STUDY OF THE SOLVENT EFFECT IN THE AMINE EXCHANGE OF SCHIFF BASES, V.

COMNECTION BETWEEN THE RATE CONSTANT AND THE PARAMETERS $\mathrm{E}_{\mathrm{T}}^{\mathrm{N}}$ AND B_{KT} OF THE SOLVENT MIXTURES APPLIED

By
P. NAGY* and R. HERZFELD

Department of Chemiatry, Gyula Juhász Teachera' Training College, P.O.B. 396, H-6701 Szeged, Hungary
(Received 25th September, 1986)

The amine exchange of Schiff bases was atudied in various solvent mixtures. With a regression equation, there was a good correlation between the rate constant and the solvent mixture parameters.

Introduction

We earlier studied the reactions of N -(2-hydroxybenzylidene)aniline and of N -(2-hydroxy-l-naphthylidene)aniline with n-butylamine and with benzylamine in ethanol-cyclohexane and in ethanol-benzene solvent mixtures [1-3]. The following correlation was found to hold between the rate constants and the activity coefficient of the ethanol in the solvent mixture $[2,3]$:

$$
\begin{equation*}
\log k=x_{1} \log k_{1}^{*}+x_{2} \log k_{2}^{*}+\left(a_{k}+b_{k} \bar{y}_{1}\right) x_{1} x_{2} \tag{1}
\end{equation*}
$$

```
ISBN 963 481 612 6
Acta Pinys. et Chem. Szegen 32 33-44 (1986)
```

where k, k_{1}^{*} and k_{2}^{*} are the rate constants in the mixture, in ethanol and in the aprotic solvent, respectively; x_{1} and x_{2} are the respective mole fractions; a_{k} and b_{k} are constants; and r_{1} is the activity coefficient of the ethanol in the mixture. Correlations similar to (l) hold for the acidity and basicity parameters measured in these solvent mixtures [4]:

$$
\begin{align*}
& E_{T}^{N}=x_{1}\left(E_{T}^{N}\right)_{1}^{*}+x_{2}\left(E_{T}^{N}\right)_{2}^{*}+\left(a_{\mathbb{E}}+b_{\mathrm{E}} \gamma_{1}\right) x_{1} x_{2} \tag{2}\\
& B_{K T}=x_{1}\left(B_{K T}\right)_{1}^{*}+x_{2}\left(B_{K T}\right)_{2}^{*}+\left(a_{B}+b_{B} \gamma_{1}\right) x_{1} x_{2} \tag{3}
\end{align*}
$$

The present paper reports on a study of the correlations between the acidity and basicity parameters and the rate of the amine exchange in ethanol-n-hexane, ethanol-cyclohexane and ethanol-benzene mixtures. The results provide further data promoting a better understanding of the mechanism of the amine exchange and of the solvent effect.

Experimental

The rate constants for reactions l-4 were determined in ethanol-n-hexane, ethanol-cyclohexane and ethanol-benzene solvent mixtures with various compositions. Measurementa were performed at $25^{\circ} \mathrm{C}$. The reactions were followed spectrophotometrically.

The Dimroth-Reichardt $\mathrm{E}_{\mathrm{T}}(30)[5]$ and $\mathrm{E}_{\mathrm{T}}^{\mathrm{N}}[6]$ values were used to characterize the acidity of the solvent mixtures applied. The basicity was characterized with the Krygowski et al. [7] modification of the Kamlet-Taft [8] parameter B_{KT} [4]. The solvents were purified by means of the methods customary in spectroscopy, and were carefully freed from water.
+

111
$\left.\mathrm{H}_{2} \mathrm{H}-\left(\mathrm{CH}_{2}\right)_{3}\right)_{3} \mathrm{CH}_{3}$

$+$

$\stackrel{\rightharpoonup}{*}$

$\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3} \rightleftharpoons$

$+$

\dot{m}

$\dot{*}$

Results and discussion

The rate constants for reactions 1-4 in ethanol--cyclohexane and in ethanol-benzene were reported earíier, as were the E_{T}^{N} and $B_{K T}$ values for these mixtures $[1,2,4]$. The data relating to the ethanol-n-hexane mixtures are given in Table I.

Table I
E_{T}^{N} and $B_{K T}$ data, and the $\log k$ values for reactions $1-4$ in ethanol-n-hexane mixtures at $25^{\circ} \mathrm{C}$

	$\mathrm{x}_{1}^{\mathrm{N}}$	B_{T}	$\log \mathrm{k}$			
			react.1	react.2	react.	react.4
0.000			-	-	-	-
0.054		0.51	1.42	1.19	1.26	1.16
0.106	0.516	0.74	1.69	1.47	1.45	1.31
0.199	0.527	0.86	1.88	1.73	1.56	1.43
0.359	0.546	0.95	-	1.94	-	1.50
0.490	0.565	0.93	2.22	2.05	1.62	1.51
0.599	0.577	0.88	-	2.10	-	1.53
0.692	0.587	0.86	2.30	2.15	1.64	1.52
0.771	0.592	0.83	-	2.18	-	-
0.840	0.603	0.82	2.34	2.23	1.66	1.56
0.900	0.623	0.79	-	2.28	-	1.55
0.953	0.632	0.76	2.53	2.31	-	1.56
1.000	0.651	0.75	2.54	2.37	1.71	1.61

*Iiterature data $[6,7]$

The literature contains a very large number of examples of correlations between the rate constants of various reactions and the solvent parameters. Correlations that are frequently used are

$$
\begin{align*}
& \log k=a+b E_{\mathrm{T}}(30) \quad \text { and } \\
& \log k=a+b E_{T}^{N} \tag{4}
\end{align*}
$$

For numerous reactions, these correlations adequately express the dependence of the rate constant on the acidity parameter of the solvent [9-12]. As pointed out by Reichardt, the $E_{\mathrm{T}}(30)$ values of protolytic solventa (and hence the E_{T}^{N} values too) reflect the participation as donor in hydrogen-bonding, and thus the electrophilicity. Our earlier investigations demonstrated that the amine exchange of Schiff bases is influenced considerably by the ability of the solvent to form hydrogen-bonds. We therefore studied the correlation between the rate constants for reactions l-4 in the various solvent mixtures and the corresponding E_{T}^{N} values in accordance with (4). The constants and b calculated with the method of least squares are to be found in Table II.

Table II
Application of regression equation (4) to reactions l-4 in various solvent mixtures

Reaction No.	Solvent mixture	a	b	n	r
1 2 3 4	ethanol-n-hexane	$\begin{array}{r} -1.905 \\ -2.072 \\ 0.157 \\ 0.155 \end{array}$	$\begin{aligned} & 7.027 \\ & 7.067 \\ & 2.485 \\ & 2.300 \end{aligned}$	$\begin{gathered} 8^{*} \\ 12^{\star} \\ 7^{*} \\ 11^{*} \end{gathered}$	$\begin{aligned} & 0.965 \\ & 0.939 \\ & 0.875 \\ & 0.872 \end{aligned}$
1 2 3 4	ethanol-cyclohexane	$\begin{array}{r} -2.209 \\ -2.279 \\ 0.655 \\ 0.480 \end{array}$	$\begin{aligned} & 7.728 \\ & 7.537 \\ & .1 .685 \\ & 1.806 \end{aligned}$	$\begin{aligned} & 13 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.990 \\ & 0.992 \\ & 0.918 \\ & 0.909 \end{aligned}$
1 2 3 4	ethanol-benzene	$\begin{aligned} & -1.781 \\ & -2.157 \\ & -1.756 \\ & -2.092 \end{aligned}$	$\begin{aligned} & 6.763 \\ & 7.000 \\ & 5.396 \\ & 5.774 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.996 \\ & 0.999 \\ & 0.991 \\ & 0.994 \end{aligned}$

*data ($\log \mathrm{k}, \mathrm{E}_{\mathrm{T}}^{\mathrm{N}}$) relating to the pure apolar solvent were not used in the calculations

The data in Table II reveal that the values of a and \underline{b} are affected appreciably by the nature of the Schiff base. For example, the data for reactions 1 and 2 barely differ in the solvent mixtures employed (of similar type), but they differ considerably from the data for reactions 3 and 4. The correlation coefficients point to a relatively close correlation between $\log k$ and $\mathrm{E}_{\mathrm{T}}^{\mathrm{N}}$. However, the $\log \mathrm{k}$ values calculated in accordance with (4) with the and \underline{b} data in Table II frequently differ significantly from the measured data. This is illustrated in Figs 1 and 2.

Fig. 1. Differences between the exparimentally measured log k values for reaction 4 in ethanol-hexane (x) and ethanol-cyclohexane (.) mixtures and the velues calculated via Eq. (4) with the data of Table II.

Fig. 2. Differences between the experimentally measured log k valuea for reection 2 in ethanol-cyclobexane (x) and ethanol-benzene (•) mixtures and the valuea calculated via Eq. (4) with the data of Table II.

The differences between certain of the calculated and measured $\log \mathrm{k}$ values are particularly large for reactions 3 and 4 in ethanol-n-hexane and in ethanol-cyclohexane mixtures. These differences, which are primarily to be observed in mixtures with low ethanol concentrations, indicate that it is not sufficient merely to take into account the acidity of the solvent for these systems; it is to be expected, for

Instance, that the rate of the reaction is also influenced appreciably by the basicity of the solvent.

The use of a multiparameter equation to describe the solvent effect was introduced by Katritzky et al. [14]. In more recent investigations, a number of variations have been employed, in which use is made of the acidity and basicity parameters of the golventa, the molar refraction, the relative permittivity, the polarizability, the polarizing power, etc. A good review of the reaults to date ia given by. Svoboda et al. [15].

We have applied the following equation to describe the solvent effect observed in the amine exchange:

$$
\begin{equation*}
\log k=a+b_{1} E_{T}^{N}+b_{2} B_{K T} \tag{5}
\end{equation*}
$$

where $\mathrm{F}_{\mathrm{T}}^{\mathrm{N}}$ and B_{KT} are the acidity and basicity parameters of the given solvent mixture, while $\underline{a}, \underline{b}_{1}$ and \underline{b}_{2} are constants characteristic of the system. A correlation of this type was effectively utilized by Krygowski and Fawcett [16-18]to characterize the solvent effect quantitatively in various processes. The experimental data $[1,2,4]$ were employed with the method of least squares to determine the constants or (5) for reactions $1-4$, and the corresponding multiple correlation coefficient (R) was calculated. In order to be able to compare the effects of the acidity and the basicity, we also converted the regression coefficients b_{1} and b_{2} to beta coefficients β_{1} and β_{2}. through the following equations $[19,17]$:
$\beta_{1}=\left|b_{1}\right|\left(\left|\frac{\sum_{i=1}^{n}\left(E_{T_{(1)}}^{N}-\overline{E_{T}^{N}}\right)^{2}}{\sum_{i=1}^{n}\left(\log k_{i}-\overline{\log k}\right)^{2}}\right|^{1 / 2}, \quad \beta_{2}=\left\lvert\, b_{2}\left(\left|\frac{\sum_{i=1}^{n}\left(B_{K T}(1)-\bar{B}_{K T}\right)^{2}}{\sum_{i=1}^{n}\left(\log k_{i}-\overline{\log k}\right)^{2}}\right|^{1 / 2}\right.\right.\right.$
where i denotes the data measured in the given solvent, while $E_{T}^{N}, \bar{B}_{K T}$ and $\overline{\log k}$ are average values for the \underline{n} experimental points. For the reactions in question, the diatribution of the effects of the acidity and the basicity characteristic of the aolvent was obtained as a percentage through the normalization of B_{1} and $B_{2}[17]$:

$$
\begin{equation*}
\beta_{1}^{\prime}=\frac{100 \beta_{1}}{\beta_{1}+\beta_{2}} \quad \beta_{2}^{\prime}=\frac{100 \beta_{2}}{\beta_{1}+\beta_{2}} \tag{7}
\end{equation*}
$$

Fig. 3. Differencea between the exparimentaliy measured log k values for reaction 4 in ethenol-hexane (x) and ethanol-cyclohezane (•) mixtures and the values calculated via Eq. (5) with the data of Table III.

Fig. 4. Differences between the experimentally measured $\log \mathrm{k}$ values for reaction 2 in ethanol-cyclohexane (x) and ethanol-benzene (.) mixtures and the values calculated via Eq. (5) with the data of Table III.

Figures 3 and 4 depict the measured $\log k$ values for some reactions, together with the calculated values obtained from the appropriate a, \underline{b}_{1} and \underline{b}_{2} data in Table III.

Application of regression equation (5) to reactions l-4 in various solvent mixtures

Reaction No.	Solvent mixtures	a	b_{1}	b_{2}	B_{1}^{\prime}	β_{2}^{\prime}	n	R
1 2 3 4	ethanol-n-hexane	$\begin{array}{r} -2.196 \\ -2.614 \\ 0.035 \\ -0.121 \end{array}$	$\begin{aligned} & 6.371 \\ & 6.515 \\ & 1.887 \\ & 2.026 \end{aligned}$	$\begin{aligned} & 0.855 \\ & 1.065 \\ & 0.586 \\ & 0.539 \end{aligned}$	$\begin{aligned} & 76.70 \\ & 71.90 \\ & 56.26 \\ & 76.61 \end{aligned}$	$\begin{aligned} & 23.30 \\ & 28.10 \\ & 43.74 \\ & 23.39 \end{aligned}$	$\begin{array}{r} 8^{*} \\ 12^{*} \\ 71^{*} \end{array}$	$\begin{aligned} & 0.997 \\ & 0.995 \\ & 0.994 \\ & 0.995 \end{aligned}$
1 2 3 4	ethanol-cficlohexane	$\begin{array}{r} -2.129 \\ -2.227 \\ 0.501 \\ 0.305 \end{array}$	$\begin{aligned} & 5.809 \\ & 5.186 \\ & 1.284 \\ & 1.350 \end{aligned}$	$\begin{aligned} & 1.273 \\ & 1.598 \\ & 0.477 \\ & 0.542 \end{aligned}$	$\begin{aligned} & 73.62 \\ & 67.20 \\ & 61.58 \\ & 59.69 \end{aligned}$	$\begin{aligned} & 26.38 \\ & 32.80 \\ & 38.42 \\ & 40.31 \end{aligned}$	13 12 12 12	$\begin{aligned} & 0.995 \\ & 0.999 \\ & 0.992 \\ & 0.993 \end{aligned}$
1 2 3 4	ethanol-benzene	$\begin{aligned} & -1.978 \\ & -2.300 \\ & -2.065 \\ & -2.347 \end{aligned}$	$\begin{aligned} & 8.201 \\ & 8.037 \\ & 7.645 \\ & 7.628 \end{aligned}$	$\begin{aligned} & -0.954 \\ & -0.687 \\ & -1.491 \\ & -1.229 \end{aligned}$	$\begin{aligned} & 84.55 \\ & 88.16 \\ & 76.54 \\ & 79.90 \end{aligned}$	$\begin{aligned} & 15.45 \\ & 11.84 \\ & 23.46 \\ & 20.20 \end{aligned}$	12 12 12 12	$\begin{aligned} & 0.998 \\ & 0.999 \\ & 0.998 \\ & 0.999 \end{aligned}$

data $\left(\log k, \sum_{T}^{N}\right)$ relating to the pure apolar solvent were not used in the
calculations

From a comparison of Figs l-4 and Tables II and III, it may be stated that Eq. (5) gives a good deacription (essentially better than Eq. (4)) of the solvent effect observed in these reactions. The rate of amine exchange of the Schiff bases is therefore influenced by both the acidity and the basicity of the solvent applied.

This result confirms the previously assumed reaction mechanisir [20], and makes it more exact. If the solvent effect too is taken into consideration, the main steps are expected to be as follows:

This mechanism is in accord with the experience that the amine exchange takes place with appreciable rate only in solvents capable of hydrogen-bonding both as donors and as acceptors. The hydrogen-bonds developingewith the Schiff base and with the primary amine increase the electrophilic nature of the azomethine carbon atom, and also allow the proton transfers to occur through mediation of the solvent. Clearly, both effects increase the reaction rate.

The data in Table III reveal that, in all three solvent mixtures, the effect of the acidity is more aignificant than that of the basicity. It is also noteworthy that both \underline{b}_{1} and \underline{b}_{2} are positive in the ethanol-hexane and ethanol-cyclonexane mixtures, whereas in the ethanol-benzene mixtures \underline{b}_{2} is negative. In our opinion, this does not mean
that the basicity increases the reaction rate in the ethanol-cyclohexane mixtures, for instance; and decreases it in the ethanol-benzene mixtures. The negative sign may arise as a computational result in congequence of the interaction between the ethanol and benzene molecules, or of the composition-dependent changes in the mixture. This fits in with our earlier finding that the E_{Γ}^{N} values, and particularly the $B_{K T}$ values, vary in appreciably different weys as functions of the mixture composition in ethanol--cyclohexane and ethanol-benzene mixtures [4].

References

[1] Nagy, P.: Juhász Gy. Tanárképzô Fớisk. Tud. Közl. 114 (1982)
$\left[\begin{array}{l}2 \\ { }_{2} \\ 4 \\ 4\end{array}\right]$
Nagy, P.: Acta Chim. Hung. 112, 461 (1983)
Gulyás, I., Nagy, P.: Niagy. Kém. Lapja, 39, 234 (1984)
Nagy, P., R. Herzfeld: Acta Phys. et Chem. Szeged, 31, 735 (1985)
[5] Dimroth, K., C. Reichardt, T. Siepmann, F. Bohlmann: Liebigs. Ann. Chem. 661, 1 (1963)
[6] Reicharat, C., E. Harbusch-GÖrnert: Liebigs. Ann. Chem. 721 (1983)
[7] Krygowski, T.M., E. Milczarek, P.K. Wrona: J.C.S. Perkin II. 1563 (1980)
[8] Kamlet, M.J., R.W. Taft: J. Amer. Chem. Soc. 98, 377 (1977)
[9] Elias, H., G. Gumbel, S. Neitzel, H. Volz: Fresenius 2. Anal. Chem. 306, 240 (1981)
[10] Elias, H., K.J. Wannowius: Inorg. Chem. Acte 64, I. 157 (1982)
[11] Reicharat, C.: Pure Appl. Chem. 54, 1867 (1982)
[12] Reichardt, C.: Molecular Interactions, Wiley, Chiches-. ter, New York, Vol. 3, p. 241 (1982)
[13] Reichardt, C.: Angew. Chem. 91, 119 (1979)
[14] Fowler, F.W., A.R. Katritzky, R.J.D. Rutherford: J. Chem. Soc. B 460 (1971)
[15] Svoboda, P., O. Pytela, M. Vecera: Collection Czechoslovak Chem. Commun. 48, 3287 (1983)
[16] Krygowski, T.M., W.R. Fawcett: Aust. J. Chem. 28, 2115 (1975)
[17] Krygowski, T.M., W.R. Fawcett: J. Amer. Chem. Soc. 97, 2143 (1975)
[18] Krygowski, T.M., W.R. Fawcett: Can. J. Chem. 54, 2383 (1976)
[19] Ezekiel, N., K.A. Fox: "Methods of correlation and Regression Analysis" 3rd ed, Wiley, New York, 1959.
[20] Cordes, E. H. , W. P. Jencks: J. Amer. Chem. Soc. 84, 826 (1962)

Nagy, P.: Magy. Kém. Folyóirat, 78, 158 (1972)

$$
\begin{gathered}
\text { ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАСТВОРИТЕЛЯ ПРИ } \\
\text { АМИНООБИЕНЕ ОСНОВАНИИ ШИФФА, V. } \\
\text { Связь коэфициента скорости с параметрами } \mathrm{E}_{\mathrm{T}}^{\mathrm{N}} \text { и } \mathrm{B}_{\mathrm{KT}} \\
\text { применяемвх растворителей } \\
\text { П. Надь и Р. Херцфельд }
\end{gathered}
$$

Нами был исследован аминообмен оснований Шиффа в различных растворителях. По одному регрессивному уравнению установлена хоротая коррөляция мепду коәфициентом скорости и парамөтрами $\mathbb{E}_{\mathbb{T}}^{\mathbb{N}}$ и \mathbf{B}. растворителеи.

