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Four basic rules for treating the kinetics of processes in the first excited singlet state are given. 
General formulae for investigating the responses of stationary, phase fluorometric, ¿-flash and gene-
ral time dependent excitation are derived for systems with one and two excited species. 

The breakdown of usual kinetic concepts in cases of time dependent rate factors, especially 
Forster—Galanin type energy transfer and nonstationary aiffusion, is briefly demonstrated and a 
novel kinetic procedure, called convolution kinetics is given in three rules. — Dynamic tests and 
examples for calculations of the new kinetics (excimer as donor, multistep and two step energy trans-
fer) are reported. 

0. Introductory considerations 

The spectroscopic significance of molecular fluorescence may be poor enough to 
justify its usual treatment as an appendix to general optical spectroscopy, as it has 
to do essentially with the longest wavelength singlet-singlett transition only. Most of 
the interesting phenomena in connexion with fluorescence refer to the time behaviour 
of molecular ensembles. It is the aim of this lecture to show that fluorescence phe-
nomena can be treated in terms of chemical kinetics. 

0.1 Generation and deactivation of exited molecules 

In accordance with Vavilov's law each absorbed light quantum transfers one 
molecule in its /irst excited .singlet state, which happens within a negligibly short time, 
of, say, 10-23 s; the very few exceptions need not be mentioned. Chemically speaking, 
a 'jump' from a minimum of the ground state hypersurface to a minimum of the FES 
(abbreviation for 'first excited singlet state') and from one thermally equilibrated 
state to the other, takes place. The detailed mechanism of the various ultrafast pro-
cesses incorporated in that 'Vavilov-jump' Sv — cannot yet quantitatively be 
elucidated in cases of practical importance, as subpicosecond kinetic spectroscopy 
is at its very beginning. In the following we deal with the FES of various species A, B, 
...which we denote A*, B*, ... omitting the suffix. 

After the Vavilov-jump of a species A -~A*, say, the various processes appearing 
in Jablonski's term scheme can take place, namely spontaneous emission (SE), 
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intersystem crossing (ISC), and internal conversion (IC). From the 'Jablonski-proces-
ses'only the SE: A*-^— A+hv is of fundamental necessity marking the upper limit 
to the lifetime T of species in the FES: T = l /« eS 10 - 6 s*>. The significance of IC with 
rate constant n1 and ISC with rate constant nST may vary from case to case depending 
on conditions. Besides the conditional IC and ISC there is a wealth of other conditio-
nal processes or types of physicochemical behaviour which may be classified by the 
keywords 'photochemistry' and 'energy transfer'. The range of rates of 'conditional' 
processes starting from the FES is between 'negligible' and 'widely outdoing' com-
pared to the rate ne of 'necessary' SE. 

0.2 Photochemical processes 

[1] Chemical reactions in the ground state correspond to movements along 
reaction pathways on the ground state hypersurface. The energy of cols between the 
minima corresponding to different chemical species has to do with the activation 
energy. Usually, species are in thermal equilibrium and need activation energy to 
undergo chemical change. It is perhaps one of the important features of the FES that 
quite analogously to the ground state there is a FES-hypersurface with almost the 
same conditions for chemical processes as in the ground state. But in many cases the 
FES-reactivities are higher because of higher electronic energy content from which 
lower activation energies E* may result. But the complexity of chemical behaviour 
is drastically reduced in the FES compared to the chemistry in the ground state or 
even in the (longer lived) excited triplet state. We only need consider 
0.21 Monomolecular processes, for instance 

dissociation A*^-~P* + Q 
isomerization A*—B* 

0.22 Bimolecular processes such as 
association A* + B-^-* (AB)* 
quenching A* + Q -*A + Q 
collisional energy transfer 

A* + B - A + B* 

(Förster type transfer needs particular kinetic treatment.) All these processes except 
quenching can be thought of as movements on the same FES-hypersurface being 
called adiabatic as energy changes smoothly and moderately, excitation being essen-
tially conserved. The Jablonski-processes, however, though being monomolecular, 
too, are connected with discontinuous transitions between different hypersurfaces 
as is quenching (probably); this behaviour is called diabatic. 

* If no measuring value n„ is available, a crude estimate is given by Ladenburg's formula 

Cn refractive index, P center of gravity wave number of fluorescence spectrum, / oscillator strength 
of longest wavelength absorption transition). ' 
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1. The four rules of FES-kinetics 

There are 4 rules necessary to deal quantitatively with FES-kinetics and to inves-
tigate it with the aid of fluorescence. The first rule \Vas introduced already in the 
context of the Vavilov-jump and will only be. repeated here. A second rule follows 
from that all bimolecular processes in FES are practically exactly pseudo first order. 
This is because all concentrations of excited species A*, B*, ... are so small that the 
concentrations of unexcited partners must be very much larger and thus cari be taken 
together with the bimolecular rate constant ka to get a brutto first order rate constant 
ka • [/>] comparable to ne (of SE). All monomolecular processes are of the first order 
per se, ergo ... (see below). ' ' 

A third rule follows from the fact that light intensities from conventional sources 
are small (it is not valid with high power laser excitation). 

1st rule: Each absorbed, light quantum transfers a molecule to its first excited singlet 
state; - . ¡ ' r 

2nd rule: All processes starting from the first excited singlet state are of the first order; 

3rd rule: All concentrations of unexcited species are taken to be constant in kinetics 
of first excited singlet state. 

These three rules usually, suffice to write down the kinetic (simultaneous first 
order) differential equations of a FES-reaction scheme,, which either must be*given or 
is constructed for trial. The fourth rule is necessary for the understanding of fluores-
cence. It may be derived as follows:. 

Suppose a complex reaction mechanism be given (not necessarily in the FES). 
Looking at some part of it we may see educts, intermediates, products and forward 
and backward reaction steps 

••..".• ... = V-\- W X+... . •: -
j*y "" ' 
Y+Z 

From a certain species V, say, may start a first order process with rate constant ky one 
of the products of which, Y, is,-not produced otherwise. Then if it is possible to mea-
sure the rate of production of 7 

we see that we thus can know [V] at any instant of time! This is valid irrespective of 
all other processes which may influence [V] (the process with ky is only one of which 
and thus is denoted by dy). In FES kinetics all processes are of the first order. Thus, 
instead of considering the concentrations [U], [V], [7], ... we may write in the same 
equations the amounts (=numbers of species or moles in the reaction vessel) denoted 
by (U), (V), (Y), ... In case of the 'reaction SE': A*—* A + h v, we may identify A* 
with Fand hv with Y (the fluorescence quanta of A* will not be produced otherwise). ' 
While it would be difficult to measure the rate of photochemically produced- A, it is, 
easy to measure the number of light quanta escaping from the vessel ... It is the total. 
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quantum flux which in principle we get by measuring the fluorescence intensity on all 
elements of a closed surface surrounding the cuvette. 
4th rule: The fluorescence flux (=integral intensity over a closed surface surrounding 

the fluorescence cuvette) of a species is at any time equal to the number of 
corresponding excited species (in FES) times its spontaneous emission rate 
constant. 

If only a spectral or spatial fraction of fluorescence is measured, rule 4 is valid 
with 'proportional' instead of 'equal'. In general it is a serious mistake (made even by 
well-known scientists) to say that fluorescence intensity be proportional to the "con-
centration" of excited species: This statement is as wrong as the claim that radio-
activity be given by the "concentration" of active matter. Really in both cases it is 
the amount or number of species considered**^. Really we ought to be sure that our 
fluorescence spectrometer measures the integral of excited species' concentration 
distribution over the sample space and not its concentration, which is a complicated 
function of exitation geometry etc. in most cases (!) This function must be known if 
reabsorption cannot be neglected. 

1.1 Simple applications of rules 1—4. 

If only one excited species is present (namely in the absence of adiabatic photo-
reactions) we get according to rules 1—3 

+ (1) 

where n = 2ini — ne + nsr+•••+na[P]+... (2) 
The solution function (/<*)(/) depends strongly on /„(*)> the time dependence of 
excitation. The most simple case to realize is: 

1.1.1. The photostationary state 

If /„=/«=constant and t—<» we get from Eq. (1) 

^ (3) 

from which follows the stationary fluorescence flux Fs when applying the 4"1 rule 

Fs = ne{A*)s = ^las- (3 a) 

** Perhaps we can understand the 4"* rule better from div/A— where f A is the 
at 

fluorescence intensity (=flux density) vector, and the right hand side represents the time change of 
concentration [A *] by emission. Applying Gauss' theorem we see that the flux FA (=surface integral 
°f /A) is found by integration of concentration over the space giving ^ f - f [A*] dv— — ^ which 

dt J dt 
is —n.{A)* according to our above reasoning. Our 'divergence principle of fluorescence' may also 
not be very familiar to spectroscopists, but is in accordance with general principles. 
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n F 
In the stationary state, the fluorescence quantum yield =—- can be deter-

fl 'as 
mined from the fluxes (intensities) Fs and Ias. Inserting Eq. (2) in Eq. (3) and marking 
entities referring to concentration of partner or quencher [P] = 0 by index 0, we get 
the Stern—Volmer—Eq. 

= — = 1 + —TPl (4) 

While the absolute measurement of quantum yield 0 needs 'integrating photometry' 
with respect to direction and wavelength, a Stern—Volmer plot needs only a spatial 
and/or spectral fraction of Fs, or an instrumental signal, provided the over all propor-
tionality factors do not vary with concentration [P]. In the case of several quenchers 
all the concentrations except one must be constant. 

1.1.2. The 5-excitation 

The solution of Eq. (1) in the case that T6=S(t — 0) is called the ¿-response 
( ¿ V O + B 

8(t — o) = o if t o bu t f 6(t-o)dt = 1 
0-t-C 

e is an arbitrarily small number. For many reasons we make use of Laplace transform. 
If we denote ~L(A*)s=y0, L t = x , with L5(f — 0) = 1, the transformed Eq. (1) reads 

y0x = -ny0 + 1; y0 = (x + n)'1. 

The backward transform yields L~1yi = (A*)i = e~M for t>0 and (A*)s = 0 for 

The ¿-response according to Eq. (6) is typical for a directly excited species without 
population by other processes, while a linear Stern—Volmer plot is not, as it may 
result from more complicated mechanisms, too. 

1.1.3. Arbitrary time dependence of excitation 

Analogously to ¿-excitation we get by Laplace transform if ~L(A*) =y and 
L /„=/ : y=(l+ri)~1-J. The transform of the ¿-response is multiplied with the 
transform of Ia . Applying the rule for backward transform of a product we get 

W=(A*)t»Ia = I.*(A*),= fla(t-9)(A*)â(9)d9. (7) 
3 = o 

The response on arbitrary excitation is given by the convolution 'product' of ¿-res-
ponse and excitation function. As this can be performed for any I (/), obviously all 
kinetic information is contained in (A*)ô. No. other choice of Ia can give additional 
knowledge. 
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1.1.4. The phase fluorimeter response ( = Fourier transform of 5-response) 

• In this case 
/„ = / „ ( 1 + 9 cos a / ) , r e s p . / „ ( l + ? e i ° " ) , (8) 

where o ^ g ^ l . Again one looks at the behaviour for t— 
By inserting Eq. (8) in Eq. (7) we can convince ourselves that the corresponding 

(A*)P is the Fourier transform of (A*)s. This is important because excitation of the 
form Eq. (8) can be realized with much better approach to ideality than ¿-excitation 
and the strain of the system by light intensity may be kept much smaller. 

The mathematical procedure of (A*)P calculation is extremely simple, namely 
almost the same as in the photostationary state. Allowing for the time-dependent term 
in Eq. (8), n merely has to be replaced with (n+ico) where the factor eiw' appears. 
The result may be written in the form 

(A*)P = ^ (1+ m cos(wt - cp)), resp. - ^ ( 1 + we'«0*-«»), (9) 

where m = q -cos (p and n = co cot <p. 

1.2. Systems with 2 excited species 

There are two types of such systems. Either the-photochemical primary process 
(starting'from the directly excited species) is bimolecular. and its inverse process is 
monomolecular or vice versa. Examples of the former are excimer and exciplex sys-
tems, while FES protolytic reactions belong to the latter. 

Exciplex/excimer system FES Protolytic reaction 

/ 
A*+B^=^{AB)* AH* -t-^—A~* + H+ 

nd' I / I + 1 I 

r A 1" r 
A+B AH A~ 

Tn both systems we suppose that only one of the two excited species is primarily 
optically populated (only with the protolytic reaction it is possible — in a narrow pH 
region'— to generate AH* and A~* simultaneously by light absorption but without 
being faced with new aspects). In the left hand side system if B—A we have an exci-
mer system. 

Applying rules 1—3 to both, systems we find, after proper arrangement, simul-
taneous first order differential equations with constant coefficients; the meanings of 
X, Y, and the nlk are given in List 1. 
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List 1 
X — (A*) • Y = {(AB)*) X= {AH*) Y=(A-*)-- • 

~(n + na[B]) nn -(n + nd) 

n'd «12 n ' a [H + ] 

n a[B] «21 nd 

~(n' + n'd) «22 ~{ri&h'a[H+]) 

The characteristic equation following from Eq. (10) we need not solve. 

(À + nu) (A + n22) — n12 «21 = 0 (10a) 

Instead of its roots and /l2 we consider Vieta's identities. 

+ h = — («îi + «22) A ^ 2 = «11 «22 — "12 "21 (11) 

With the meaning of the nik from List 1 we see that àllfour kinetic constants of the 
above reaction schemes can be determined by plotting thé experimentally determined 
left hand sides of Eqs. (12) versus concentration of the unexcited reaction partner. 
The equations of the stratight lines are given below continuing List 1 

n + n' + n'd + na[B] ;.! + x2 n + n+nd + n'a[H+] 

n(n + n'd) + n'na[B] • n(n' + n'a[H+]) + nnd 

1.2.1. The ¿-responses 

By the Laplace procedure (or another one) we find from Eqs. (10) 

(12) 

A2— Ai — Â-x 
(13) 

Ys = 
/i2 —/1 

(With respect to Eqs. (11) various equivalent preexponential factors can be written). 
If at least one of the biexponential functions can be measured there are various proce-
dures to determine and A2, from which, as we have seen, the kinetic constants can 
be ascertained. Practically, this '¿-procedure' will function only if and A2- are suffi-
ciently different, factor ...23 at least, and if the participating processes are not too 
fast. In many cases of partical importance ).2 ^ 300 ps needing 20.. .30 ps time resolv-
ing power, which no commercially available decay time measuring apparatus really 
affords with biexponential problems. Usually only the slower time constant can be 
measured which is of less significance. • - •-•'.' 
Fig. 1 shows the result of a discussion of Eqs. (10a) for an excimer system.' We see 
that n^X^n'. As n'd may be 108...109 s_ 1 , na[B] must then be of thesame 6rder of 
magnitude to give reasonable excimer formation and thus one needs a time resolution 
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in the ps region. Fortunately, the time dependent measurements can be combined 
with stationary results; otherwise FES kinetic analysis would be restricted to 'show' 
systems such as pyrene excimers [3]. 

Xj.XjIsec"1) 

60 

•106 

¿0 

n . nd 

20 

20 

Fig. 1. 

U 0 - 10 
n r (sec" ' ) 

1.2.2. The photostationary state 

The procedure of solving Eqs. (10) with I a=I a s=const , is not simpler than 
applying Eq. (7) to Eqs. (13), which can be done without specifying for the l.h.s. or 
r.h.s. scheme. We get 

«22 v _ j «21 ^ X* — I„, 
V - 2 

Inserting the l.h.s. constants of List 1 we get the Stern—Volmer-relation and a comp-
lementary one 

Faso 1 . r n i / i n i FABS" 
= l+[Ä]/[Ä]l /2 

Fas FAB 

With the common 'half value concentration' 

- l+[B]i;J[B]. 

№ / 2 = 
n(n' + n'ä) 

n 'n a 

(15) 

(16) 

In Eqs. (15) the index 'Aso' means 'of species A in the stationary state at concentra-
tion 0 ' . Index 'ABS°°' means 'species AB, stationary at concentration versus 
In both formulae, V and '<*>' are sometimes replaced with 'max'. Moreover, in. accor-
dance with reasons given in the context of Eq. (4), the quotients of total fluxes Eqs. 
(15) may be replaced with the quotients of 

i) relative fluxes ('intensities') - , / 
ii) quantum yields q>ImaJ<pi 

iii) amounts of excited species (f*)maJ(I*), where I* means A* or (AB)*.. 
Finally,.introducing the quantum yield quotients in Eqs. (15) we find what sometimes 
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is called the 'adiabaticity relation' 

A max A B max 

Eqs. like (17) will hold for all systems, where processes deactivating excited species 
(to the ground state) are in competition with the adiabatic processes (producing exci-
ted species) exclusively and no additional deactivation taking place 'in between' 
excited educt and product. Eqs. (15)—(17) were derived for the exciplex/excimer 
systems l.h.s. For the FES protolytic reactions and possibly for other systems obeying 
the r.h.s. scheme, no such symmetrical Stern—Volmer type equations as (15) are valid. 

If [ / T + ] = 0 we get <PA-max=—TZT' TT a n d simultaneously <pAHmi„^-^~ n + nd n' J n+nd 

whereas ( p A n m a x = w i t h - as can be derived from Eqs. (14) inserting the 

constants of List 1, r.h.s., and rule 4. Instead of Eqs. (15) we have 

a ( , + i a ? 2 ) ^ = i a s , 
VFAHs ) nd\ ri ) Fa-S (N + nd)n 

Remarks i)—iii) (behind Eq. (16)) and a relation corresponding to Eq. (17) are valid, 
too. The more complicated behaviour Eqs. (18) allows the kinetic analysis to be per-
formed almost completely in the stationary state, as was done by Weller as long ago 
as the 50ies! Another relation, which is valid for both reaction schemes again, fol-
lows immediately from the second Eq. (10) 

4 r = (19) 
A s " 2 2 

Refering to List 1 and making use of remarks i)—iii) various useful formulae may be 
derived from Eq. (19). It is true, a Stern—Volmer procedure does not need the spec-
tral characteristics of the instrument to be known as is the. case with Eq. (19) and 
relations derived from it. The most commercially available fluorescence spectro-
meters measure wrong if the penetration depth of excitation changes or if cuvettes 
with optical disadvantages (such as tubes) are used. The quotient of two fluorescence 
components, however, is measured correctly in such cases even with turbid samples. 
Instrument manufacturers have solved the problem of allowing for different spectral 
characteristics much better than that of changing sample geometry. Fluorescence 
probing in biological systems for investigation of surface phenomena etc. is preferably 
based on Eq. (19). 

1.2.3. Phase fluorimeter responses (two excited species)*) 

With the Eq. (7) procedure we find from Eqs. (8) and (13) 

(ia> — n22) [ At — to2 — ia> (¿i +12)3 
>¿2 (A 1 ; . 2 -co 2 ) 2+co 2 ( ; . 1+A 2 ) 

XP - I a s ( " + P e " a t - n T . j _ ! (2°a) 

'ah 
( , A2 — CO? — fa? (¿1 + A2) n n M 
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Both Eqs. (20) and (20b) may be brought to the form of Eq. (9) _ .... 

XP = -Ias-^(\+pe*«-*>) (21a) 
. . ..» 

' Y p = ^ ^ - ( l + r e ' ^ - ^ ) (21b) 

The expression for the phase angle f of the primarily excited species 

(a)2 - A2) W22 + + ¿a) _ «12 "21 "22 ~ «11 + «22^ 
CO COt T — T— 2 "i 2 i ~ ( 2 2 a ) 

Ax A 2 - co£ + (A 2 + A 2 ) 2 rt12 n 2 1 + « 2 2 + C0-

-is not simple'and needs curve fitting for evaluation. The expressions for the 'modula-
tion degrees' p and r following from Eq. (20) may be omitted as these parameters are 
difficult to measure with reasonable accuracy. The phase angle % of the secondarily 
excited species, however, is very convenient for evaluation 

" ' . 

• , CO cot A-= (22b) 
/•1 + A2 

By plotting the l.h.s. of Eq. (22b) versus co2 one gets / j • A2 and Ax + A2 from straight 
line parameters. Having performed these measurements for various concentrations 
of the unexcited reaction partner, Eqs. (12) are applied to find the kinetic constants. 
One can see that phase fluorometry at a set of different frequencies is essentially 
equivalent to measuring ¿-responses. 

Finally we get a simple relation between measurable parameters and kinetic 
^constants by first .forming the ratio of periodic and constant term in Eqs. (20a) and 
(20b), respectively, and-then the quotient of these ratios. With the notations of Eqs. 
(21): w^get formally similar to Eqs. (9) 

= «22(w2 + 22)_1/2 = cos(xrf-i/'); -n 2 2 = co cot (x- i /0 (23) 

As only one parameter, n22, is determined experimentally, the modulations degrees' 
quotient ma be a reasonable magnitude, too. The r.h.s. Eq. (23) which also may be 
derived from Eqs. (22a, b) is very useful in the r.h.s. cases of List 1. 

2. FES kinetics with time dependent rate factors 

It is a common feature of Förster—Galanin type energy transfer [5] ET and of 
diffusion controlled molecular encounter according to Smoluchowski's theory that 

(the rate factors UA-,B and kd i f f of both these bimolecular processes explicitly depend 
on-time. In Smoluchowski's expression 

( ^diff — ksE +"^T7<r] (25) 
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the constant 6 = 10_4...10 5 s1/2 allowing for non-stationary diffusion is small enough 
to be neglected in many cases, but the similar time dependence of ET is essential 

vl|2 _ in 
kA-

( V 2 

+b = [ B ] 7 1 \ J ) (26) 

[5]0 denotes the critical concentration of unexcited acceptor B and n the reciprocal 
lifetime of the excited donor A* in the absence of B. While Eq. (65) is given in usual 
form, Eq. (26) is perhaps not so well known. ET kinetics is usually described by the 
decay function F(t)/F(o) which means the relative fluorescence flux ('intensity') 
after ¿-excitation and is identical with 

<.A*)s = exp - [nt + 2 M - («i)1/2j (27) 

In the total rate of decay 

we notice the rate factor lcA^B given by Eq. (26) while n describes the deactivation. 
The special type of ET kinetics [5] is a consequence of 5 

a) the strong dependence of the fundamental transfer rate nET on the distance 

r of a donor-acceptor pair; r0 denotes the critical distance 

b) the distribution of the (great number of) unexcited acceptors in the surround-
ing of any excited donor. The form of Eqs. (26) and (27) is characteristic of homo-
geneous random three dimensional distribution. Other dimensionalities and/or spa-
tial limitations of distribution will give' rise to functions different from Eqs. (26) 
and (27) and thus may be recognized [6]. It was shown some time ago [7] that proces-
ses with time dependent rate factors such as Eqs. (25) and (26) must not be contained 
in kinetic differential equations as results turn out to be more or less nonsensical. 
This can shortly be seen for instance from Eq. (16) by replacing na with kA^B from Eq. 
(26). In the stationary state / - » w e get [5]1/2 — °= which means no ET taking place 
at finite acceptor concentrations [B] and no B* being formed. Really the whole 

concept of kinetic differential equations is valid only if all participating processes 
obey coefficients or rate factors which are independent of time! 

Only the response on direct ¿-excitation is equally fundamental with and without 
time dependent rate factors. This so-called ideal decay function must be known from 
statistical calculations [5, 6] or ultimately by experiment then allowing all cases of 
kinetic schemes and types of excitation to be treated by the general mathematical 
procedure called 'convolution kinetics'. On direct excitation the ideal decay function 
f3 is identical with the ¿-response, e.g. (A*)s =fAd in the case of Eq. (27) but for the 
kinetically formed species 7in section 1.2, fYS = exp (—n22t) and is not given by Yd 
from Eq. (13). 

In one of the simplest but non trivial cases of convolution kinetics direct excita-
tion of A by light with Ia{t) 

Ia/ t 

A B 

2 



18 M. HAUSER -

strangely enough Eq. (7) from section 1.13 should be applied to get 

<.A*) = I . * f M (7) 

In the case of ET, k{t) in the above scheme is given by Eq. (26) and / a s — { i s 
given by Eq. (27). In the important stationary case /„=/„„ const, we get from Eq. (7) 
by calculating the convolution integral 

(A*)s = jk (1„ f i y e x p e r f c y) (28) 

y = [B]I[B}0 

Eq. (28) is is accordance with Forster's result [5] which was derived in another way 
(but is misprinted in the original paper). 

It should be noticed that with time dependent k(t) Eq. (7) cannot be derived by 
the differential equations procedure nor by Laplace transform. Consequently Eq. (28) 
needs a reasonable foundation, too. In order to justify the use of Eq. (7) with k(t) we 
could refer to Kubo's linear response theory8'. The next question for the time depen-
dence of (B*) is not answered by this theory, much less how to treat more complica-
ted reaction schemes. A new complete general procedure will be given below. Before 
this Eq. (28) deserves some more attention. 

Without much reasoning, <B*)s for the stationary state is derived with the aid 
of the adiabaticity relation Eq. (17) knowingthat (A*)smax =Iao/n and (B*)smax = Ieo/„. 
(as for 7 — °°B* behaves like it were directly excited). We get 

{B*)s = fny exp y2 erfc y (28a) 

Moreover, as there is no backward step in the reaction scheme, we can find the phase 
fluorimeter response (A*)_ by the replacement procedure n-*n + ico, cf. section 1.14. 

• ( n x1 '2 
But as n is con tamed m y, too, we additionally must replace y—y • — in Eq. 

\n + i(o) 
(28). Using the tabulated values [9] of the complex erfc, (A*)p follows in closed form 
(needing no numerical approximation, but collecting the real and imaginary parts is 
laborious). Finally, as can be later clearly understood, (B*)p would follow conse-
quently from Eq. (28a) with the y transform mentioned and n'—ri + ia>. 

2.1. Introduction to the new concept of 'convolution kinetics' 

As we mentioned already, the ideal decay function fxs of excited species X* 
(on direct excitation being identical with (A1*)^ is considered as fundamental for the 
behaviour of X* in FES kinetics. In order to find fX6 we may need to solve a master 
equation as with ET [5]. But for systems with time-independent rate factors o n l y , f x s 
follows from ordinary FES kinetics presented in main section 1. In the final analysis 
questions concerning the ideal decay function must be decided by experiment. 

Excitation with the intensity /„(f), (more correctly speaking Ia(t) is a flux distri-
bution), has the same effect as excitation with a continuous sequence of short pulses 
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similar to ¿-functions with area Ia(9)d&. Thus Ia(t — d)d3 produces at time / — 3 an 
incremental amount of excited molecules d(A*), decaying during the time interval 9 
according to fAd up to the remainder Ia(t — S). fAS(S) • d3. The total amount of {A*) at 
time t result from the sum (integral) of all such remainders generated by all foregoing in-
cremental ¿-excitations. The procedure of summing up these remainders is nothing else 
but the convolution Eq. (7) in the form given in section 1.1.3. Thus the general signi-
ficance of Eq. (7) is established. 

We now understand why the rate of change of a population (A*) or (X*) is in 
general not given by its time derivative. This may be illustrated by many examples. 
In order to predict the development of the number of students at . a university, one 
must know the time dependent probability of a student's stay there ~/S ( i , but the 
total number of students at any time ~(S7) is of little use. One must know how many 
students are in the first year, second year, and so on. This detailed information would 
not be needed if the probability of stay were described by a time independent rate 
factor viz. were given by a simple exponential The latter is usually the case 
in chemical kinetics then justifying the well known concept of rate constants. 

Allowing for the age structure of a population, or in other words its temporal 
inhomogeneity, by the convolution concept depends on the following prerequisits: 
The individuals neither interact nor interfere, (the latter means no square or higher 
terms in number or concentration), and there is a unique ideal decay function (= time 
dependence of the probability of belonging to the population). 

For completeness and for practical reasons we need a procedure for treating 
excitation of species B* on the expense of the precursor A* by a photochemical pro-
cess. In case that (A*) was ¿-excited, the total rate of its depopulation will be a sum 
of as much terms as there are contributing processes 

(29) 

The kt may or may not depend on time and/or concentration of unexcited reaction 
partner. In the general Eq. (27) the total rate is given by Eq. (27.a). In the general 
Eq. (29) the term k}fAi, say, is increasing (B*) at the expense of the precursor. At 
time t — 5 the incremental amount kjfAa(t — 3)d3, is produced from which the 
remainder which is still excited at time t is got by the factor fm, thus 

t 
(B*)/a(s^b = f kjfAl(t - 3)fBS(9) d9 = k j f A 3 *fBS (30) 

o 

Tndex/^(<!)_fl means B* is produced from A* which was ¿-excited; for this case we 
r n V 1 2 

solved the problem. In the case of Eq. (27), ^ = 71 — 1 (y=[fl]/[5]0). The whole 

'production term' is here 
PA(5)-*B = kjfAS = - nfA^ (31) 

which means that we take only the term producing B* from A*. If A* is excited by 
general light absorption /„(/), (direct excitation is the mark of species we denote A), 

2* 
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we get as Ia means a sequence of quasi ¿-impulses 

<*%</.)-.» = h*(B*)lMi)_B (32) 
and making use of Eq. (30). Obviously, the production term of A* is identical with 
m 

PU.)-A = H (33 

Finally, B* could be the precursor of C*. Then we find 

(C *)IA {Q-B~C = Ia *pMi^B *pB-c *fcs = Pc *fcs (34) 

A general straight forward procedure is given in the next section, where the construc-
tion of production terms is explained. If backward steps and/or direct excitation of 
more than 1 species take place, sums of production terms are incorporated. 

2.2. The basic rules of convolution kinetics 

I) The amount of excited species X* is found by convolution of its production 
term px with its ideal decay function (= ¿-response on direct excitation). 

<.X*) = px*fxô 

II) The production term px is given by convolution of the Px-i of the precursor 
X— 1 with the derivative of its ideal decay function dfx~\jdt omitting the terms 
not producing X* from X* — l. 

Ill) The production term pA of the primary excited species is given by the absorbed 
excitation flux (density) /„. 

If more than 1 species is directly optically excited, Ia must be split. With chemical 
excitation, branching and backward steps (giving somewhat like loops of production 
terms) may be incorporated. 

Rules I—III are valid in cases of constant coefficients, too, as convolution kine-
tics are the more general, superimposed procedure. Rule 4 of section 1 which connects 
fluorescence to the amounts of excited molecules is valid in convolution kinetics 
without change. 

2.3. Experimental proofs and applications of convolution kinetics 

The breakdown of ordinary kinetics with time dependent rate factors is most 
obvious in all types of photostationary experiments to which phase fluorimetry for-
mally belongs, too. On the other hand, discrepancies between convolution kinetics 
and the old kinetics become smaller the more the excitation is similar to direct ¿-exci-
tation which is not possible for excimers and other excited photoproducts. Anyway, 
time dependent measurements are more conclusive in FES kinetics as a consequence 
of ambiguity of stationary fluorescence measurements because of e.g. static quenching 
and spurious effects. 

2.3.1. The first dynamic test of convolution kinetics [10] was performed with 
pyrehe excimer (A A)* as the donor and diethylthiacarbocyanine iodide C as the accep-
tor in ET, whereby the excimer was generated chemically after practically ¿-shaped 
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excitation of the monomer A: Ia=Iao-5(0) with /„„=const. The concentration 
[/4]<[/4]1/2 was chosen.small enough to get a significantly biexponential time depen-
dence oi((AA)*), cf. Eq. (13) and list 1. 

A-)1" 

j-
A,hv A + A, hv' C, hv" 

With pyrene excimers, n'd % 0 below room temperature. So it is easier to control that 
direct ET does not take place. Anyway the acceptor concentration must be 
small y=[C]/[C]o^0.2. 

Considering the reaction scheme and applying rules I—III we get 

a) pA = h = ho<5(0) d) fM = e x p - ( « + na[A\)' 

b) PAA = PA*Na[A\fAd e) pAAd = exp — {N't + 2y'FNrt) (35) 
, 1 / 2 (n'Y c) PC=PAA*V'(YJ /AAS f ) f a = exp -«" / 

If /„ were not ¿-shaped, one convolution more with Ia(t) would be necessary for cons-
tructing the production terms. Finally 

a) (A*) = I„fM 

b) ((AA)*) = Iaona[A]fAd*fAA5 (36) 

c) <<C*) = Iaona[A]fA5 * / iVtfAA, *fcs 

While Eq. (36a) is the same as one gets from the differential equation (since coeffi-
cients are constant), one would find for the excimer AA* by applying usual solving 
methods of linear differential equations 

t 
((AA)*) = Iaona[A] exp — («'/ + 2y' tfrtl f exp(«' 3 + 2y' - {n + na[A]) 3) d9 

9 = 0 

according to this (wrong) equation the terms / describing the influence of ET are 
insignificant except at the very beginning, which could be shown by calculating the 
integral in closed form. The (correct) Eq. (36b) reads explicitly 

t 
((AA)*) = Ia0na[A]™v{-(n-na[A])t} f exp ((« + na[A])!)—n 9 - 2 / d 3 (37) 

» = 0 

In this equation, where also the integral can be calculated in closed form, ET keeps its 
influence during the whole time of interest. From the above wrong equation, ((/4/4*)) 
is proportional to Dawson's function D(Y'N'T + / ) which vanishes for.large values 
of the argument, while from Eq. (37) ((A A*)) is really proportional to erf (jn't + / ) 
approaching unity for larger values of the argument. 
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Altogether, the discrepancies between correct and wrong treatment are not very 
pronounced with the excimer, mainly because y'^0.2 is rather small. Yet if the 
excimer quantum efficiency is calculated from 

n'e f ({AA*))dt 

<t>' = — (38) 
Jladt 

o 

using the separately measured kinetic constants and =0.02 M 

n = 2.9X106J-1 n' = 33.8X106 j " 1 na = M"1 s~x 

the dependence of <£' on y' agrees very well with the theory, (solvent was a cyclo-
hexanol/paraffin oil mixture). 

Inserting the constants in the above wrong equation <P' is calculated about 30% 
too large at y'=0.18 (by underestimate of ET). 

The disproof of the old kinetics and verification of convolution kinetics become 
convincingly significant when looking at C*. The production term Eq. (35c) 

t 
Pc = I*n.[A\exP-(» + na\ADt-2 f exp-(n'-n-nJ^D-S-2y'Yr?9 d ^ 

9 = 0 

can also be calculated exactly. As in our case n'ys>n+na[A\ we get to a good approxi-
mation 

Pc « hona[A] e x P —' (n + r a M l ) e x P y'2/jt[erf {frit — y') — erf y'] 

With y'=0.18 the term in square brackets becomes «0.8 for i<2 /n ' «60 ns, while 
the duration of all three responses Eq. (36) are about 300 ns. Making use of the 
approximation 

Pc ~ IMna[A] exp - (n + na[A]) ty' exp y'2 l/h (39) 

we get instead of the exact Eq. (36c) 

Analogously to Eq. (38) and making use of n"?s>n + na[A], which was measured 
«"=6.6 X 108s_1, we get for the quantum efficiency of the acceptor C (the cyanine 
dye) 

A-JL = f l ~ ^ e x P ram 
K ~ N + NA[A] L J 

n" 

= means the quantum yield on direct excitation of C, which was deter-

mined separately <£¡'=0.72. 
Eq. (39) as well as Eq. (40) were found in excellent agreement with the experi-

mental results: The slowest preceding process is the decay of excited pyrene monomer 
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A* with time law exp —(n+naA)t, which must be rate controlling for the fast decay-
ing species C*, too. This was clearly observed from the time dependence of C fluor-
escence*** in accordance with Eq. (39) and with the exact Eq. (36c). From the old 
kinetics applied to the reaction scheme we get 

Consequently inserting ((AA)?) = . . . from the "wrong companion" of Eq. (37) and 
tediously solving that differential equation, we get a 30% faster decay. The relative 
quantum efficiency following with / = 0.18 from Eq. (40) is <P"/<P"=0.11 while 
the experimental value was 0.12. In convolution kinetics, quantum efficiency is the 
same irrespective whether Eq. (40) or the stationary treatment is applied. The experi-
mental evaluation of Eq. (40) needs the areas under the fluorescence time dependences 
(decay functions) to be compared with integral intensity of the excitation flash, what 
was practised by direct excitation of C*. With the old kinetics inserting the (wrong) 
function (C*) which we get from the above differential equation into Eq. (40), we get 
&"/<!>% = 0.025 at / = 0 . 1 8 what is some 100% wrong; calculating the photostatio-
nary efficiency gives the totally nonsensical result 0"—O(!). The reason why the 
breakdown of the differential equations procedure is more striking with C* than 
with the excimer (AA)* comes from that ET is only moderately diminishing 4>' of 
(AA)*, but <£" is compared to zero efficiency. 

2.3.2. Multistep ET. 

In the case of self overlap of the fluorescence spectrum with the absorption spect-
rum of the same molecule, which is realized e.g. with perylene and may fluorescent 
dyes, y % 1 and even more is possible. 

The reaction scheme is 

AT AT A* A* \'F A* -*" SLZ * A3 • • • 

h Jn jn Jn 

A A A 

The index /=1, 2, ... of A* means ... excited in the first, second, ... step. All ideal 
decay functions fiô; /=1, 2, ... are the same: 

h = exp - (nt + 2y i~nt ) (41 ) 

and the term r by which the recursion from p{ to p-^ is given, is also the same for 
all pi 

*** All time dependences of fluorescence were measured with ORTEC single photon counting 
system 
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(43) 

as it follows from Eq. (41). Thus we get from the reaction scheme if Ia=5(0) 

(AT)=fs 

(At)=fs*r 

(At)=f»*r*r 

(A?) — fj*r*r*... 

(i — 1 terms) 

Unfortunately, there is no power type notation for repeated convolution of equal 
terms. The Laplace transform of Eq. (42) reads if we denote Lfs=g and Lt=x 

Lr = -(xg-\+ng) = + (44) 

The individual (A*) cannot directly be measured, however, the sum 

(A*) = 2 Af 
¡ = 1 

With the transform of the sum we obtain with Eqs. (43) and (44) 

w n - 1 1 [ • - . i x + i t f - = , _ 1 , _ ; ( , + l 0 1 - ^ 

The result of the backward transform of the surprisingly simple Eq. (45) is 

(45) 

(A*) = L'1—-— = exp -nt (46a) x + n 

s n \ 1 / 2 

In the corresponding case of multistepcollisional transfer with na[A] instead of q y l 

one gets the same final formula Eq. (45). But ET is very fast over distances shorter 
than the critical distance which may give raise to random walk of excitation; y S 1 
means that about 1/3 of excited donors A* do have 2 or more acceptors A within the 
critical distance. Quenchers (e-g. impurities) without a normal chance of interaction 
with A* may act as traps if excitation reaches an A in their neighbourhood; one may 
speak of a Forster—Galanin exciton (even in homogeneous solutions). Decisive 
experiments on that field are extremely difficult to realize because many trivial effects 
may strongly influence the results. Our latest approach was: 
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2.3.4. Energy transfer in two steps [11] 

The reaction scheme differs from that of section 2.3.2 so far as the first donor A 
as well as the first acceptor (=second donor) В and the second acceptor С are diffe-
rent molecules; thus y( = Л7-) and y'( = ¡ ^ - 1 may be chosen arbitratily (within the 

{ [B\0) ^ [C]J 
limits of preventing undesired other effects). 

y<lY'* Л - У " 
Л* ^ В* > С* 

X Iй I-' I"' 
A B C 

A system which was expected to fulfill the most important prerequisite fairly well is 
with 

/4 = 1, 2-Benzofiuorene; l/n = 55ns 
B = 9, 10-DiphenyIanthracene; 1/и' = 8.1 ns 
C=Dimethyloxacarbocyanine iodide; l/n" = 0.6ns 

in the solvent cyclohecanol/triethyleneglycol 4:1 with the viscosity 49 cp. The absorp-
tion and fluorescence spectra together with properly chosen concentrations, у = 0,75 
and y'^0.46, guarantee direct optical excitation of A only and negligible immediate 
ET A* т*С. Trivial reabsorption of A* fluorescence by В and/or С does not exceed 
5%. B* fluorescence is more strongly reabsorbed by C, but this does not influence the 
time dependence of (В*). As A shows very small self overlap, ET A*-*A-+B and 
A*-*A-*C are negligible, only B*-<-B-+C may have a small influence. 

Having some experience with convolution kinetics already and supposing Ia = 
'=/„„• <5(0) we may write down immediately 

a) (A*) = Iaoexp - (nt+ 2yУnt) 

, ч 1/2 

b) (В*) = (А*)у[Ц * exp — (n't + 2y Y" ' 0 , .(46b) 

(/ \ 1/2 

j-j *exp — n"t 

The convolution integral in the kinetically most significant Eq. (46b) must be com-
puted numerically. (C*)(t) was not expected to be very different in shape comparing 
the differential equations result and that of convolution kinetics, however, its quan-
tum efficiency. 

As expected, the over alltime dependences are all similar to (A*) which is rate 
controlling. A significant feature of (#*), when normalized to equal maximum height 
with (A*), is an overshoot with Eq. (46b) and in disagreement with the old kinetics. 
But as regards the most exciting expectation, the quantum efficiency of C* fluores-
cence, the experiment was disappointing: As was especially significant with stationary 
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Fig. 2. Measured and calculated fluorescence time dependences 
of A* and B*\ (the old kinetics sive practically no overshoot). 
The time dependence of C*, whichis not shown, is very similar 
to that of B*. Concentrations [A\ = 2.0-10"*; [B] = 8.8-10"3; 

[C]= 1.55 mol/1, each. 

measurements, ET 5* —C is strongly violating the adiabaticity principle. This seems 
to be a very general effect, which we observed with C=Trypaflavine, Safranine T, 
Acridine Yellow, Acridine Red, etc. (but not with Uranine in alkaline media). As B* 
lifetime is < 10 ns and the concentrations [C]<5x 10~3 M, a static quenching effect 
must be operative; no significant deviations in the time dependences (B*) and (C*) 
were observed and, of course, no influences in the absorption spectra. We postulate 
complexes in the ground state (BC), weak enough not to influence the ET acceptor 
features of B- or C-part but preventing emission mainly of C as [C]«[jB]. 

This new static quenching effect is also observed if C is excited directly and B 
is added, even though B absorbes only at much shorter wavelengths. 

2.2.4. Concluding remarks 

The understanding of FES kinetics with time dependent rate factors should be 
critically revised on the basis of the hew concept presented here. Many conclusions 
from using Förster—Galanin ET as a spectroscopic ruler have been more or less 
wrong, as perhaps has been the case with nonstationary diffusion phenomena often 
obscured as cage effects. 
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ФЛУОРЕСЦЕНЦИЯ И КИНЕТИКА ВОЗБУЖДЕННЫХ СОСТОЯНИЙ 

М. Хаузер 

В работе описивается четыре основных правила для описания кинетики процессов в пер-
вом возбужденном состоянии. Получены обобщенные формулы для исследования систем 
с одним и двумя родами возбужденных состояний для случая стационарной, фазово-флуоро-
метрической, 5 — образной и для произвольной формы возбуждения. 

Доказано неприменимость обычных кинетических представлений в случае коэффициен-
тов скорости зависящих от времени, особенно для случая передачи энергии типа Ферстера-
Галанина и для нестационарной диффузии. Приводится новый кинетической приём в трёх 
правилах, названный кинетической свёрткой. — Сообщается динамическая проверка и при-
меры для вычисления (эксимер как донор и двухступенчатый перенос энергии). 


