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Using Singh's and Neb's potential, as a model of nearest neighbour central force interactions, 
the Helmholtz free energy, internal energy and specific heat at constant volume of ideal rare-gas 
crystals are evaluated in anharmonic approximation. The calculations are extended from the low to 
high temperatures. 

Temperature dependences of the cubic and quartic anharmonic contributions to the thermo-
dynamic functions are showed too. 

Obtained results are compared with available experimental and other theoretical data. 

Introduction 

The rare-gas crystals (RGC) are prototype of molecular crystals [1]. They crys-
tallize in simple close-packed arrangements to be expected for atoms with spherical 
symmetry [2]. The lattice atoms interact with weak forces principally Van der Waals 
(V-d-W) attractions [3]. The existence of the V-d-W attraction terms necessitates the 
consideration of an additional repulsive energy to stabilize the crystal lattice of the 
spherical atom. This repulsive interaction is short-range and overlap dependent in 
nature. 

Earlier results and theoretical calculations of the short-range repulsion and the 
long-range attractive portion for a variety of pairwise interactions of atoms in the 
RGC have been reviewed in the articles by POLLACK [3] and HORTON [4] and in the 
book of GOODISMAN [5]. Recently the critical analysis of the potential energy curves 
(PEC) appropriate for the RGC has been given by SINGH and N E B [6] who proposed 
new model PEC. Singh's and Neb's (S—N) potential consists of the attractive V-d-W 
force (r - 6) modified by the three-body interactions arising from the variable induced 
dipoles and the repulsive Born—Mayer interaction. This model potential used to 
the calculation of the isothermal elastic constants and some thermodynamical pro-
perties of the RGC at temperature T = O K gave remarkably good agreement between 
theoretical and experimental results. 

In this paper, using Singh's and Neb's PEC, we explore the temperature depen-
dences of various thermodynamical functions like Helmholtz free energy F, internal 
energy U, specific heat at constant volume CV as well as cubic and quartic contribu-
tions to the above thermodynamic quantities in the anharmonic approximation [7, 8]. 
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The computed results in the high and low temperature limits have been compared with 
available experimental data [9—11] and theoretical results obtained in terms of the 
renormalized Morse potential in the reduced second-order self-consistent phonon 
approximation [12] as well as for the Mie—Lennard—Jones potential in the anhar-
monic approach [13, 14]. 

Thermodynamical functions of crystals 

The Helmholtz free energy of a crystal in anharmonic approximation can be 
written as [14]: 

F(T) = Fqh (T) + F3(T) + Ft (T), (1) 
where: Fqh(T) is the free energy in the quasi-harmonic approximation, 

F3(T) and F4(T) are the cubic and quartic anharmonic contributions to the 
Helmholtz free energy. 

As was shown in [7, 8] Fqh, F3 and F4 in the high (0»OJl) and low (0<sccoL) 
temperature limits are respectively given by : 

Fqh = 3RTFO, (2) 

F3 = — 0.056 iV/402G, (3) 

K = NaKFQ, 6 » œL (4) 
and 

Fqh = NaFO, (5) 

F3 =—0.7297 E0yGNA, (6) 

F, = 0.75 NaE0K-FQ, 6«(oL. (7) 

The symbols used in Eqs. (2)—(7) have the following meaning: 

Q = kBT 
oyL = y&h2<P"(re)/m 

K = i , v ( # " ( r e ) ) ! , 

eo = 0D[l-0.04166 Eh(l.2997 G-K)]. 

Ea=Eh( 1 —0.041 44 EhG) is the zero-point energy per atom for the mean sepa-
ration re in terms of its value Eh = 1.0227 wL evaluated at the minimum of the poten-
tial energy <P(r) in the strict harmonic approximation. 
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R, NA, kB, h, m and 0D are the gas constant, Avogadro number, Boltzmann 
constant, Planck constant divided by 2n, mass of atom and Debye temperature in the 
harmonic approximation, respectively. 

The specific heat at constant volume C„ and internal energy U are related to the 
Helmholtz free energy by [15]: 

u = f - t W \ v (9> 
If we substitute Eqs. (1)—(7) into Eqs. (8) and (9) we find immediately that in 

the high and low temperature limits, respectively, Cv and U are equal to: 

Cv « 3/i (1— CH{ — 0,04166/J2), (10) 

(11) 

(12) 

U % NAE0( 1 - UX) for 9 « co L , (13) 

where the exact expressions for FO, FQ, CH and UX for the high and low tempera-
ture limits are given in the Appendix. 

Applying the results of Eqs. (1)—(13) we obtain the thermodynamic functions 
of solids if $(re) is known. We have chosen here the Singh's and Neb's PEC [6] 
to represent the interatomic potential between atoms in the rare-gas crystals. 

*0v) = 1 + 12/(re)]/re
6 +126 exp (rjp), (14) 

where: Cx = 14.4539 C, 

f(re) = f„exp(-rjp). 
C and b are the potential parameters which have been determined by help of the 
lattice constants and isothermal bulk modulus [6]. The other parameters p and /(re) 
have been expressed from the knowledge of overlap integrals reported by Hafe-
meister [16]. Numerical values of these parameters are collected in Table I. 

Table I. 

Singh and Neb potential constants for the pairwise atomic interactions in 'he RGC 

Parameters 

Solids C b 
fir,) 

10" 67 [Jm°] 10" 1 8 [ J ] 10" 1 0 [m] fir,) 

Ne 35.908 679.329 0.2393 0.000 23 
Ar 611.06 2021.062 0.3056 0.001 71 
Kr 1474.60 2561.60 0.3347 0.003 03 
Xe 3334.05 3099.70 0.3706 0.005 82 

£/% 3RT(l—UX) for 6 » ( o L , 
and 
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Numerical results 

Using the values of model parameters, reported in Table I, we have computed 
the quasi-harmonic (Uqh), cubic (i/3) and quartic (i/4) anharmonic contributions to 
the zero-point energy (Table II). Obtained results are compared with those calculated 
for the Morse renormalized potential [12] and (12—6) Mie—Lennard—Jones model 
[14]. Table III shows the comparison of the experimental data for the molar heat at 
constant volume Cv with calculated in terms of the above mentioned potentials. The 
experimental values of C„ for Ne, Ar and Kr were obtained from the equation: 
Cv=Cp—9a.2T/xQ using measured data [9—11] for all quantities on the right hand 
side of the equation in which Cp is the molar heat at constant pressure, a-the linear 
coefficient of thermal expansion, x-the isothermal compressibility, g-the density. The 
calculation Cv for Xe was impossible because of on incomplete experimental data 
set. 

It is evident from Table III that the values of molar heat at constant volume cal-
culated for the S—N model potential are in good agreement with their measured data. 
Moreover, these results have shown improvements over those obtained by help of 
the M—L—J potential. This fact together with the results of paper [6] clearly demon-
strates that a two-parameter model potential proposed by Singh and Neb is a good 
representation for the curve of the potential energy of the RGC. 

The high temperature | Y > y 0D j cubic {A CJ) and quartic (A C4
V) anharmonic 

contributions to the molar heat at constant volume are listed and compared with the 
values A CjJ,4k — T(d2F3 JdT2)v obtained by help of the Feldman and Horton approx-
imation [14] for the Mie—Lennard—Jones and Morse self-consistent potentials in 
Table IV. 

Table II 

Quasi-harmonic ( f / , h ) , cubic ( C/:I) and quartic ((/,,) anharmonic contributions to the 
zero-point energy of the RGC using the Singh's and Neb's (S—N), renormalized Morse 

(M) [12] and (12—6) Mie-Lennard-Jones (M—L—J) [14] potentials. The zero static 
lattice energy <Pf, is showed for comparison 

Solids Potential 
Zero-point energy [kj/molj 

Solids Potential 
"„H - f 3 <t> 0 

S—N 0.520 0.0034' 0.1094 1.9034 
Ne M 0.503 0.014 1.9044 

M—L—J 0.473 0.017 0.1210 2.4883 

S—N 0.575 0.0015 0.0225 7.5469 
Ar M 0.620 0.0045 7.3364 

M—L—J 0.698 0.0053 0.0363 8.4892 

S—N 0.656 0.0007 0.0157 11.2043 
Kr M 0.462 0.0016 10.8139 

M—L—J 0.562 0.0021 0.0141 11.7487 

S—N 0.616 0.0005 0.0085 14.2732 
Xe M 0.423 0.0001 14.6257 

M—L—J 0.503 0.0001 0.0071 16.5567 
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Table III 
Comparison of the experimental data [9—11] for the molar heat at constant volume 

C„ of the RGC with calculated in terms of the Singh and Neb (S—N), selfconsistent 
Morse (M) [12] and Mie-Lennard-Jones (M—L—J) potentials 

Solid 
T 

CV [J/mol -AT] 
Solid m m Experiment S—N M M—L—J 

8 2.4283 3.9804 3.7480 2.6686 
Ne 16 11.7858 7.9845 7.9919 9.4773 

24 17.1784 13.4341 13.0662 13.5925 

10 3.2964 3.1362 4.1458 3.5914 
20 12.1218 ' 13.0896 8.5950 12.0462 

Ar 40 19.9545 15.0810 20.2705 19.2290 
60 23.2222 18.0880 22.2754 20.7754 
70 25.7181 19.8994 22.6743 20.9500 

10 5.9185 7.7716 4.5057 
20 15.6612 15.1782 16.4822 15.6126 

V r 40 21.9231 15.9204 21.5247 21.1495 jvr 60 23.3760 18.6740 23.1084 22.2219 
80 25.5876 21.4103 23.5830 22.3715 

100 27.7751 22.6751 24.6162 22.1720 

10 7.7867 3.5659 17.0841 
20 16.6790 17.9579 17.0841 
40 18.5728 22.8619 21.9974 
60 19.4523 23.6493 22.9451 

AC 80 21.8499 23.8445 23.0948 
100 22.9585 23.8833 23.0199 
120 23.5680 23.8964 22.7955 
140 23.9206 23.8642 22.5711 

Table IV 
The high temperature cubic (AC^) and quartic (ACy) anharmonic contributions to the 

molar heat at constant volume calculated in terms of the Singh and Neb (S—N), 
renormalized Morse (M) and (12—6) Mie-Lennard-Jones (M—L—J) potentials 

ACV anh [J/mol-if 

Solids T 

IK] 
AC\R -¿c\. T 

IK] 

s—N M M—I J s—N M—L—J 

16 4.180 1.945 4.350 3.975 12.770 
24 5.015 2.612 6.525 4.296 15.314 

50 0.492 1.306 2.220 4.838 • 4.489 
Ar 60 0.812 1.885 2.663 5.840 5.387 

70 0.951 2.287 3.107 5.933 6.285 

60 1.560 1.442 1.706 3.079 3.366 
Kr 80 2.080 2.032 2.274 4.105 3.927 

100 2.600 2.681 2.843 5.131 4.489 

60 0.553 0.924 1.152 1.083 2.259 
80 0.737 1.279 1.536 1.445 3.012 

Xe 100 0.921 1.655 1.920 1.806 3.765 
120 1.105 2.055 2.304 2.167 4.518 
140 1.289 2.481 2.688 - 2.519 5.271 
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Figs. 1 (a, b, c, d). The cubic (F3) and quartic (Ft) contributions to 
the free energy. Solid lines represent values obtained for Singh's and 
Neb's potential. The broken curves are evaluted for Mie—Len-

nard—Jones potential, (a) Ne; (b) Ar; (c) Kr; (d) Xe 

The results calculated in terms of the S—N potential cubic (F3) and quartic (F4) 
contributions to the free energy (solid lines) as functions of temperature are shown 
and compared with those obtained for the M—L—J potential (dashed curves) in 
Figs. 1 (a, b, c, d) for all four solids. From Figs. 1 (a, b, c, d) we see that values F3 and 
F t obtained in terms of the Singh and Neb model show the same temperature behav-
iour as has been found for the Mie—Lennard—Jones potential [13]. At higher tem-
perature it is evident that allowance for thermal expansion has a large effect on the 
results obtained for Singh and Neb potential. 

3* 
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Summary and conclusions 

With the approximation given in [7, 8] we have presented numerical calculations 
of predicted anharmonic contributions to vibrational thermodynamic properties of 
the inert-gas solids for Singh and Neb model potential (Tables II—IV). In these tables 
we have listed the thermodynamical quantities evalutaed by help of the approxima-
tion made by other workers [13, 14, 17] with the Mie—Lennard—Jones [13, 14] 
and self-consistent Morse [12] potentials, for comparison. We have made a compari-
son with available experimental data in order to assess the validity of our potential 
model. Bearing in mind that a comparison of C„ values (Table III) is a demanding 
test it appears that the model is a reasonably realistic one for the RGC. A possible 
improvement in the description of anharmonic crystals is the investigation of effects 
of phonons in thermodynamic properties from the present model in the self-consistent 
theory which allows all higher-order terms of lower-order perturbation theory to be 
taken into account in a S. C. manner [18]. Work in this direction is in progress. 

Appendix 

The quantities FO, FQ, CH and UH appearing in Eqs. (2), (4), (5), (7) and (10)— 
(13) for the high and low temperature limits are equal to : 

a) high temperature limit 

FO = In 0.6505 p + 0.04166 p2. 

FQ = 0.1875 02 +0.0156 ©i, 

CH = 0(0.125 K-0.0374G), 

UX = 0.5 СН-0Ш66р(0.\25соьК+ 1/0), 

b) low temperature limit 

FO = Eo — 0.2n4y, 

FQ 0.028 E0 + 3.246 y, 

CH=0A25Eo(0.2997G-K) 

UX= 0.0208 £„ (0.0885 G —Ю — coLif"1 (0.02177 a>LK—0.0231 G). 
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ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ ИНЕРТНЫХ 
ГАЗОВ С УЧЁТОМ КУБИЧЕСКИХ И ВЫСШИХ ПОРЯДКОВ 

АНГАРМОНИЧЕСКИХ ВКЛАДОВ 

Ц. Малиновска-Адамска 

С использованием модельного потенциала Синга и Неба для парного центрального 
взаимодействия ближайших соседей исследуется температурная зависимость термодинами-
ческих функций кристаллов инертных газов в ангармоническом приближении. 

Представлены результаты вычислений температурных зависимостей свободной и внут-
ренней энергии, изохорной теплоёмкости с учётом кубических и высших порядков ангармо-
нических вкладов в термодинамические функции для низких и высоких температур. 

В частности, теоретические расчёты хорошо совпадают с экспериментальными данными 
для аргона, криптона и ксенона. 


