K ' 

This approximation showes that the difference between the maxima and the minima 
of the fraction (12) decreases with increasing /? (increasing e or decreasing wavelength). 
From Eq. (12) it can be concluded that the difference in transmittance of real and per-
fect films tends to zero as [i2, since for small arguments (p(P) ~ /52/6. 

The requirement of the layer eveness i.e. perfect samples can be quantitated on 
basis of this simplified approximation (12). The largest deviation from the average 
thickness must be less than (cr/M)1/2 • /./Ann, where a is the permitted error of trans-
mittance. For a sample of «2—2, w3=l,5 and an expected value of <7~10-3 we 
obtain h<1/200. 

Comparison with computer generated spectra 

The validity of the approximation developed here was checked by computer 
simulation. Transmission spectra of uneven films were calculated by numeric inte-
gration of Eq. (3). Typical results are illustrated in Fig. 3. The parameter values 

«— WAVELENGTH (nml 
2000 1500 1000 750 500 

WAVENUMBER (cm"1)—• 
Fig. 3. Computer simulated spectra for films of an average thickness of 1500 nm (see in text). The 
highest deviation of the thickness from its average value are 0 for curve 1, 50 nm for curve 2,100 nm 

for curve 3 and 150 nm for curve 4 
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«2=2, «3=1.5 and x=0, as well as the average layer thickness are the same for 
each spectrum; the displayed set of curves was generated by varying the layer une-
veness parameter s. The first curve (curve 1 in Fig. 3) displays the transmission pat-
tern of an even film, whenever the other curves are characterized by a thickness devia-
tion of 50nm, lOOnm, and 150nm, respectively. Similar spectra were generated for 
x=0.01 and for the wavelength dependence of x, too. The simulated spectra well 
agree with the calculated curves using the correction function given in Eq. (11). 
Using only two terms from Eq. (11) the error was found to be less than 3 • 10~3 

and if the third term is included the error is further reduced below 10-4. 
The computer simulated spectra of uneven films were evaluated by the method, 

described in Ref. [4, 5], wich is valid for perfect films only. The obtained values of 
the refractive index differ considerably from those, used for simulation. The cal-
culated thickness of the film displayed an apparent wavelength dependence. As seen 
from Eq. (12) the error in thickness and the refractive index increases with decreasing 
wavelength. 

Fig. 3 illustrates an interesting phenomenon, what we call "pattern inversion". 
At the wavelengths, where the transmittance of the appropriate perfect film reaches 
its maxima, the real film shows transmittance minima in the short wavelength part 
of the spectra. In the long wavelength side of the spectra, on the other hand, the posi-
tion of the maxima coincidences. Whenever pattern inversion occure the calculated 
interference order should be altered by 1, e.g. it changes from even into odd or 
vice versa. It is surprising that this phenomenon appeares already at relatively small 
values of e(~0.07). 

On the evaluation of the spectra 

In the case of the perfect films one can obtain two equations from Eq. (3) with 
cos a* = 1 and cos a* = — 1, respectively, wich are valid for the envelop curves of 
the extrema of the transmittance. Utilising the extrema condition of the interference, 
we have three equations for 3 unknow parameters n2, x, d. The problem is over-
determined since the thickness of the film can be obtained from each extremum. 
This condition permits the determination of the fourth unknown parameter e, in 
the case of real films. We have found a value of e wich minimizes the apparent wave-
length dependence of the thickness. 

The determination of the optical constants of real films can be done as follows: 
with any arbitrarily chosen e and estimated n2 the value of the correction function 
can be obtained in the zeroth order approximation. Now, Eq. (6) yields the approxi-
mate transmittance of the corresponding perfect film and the procedure outlined in 
[1—5] can be used for the determination of the optical constants. The results of the 
first calculation yield a better approximation of the correction function and we have 
to iterate until the change of the optical constants remain less than a preset value. 
The method is self consistent for every E, but the apparent wavelength dependence of 
the calculated thickness is a good criteria for choosing the true £ value. After 2 or 3 
arbitrarily choosen e an appropriate value of e can be found by interpolation. 



EFFECT OF LAYER THICKNESS ON THE INTERFERENCE STRUCTURE 111 

Concluding remarks 

The thickness uneveness of the film has a drastic effect on the interference struc-
ture of the transmission spectrum. The derived expression describes well the proper-
ties of the model, however the model involves a strong assumption concerning the 
thickness variation in the measuring area of the sample. Decreasing the diameter of 
the measuring light beam the conditions of the model are better fulfiled. At the same 
time the thickness uneveness decreases and the measured transmittance better ap-
proaches the spectra of the perfect film and, therefore the succesive approximation 
described above converges more rapidly. 

* 
* * 
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ВЛИЯНИЕ НЕОДНОРОДНОСТИ ТОЛЫЦИНЫ ПЛЕНОК НА 
ИНТЕРФЕРЕНЦИОННУЮ СТРУКТУРУ ОПТИЧЕСКОГО 
ТРАНСМИССИОННОГО СПЕКТРА ТОНКИХ ПЛЕНОК 

М. И. Терек 

Получено аналитическое выражение для трансмиссионного спектра тонких пленок 
с медленно меняющейся толщиной (ТПМТ). Проведено сравнение спектров полученных 
моделированием на вычислительной машине с исползованием аналитический формулоы-
Выведенное выражение позволяет оценить ошибки от неоднородности толщины пленки. 
Действие распространено метода на определение оптически хконстант на основе интерферен. 
ционной структуры спектров на ТПМТ. 


