

STUDY OF 5-NO₂-2-FURALDEHYDE DERIVATIVES, III*. SCHIFF BASES FORMED WITH UREA AND SEMICARBAZIDE DERIVATIVES

By

J. CSÁSZÁR

Institute of General and Physical Chemistry, Attila József University, Szeged

(Received 20th October, 1983)

The Schiff base derivatives of 5-NO₂-2-furaldehyde with urea, thiourea, their derivatives, and semi- and thiosemicarbazide were prepared and their u.v. and visible spectral properties were studied. The equilibrium of semi- and thiosemicarbazide derivatives in alkaline solution is discussed.

In previous papers we have described the synthesis of several 5-NO₂-2-furaldehyde (NFA) derivatives, obtained in reactions with aniline derivatives [1] and sulphonamides [2], and discussed their spectral behaviour and the antibacterial activity of the latter compounds. The pharmacological activity of thiourea [3—5] and thiosemicarbazide [6] derivatives has been reported in the literature. The semicarbazide derivative, Nitrofurazon, is widely used in therapy for local injury treatment and as an antiseptic agent against skin and mucous inflammation. We have prepared ten derivatives of NFA, with structures analogous to that of Nitrofurazon and discussed their u.v. and visible spectral characteristics. The Schiff bases studied are as follows.

1 R = OH

6 R = NH.C(S)NH₂

2 = NH₂

7 = C(O)NH.CHCHCH₃

3 = C(O)NH₂

8 = C(S)NH.CHCHCH₃

4 = C(S)NH₂

9 = C(O)NH.C₆H₅

5 = NH.C(O)NH₂

10 = C(S)NH.C₆H₅

* Part II: Császár, J., J. Morvay, O. Herczeg: J. Pharm. Hung., in press.

Experimental

The Schiff bases were prepared by the reaction of NFA and the corresponding amine components in 1:1 mole ratio in methanol solution. The products separated out after heating of the solutions at about 310—315 K, and were recrystallized from an ethanol/benzene mixture. The analytical data are given in Table I.

Table I
Analytical data on NFA derivatives

No.	R	C %		H %	
		Calcd.	Found	Calcd.	Found
1	OH	38.47	38.40	2.58	2.65
2	NH ₂	38.68	38.61	3.25	3.21
3	C(O)NH ₂	39.35	39.28	2.75	2.70
4	C(S)NH ₂	36.18	36.14	2.53	2.47
5	NH.C(O)NH ₂	36.34	36.19	3.05	3.11
6	NH.C(S)NH ₂	33.61	33.54	2.82	2.75
7	C(O)NH.CHCHCH ₃	48.43	48.30	4.06	4.01
8	C(S)NH.CHCHCH ₃	45.20	45.08	3.79	3.66
9	C(O)NH.C ₆ H ₅	55.60	55.51	3.50	3.51
10	C(S)NH.C ₆ H ₅	52.36	52.19	3.30	3.26

The u.v. and visible spectra were recorded on a SPECORD UV—VIS spectrophotometer at room temperature, with purified solvents. The equilibrium measurements were performed at 298 ± 0.5 K in NaOH/CH₃OH solution; the NaOH concentration varied in the range 2.10^{-3} — 150.10^{-3} mol dm⁻³. The Schiff base concentration was $5.5.10^{-4}$ mol dm⁻³; d = 1.0 cm, and the spectral changes were monitored between 300 and 700 nm.

Results and discussion

The u.v. and visible spectral data on the Schiff bases in methanol and in acidic and basic solutions are presented in Table II; the spectra of the semi- and thiosemi-carbazide derivatives are shown in Figs. 1 and 2.

The spectral structures of the compounds studied are similar to one another; characteristic bands appear at around 202—206, 228—250, 260—290 and 310—340 nm, while at 400—450 nm there is a low-intensity inflection, too. These spectra are similar to those of a methanolic solution of NFA, where two high-intensity bands can be found, at 225 and 303 nm; the absorbance of the amine components exerts only a small effect. The unambiguous assignment of the bands is difficult, because at least six chromophores are present and the measured spectra result from the complicated superposition of individual absorbances. Theoretical calculations to determine the possible electronic transitions are in progress.

No marked change can be observed in acidic solution; the general tendency is for the intensities of the bands to increase, but the energies of the transitions remain

almost unchanged. A totally different picture is obtained in alkaline medium. New bands appear between 370 and 450 nm, and the whole spectrum shows a bathochromic shift, except in the case of the semi- and thiosemicarbazide derivatives.

The greatest change occurs upon alkali addition to a solution of 5 or 6 (see Figs. 1 and 2). In response to alkali, both compounds give a very intense brickred colour and high bands appear at 372, 452 and 451 nm in the spectra. For the semicarbazide derivative the 364 nm band shifts to 372 nm and a new band appears at 451 nm, while the 382 nm band of the thiosemicarbazide shifts to 451 nm. For both compounds the spectral change depends on the alkali concentration; the set of curves measured unambiguously indicate an equilibrium system (Fig. 3). Isosbestic points are

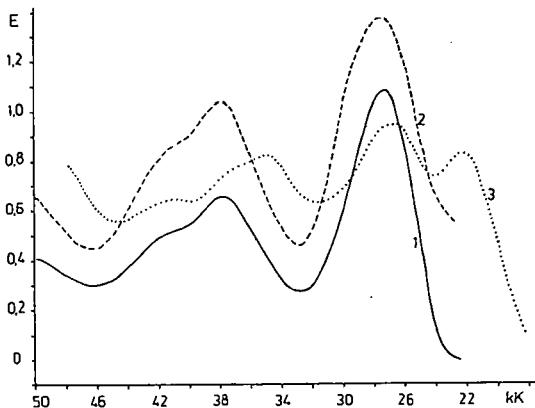


Fig. 1. Spectra of $O_2N \cdot C_4H_2O \cdot CHNNHC(O)NH_2$; 1: in methanol, $c = 2.0 \cdot 10^{-4}$; 2: in $0.1 \text{ mol dm}^{-3} H_2SO_4/CH_3OH$, $c = 1.06 \cdot 10^{-3}$; 3: in $0.1 \text{ mol dm}^{-3} NaOH/CH_3OH$, $c = 9.59 \cdot 10^{-4} \text{ mol dm}^{-3}$; $d = 0.1 \text{ cm}$

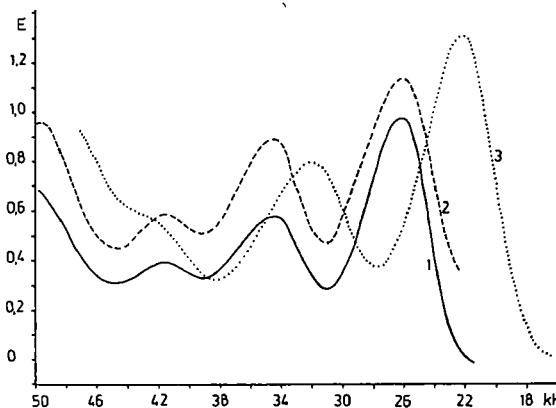


Fig. 2. Spectra of $O_2N \cdot C_4H_2O \cdot CHNNHC(S)NH_2$; 1: in methanol, $c = 5.0 \cdot 10^{-4}$; 2: in $0.1 \text{ mol dm}^{-3} H_2SO_4/CH_3OH$, $c = 9.34 \cdot 10^{-4}$; 3: in $0.1 \text{ mol dm}^{-3} NaOH/CH_3OH$, $c = 7.0 \cdot 10^{-4} \text{ mol dm}^{-3}$; $d = 0.1 \text{ cm}$

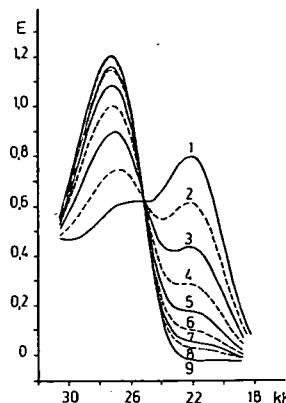


Fig. 3. Changes in the spectrum of $O_2N.C_6H_5O.CHNNHC(O)NH_2$ with the $NaOH$ concentration: $c_{Schiffb.} = 6.7 \cdot 10^{-4} \text{ mol dm}^{-3}$, $c_{NaOH} = 1:150 \cdot 10^{-3}$; 2: $90 \cdot 10^{-3}$; 3: $54 \cdot 10^{-3}$; 4: $32.4 \cdot 10^{-3}$; 5: $19.4 \cdot 10^{-3}$; 6: $11.7 \cdot 10^{-3}$; 7: $7.0 \cdot 10^{-3}$; 8: $4.2 \cdot 10^{-3} \text{ mol dm}^{-3}$; 9: in methanol; $d = 0.1 \text{ cm}$

Table II
U. v. spectral data on the Schiff bases

No.	Solvent*	U.v. band maxima (nm and ϵ)			
		Acid	Base	Acid	Base
1	CH_3OH	234 (8 910)	~256	337(12 880)	
	Acid	233(11 750)	~256	337(21 380)	
	Base	~238	267 (7 240)	392(12 880)	
2	CH_3OH	233 (4 470)	~290	373(16 600)	
	Acid	235 (4 570)	~286	370(12 590)	
	Base	~241	~286	370 (6 760)	
3	CH_3OH	203(21 380) 228(13 180)		313(33 110)	
	Acid	~228		309 (8 710)	
	Base		273 (7 760)	313 (7 760)	~385
4	CH_3OH	203(18 650) 243(15 150)		311 (7 120)	~380
	Acid	203(13 810) 242(11 480)		~303	~385
	Base	243(40 740)		~303	~385
5	CH_3OH		~238	264(14 450)	364(22 910)
	Acid		~244	264 (9 770)	365(16 220)
	Base		~244	286 (8 510)	372(10 000) 452 (8 790)
6	CH_3OH		240 (7 940)	288(11 480)	382(19 500)
	Acid	202(10 470) 240 (6 310)	240 (6 310)	291 (9 550)	382(16 980)
	Base		~233	313(11 480)	451(18 620)
7	CH_3OH	205 (8 130)	~228	317 (8 910)	
	Acid		~228	311 (8 510)	
	Base		~230	282(11 480)	~323 ~385
8	CH_3OH	204(12 020) 251 (8 130)		311 (7 080)	~400
	Acid	202(12 020)	~244	311 (6 170)	~390
	Base		~244	317 (6 920)	~385
9	CH_3OH	204(38 020) 240(33 880)		313(11 750)	
	Acid	203(41 690) 238(26 300)		311 (8 910)	
	Base		238(14 450)	~270	385 (2 820)
10	CH_3OH	204(41 690)	~240	266(32 360)	
	Acid	203(42 660)	~238	265(25 180)	
	Base		~241	265(42 660)	

* Acid: $0.1 \text{ mol dm}^{-3} H_2SO_4/CH_3OH$; Base: $0.1 \text{ mol dm}^{-3} NaOH/CH_3OH$.

present at 398 and 408 nm. The changes in absorbance at two different wavelengths are shown in Fig. 4.

It was possible to calculate the equilibrium constants *via* the following equation:

$$K = \frac{E_i - E}{E - E_f} \frac{1}{[\text{NaOH}]_{\text{eq}}}$$

where E_i , E and E_f are the absorbances of the solution without NaOH, at different NaOH concentrations and at a high NaOH concentration where no further spectral change can be obtained. $[\text{NaOH}]_{\text{eq}}$ is obtained from the equation

$$[\text{NaOH}]_{\text{eq}} = [\text{NaOH}]_{\text{total}} - \frac{E_i - E}{E - E_f} c_{SB}$$

As regards the spectral change, there is a marked difference between the structurally analogous compounds. Two species of identical absorbance are present in the equilibrium systems of semi- and thiosemicarbazide derivatives at $120 \cdot 10^{-3}$ and $7.5 \cdot 10^{-3}$ mol dm⁻³ NaOH concentration, respectively. The equilibrium constants computed for the two compounds are 8.2 ± 0.4 and 226 ± 1.5 , respectively.

The interpretation of the equilibrium systems is difficult. We presume that, on the action of NaOH, the Schiff base molecule (a) undergoes an electronic rearrangement to give the conjugated system (b).

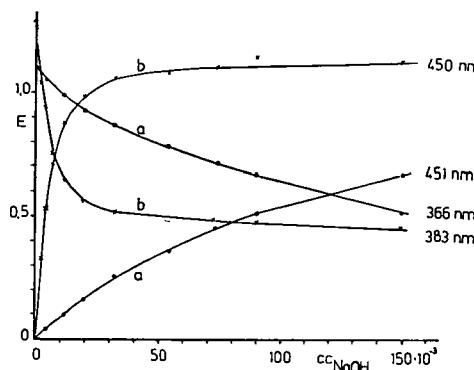


Fig. 4. Changes in the absorbance of semicarbazide (a) and thiosemicarbazide derivatives (b) with the NaOH concentration, at two different nm values

This supposition is supported by the preliminary NMR investigations, but an unambiguous interpretation of the equilibrium systems requires still further theoretical and experimental investigations.

References

- [1] Császár, J.: Acta Phys. et Chem. Szeged, **30**, 71 (1984).
- [2] Császár, J., J. Morvay: Acta Pharm. Hung. **53**, 121 (1983).
- [3] Astwood, E. B.: J. Pharmacol. **78**, 79 (1943).
- [4] Astwood, E. B., A. Bissell, A. M. Hughes: Endocrinology **37**, 456 (1945).
- [5] May, J. D., J. L. McNaughton: Poult. Sci. **59**, 893 (1980).
- [6] Mostafa, M. M., A. M. Shallaby, A. A. El-Asmy: Trans. Metal. Chem. **6**, 303 (1981); J. Inorg. Nucl. Chem. **43**, 2998 (1981).

ИССЛЕДОВАНИЕ ПРОИЗВОДНЫХ 5-NO₂-2-ФУРАЛЬДЕГИДА, III.
ОСНОВАНИЯ ШИФА, ОБРАЗУЮЩИЕСЯ С МОЧЕВИНОЙ И ПРОИЗВОДНЫМИ
СЕМИКАРБАЗИДА

Й. Часар

Синтезированы основания Шифа производные 5-NO₂-2-фуральдегида и мочевины, тиомочевины и их производных, а также семи- и тиосемикарбазидов. Изучены ультрафиолетовые и видимые спектры полученных соединений. Обсуждены состояния равновесия производных семи- и тиосемикарбазидов в щелочных растворах.