STUDY OF THE SPECTRAL BEHAVIOUR OF MOLECULAR COMPLEXES OF PICRIC ACID AND HEXANITROBIPHENY\&AMINE WITH SCHIFF BASES FORMED FROM SALICYLALDEHYDE AND ALKYL-AMINES, POLYMETHYLENEDIAMINES, SULPHONAMIDES AND AMINOPYRIDINES

By

J. CSASZAR

Institute of General and Physicial Chemistry, Jdzsef Attila University, H-6701, Szeged, 'P.0.B. I0S', Hungary
(Received 9. August 1988)

Molecular complexes of picric acid and hexanitrobiphenylamine with Schiff bases (SB) derived from salicylaldehyde and alkylamines, polymethylenediamines, sulphonamides and aminopyridines, with formulae SB. . A or SB. $A_{2}(A=$ acceptor molecule), were prepared and characterized through UV, visible, IR and If NMR spectroscopy. Picric acid and hexanitrobiphenylamine act as acceptor molecules and bind to the aromatic rings of the donors via intermolecular $\pi-\pi$ charge-transfer interactions.

Pfeiffer [1] suggested that the interactions between the components in a molecular complex could be regarded as interactions between particular force fields to be assigned to certain regions of the molecules. For example, when an aromatic amine is complexed with a polynitrophenol, for instance picric acid, PA, two types of force field must be considered: one type of force field produces an acid-base
interaction (proton transfer, PT), and the other type an electron donor-acceptor interaction (charge transfer, CT).

The preparation of PA complexes through the use of different solvents, and the isomerism of CT-PT complexes, were extensively studied by Matsunaga et al. [2-4]. Issa et al. [5-6] pointed out that, in the molecular complexes of benzylidene derivatives and PA, the occurrence of CT, PT and $n-\pi$ interactions is possible.

As part of a continuing survey of the spectral characteristics of Schiff bases (SB) [7-10] and of their molecular complexes [11, 12], we have examined the ability of the SB derived from salicylaldehyde with alkylamines, $\{13]$, polymethylenediamines [9], sulphonamides [14] and aminopyridines to form molecular complexes with different acceptor molecules. We now report the preparation and the $U V$, visible, IR and ${ }^{1} \cdot \mathrm{H}$ NMR spectra of molecular complexes of $S B$ of types I, II, III and IV as donors with PA or hexanitrobjphenyl-amine (dipicrylamine, DPA) as acceptor molecúle (see Table I).

Experimental

The SB were synthetized as described previously [13-15]. The complexes were prepared by mixing hot methanolic solutions of donor and acceptor in 1:1 and 1:2 mole ratios. On cooling, crystalline products separated out, which were filtered off and washed with cold ethanol and ether. The m.p.s. and the analytical data on the complexes prepared are listed in Table II. The SB with even numbers of methylene groups form crystalline products with PA more easily and faster, but in the case of longer chains ($n>8$) no crystal-

Table I

The Schiff bases studied and the numbering of their molecular complexes in the text

No.	$\underline{\square}$	Comp.	No.	$\underline{\text { n }}$	Comp.	No.	R*
1	0	1:1	5	5	1:1	8	$-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2}$
1a		1:2	5a		1:2	9	$-\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$
2	2	1:1	6	6	1:1	10	$-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
2a		1:2	6 a		1:2	11	$-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2}$
3	3	1:1	7	8	1:1	12	$-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
3 a		1:2	7 a		1:2	13	$-\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}$
4	4	1:1				14	$-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{NO}$
4 a		1:2				15	$-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NS}$

* The parent sulphonamides: 8: 2-(4'-aminophenylsulphonyl)-amino-4,6-dimethylpyrimidine; 9: (4'-aminophenylsulphonyl)carbamide; 10: 6-(4'-aminophenylsulphonyl)-amino-3-methoxypyridiazine; 11: 6-(4'-aminophenylsulphonyl)-amino-2,4-dimethylpyrimidine; 12: 2-(4'-aminophenylsulphonyl)-amino-5methoxypyrimidine; 13: 6-(4'-aminophenylsulphonyl)-amino-2,4-dimethoxypyrimidine; 14: 5-(4'-aminophenylsulphonyl)-amino-3,4-dimethyl-1,2-oxazole; 15: 5-(4'-aminophenylsulpho-nyl)-amino-3-methyl-1,4-thiazole.

III (DPA)

No.	Alkyl	No.	Alkyl	No.	$\underline{R^{\prime} * *}$
16	CH_{3}	$\underline{22}$	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$	28	$-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$
17	$\mathrm{C}_{2} \mathrm{H}_{5}$	23	$\mathrm{i}-\mathrm{C}_{5} \mathrm{H}_{11}$	$\underline{29}$	$-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$
18	$\mathrm{n}_{-\mathrm{C}_{3} \mathrm{H}_{7}}$	24	$\mathrm{C}_{6} \mathrm{H}_{13}$	30	$-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$
19	$\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	25	$\mathrm{C}_{8} \mathrm{H}_{17}$	31	$-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$
20	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	26	$\mathrm{C}_{10} \mathrm{H}_{21}$	32	- $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$
21	i-C4 ${ }_{4}{ }_{9}$	$\underline{27}$	$\mathrm{C}_{12} \mathrm{H}_{25}$	33	$-_{-} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$

Amines used: 28: 2-aminopyridine; 29: 3-aminopyridine; 30: 4-aminopyridine; 31: 2-amino-3-methylpyridine;
32: 2-amino-4-methylpyridine; 33: 2-amino-5-methylpyridine;
34: 2-amino-6-methylpyridine.
line product can be isolated. The DPA complexes of salicy-lidene-alkylamines (16-27) were investigated only in solutions prepared with different mole ratios.

The UV and visible spectra were recorded on a SPECORD UV-VIS spectrophotometer in spectroscopically pure solvents at room temperature. The IR measurements were carried out on a ZEISS SPECORD M80 instrument in KBr discs. The ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a BRUKER FT80 instrument in DMSOd_{6}, using TMS as internal standard***.

The author is grateful to Dr., G. Horváth (CHINOIN) for the ${ }^{1} H$ NMR and IR measurements.

Table II

Analytical data on the molecular complexes prepared

No.	Col*	M.P.**				H \%	
				Calcd.	Found	Calcd.	Found
1	LY	170	- 173	51.18	51.07	3.12	3.20
Ta	LY	193.5	- 194.5	44.71	44.06	2.60	2.33
2	LY	113.5	- 114.0	53.12	52.44	3.85	4.00
$\frac{2}{2}$	LY	170	- 172	46.29	47.82	3.06	2.84
3	0	14.7	- 149	54.01	53.87	4.14	4.05
3 a	LY	177	- 179	47.03	46.77	3.27	3.09
4	0	175	- 176	54.86	54.66	4.41	4.31
4 a	LY	195	- 196	47.75	47.51	3.47	3.33
5	0	123.5	- 124.5	55.66	55.33	4.67	4.56
5 a	LY	164.5	- 165.5	48.44	48.37	3.67	3.51
6	LY	155	- 156	56.42	56.40	4.92	4.77
$\underline{6}$	LY	175	- 176	49.11	49.01	3.86	3.88
7	LY	153.5	- 154.5	57.83	57.77	5.37	5.31
$7 \mathrm{7a}$	LY	161	- 162	50.37	49.98 .	4.23	4.21
8	LY	113	- 114	44.29	$44.08{ }^{\circ}$	2.88	2.72
$\overline{9}$	BY	139	- 140	40.16	39.88	2.46	2.33
$1 \overline{0}$	LY	16.0	- 161	42.76	41.64	2.63	2.53
11	\bigcirc	106	- 107	44.29	44.08	2.88	2.58
$\underline{12}$	LY	180	- 181	42.76	42.59	2.63	2.55
$\frac{13}{13}$	0	74	- 75	42.67	42.55	2.77	2.59
14	0	77	- 78	43.43	43.09	2.79	2.68
15	0	119	- 120	41.88	41.66	2.55	2.52
$\frac{28}{28}$	R	177.0	- 177.5	40.16	39.86	1.87	2.01
29	SC	186	- 187	45.32	45.85	2.37	2.50
$\frac{30}{30}$	R	199.5	- 200.0	40.16	39.54	1.87	1.94
$\frac{31}{}$	SC	197	- 198	40.75	40.28	2.03	1.96
32	BR	196	- 197		40.33		1.88
$\frac{33}{}$	SC	175	- 176		40.25		1.92
34	SC	186	- 187		39.98.		2.00

Y: yellow; R: red; SC: scarlet; BR: brownish-red;
O: orange; LY: lemon-yellow; BY: brownish-yellow
uncorrected values.
A) PA complexes 1-1 (1:1) and 1a-7a (1:2). Upon complex formation, the spectra of the SB [15] change considerably (Table III); the 240-320 nm bands become indistinct, and only inflections appear (Fig. 1/2). In the range $350-420 \mathrm{~nm}$,

Figure 1.: UV and visible spectra of the $\mathrm{SB}(\mathrm{n}=5)$ (1), $\mathrm{c}=2.09 .10^{-4}$; 5a (2), $\mathrm{c}=3.90 .10^{-4}$; 5a in cc sulphuric acid (3), $c=3.85 \cdot 10^{-4}$; the $1: 1 \mathrm{DPA}$ complex (4), c=2.12.10 $0^{-6} \mathrm{~mol} / \mathrm{dm}^{3}$. Solvent (1, 2, 4): methanol; $d=0.1 \mathrm{~cm}$.
a medium-intensity, broad band appears with an inflection on the long-wavelength side. In chloroform (and in other solvents not forming hydrogen-bonds), the spectral struc-

Table III

Spectral data on the PA complexes

1	220(4.63)	~ 240	-	295(4.57)	356 (4.61)	~ 420
1 a	220(4.86)	~ 240	-	294(4.73)	354(4.81)	~ 420
2	415(4.69)	~ 230	257(4.39)	~ 280	354 (4.39)	~ 400
2a	214(4.75)	- 230	252(4.50)	~ 280	353(4.48)	~ 400
3	216(4.60)	~ 230	-245	~ 280	351 (4.39)	-410
3 a	214(4.72)	~ 230	~ 240	- 280	352(4.58)	~ 410
4	214(4.82)	~ 225	253(4.51)	~ 278	351(4.44)	~ 400
4 a	213(4.79)	~ 225	- 255	274(4.49)	353 (4.53)	~ 400
5	214(4.75)	~ 225	~250	~ 280	355(4.51)	~ 400.
5a	211(4.73)	~ 225	-	275(4.48)	355 (4.63)	~ 400
$\underline{6}$	214(4.77)	~ 225	257(4.46)	274(4.45)	352(4.41)	~ 400
6a	211(4.83)	-225	-	274(4.63)	352(4.64)	-400
7	212(4.59)	~ 225	-	274 (4.33)	354(4.44)	~ 400
7 a	213(4.79)	~225	-	275(4.59)	354 (4.66)	~ 400
8	204(4.79)	-	~ 240	273(4.48)	351 (4.48)	-390
9	-215	-	~250	270(4.36)	350(4.20)	~ 400
10	~ 210	-	~250	-270	349(4.33)	~ 400
11	203(4.84)	-	254 (4.60)	$301(4.36)$	351 (4.39)	-400
12	214(4.54)	-	~ 235	271(4.33)	350(4.04)	~ 410
13	-215	-	260(4.37)	~ 278	$350(4.09)$	~ 410
14	213(4.61)	-	~ 245	271(4.37)	350(4.21)	~ 400
15	~ 215	-	~ 245	288(4.25)	350(4.28)	~ 400

ture is similar, but the long-wavelength band is almost symmetrical; the inflection is absent. The spectra of the
complexes with compositíions donor/acceptor $1: 1$ and $1: 2$ do not differ considerably.

The main IR frequencies of the $S B$ are not changed significantly in their PA complexes; the frequencies of the
 group of PA to the nitrogen atom of the azomethine group can be excluded. The YCH bands of the donors shift to higher wavenumbers, indicating a decrease in the π-electron density as a consequence of the intermolecular CT. The ${ }^{v}{ }_{s} \mathrm{NO}_{2}$ band of the acceptor'shifts to lower wavenumbers (from 1352 to 1325-1340 cm^{-1}); the increased π-electron density favours a higher polarization of the nitro group, and accordingly a lower $N=0$ bond order.

We presume that, in the spectra of methanolic solutions of $2-7$ and $2 \mathrm{a}-7 \mathrm{a}$, the range $210-320 \mathrm{~nm}$ contains the bands of the $\pi^{*} * \pi$ transitions of both the donor and acceptor molecules, while the 350 nm band involves the band of PA itself $\left(\lambda_{\text {max }}^{*}=350 \mathrm{~nm}, \log \varepsilon=4.02\right)$, the band of the intermolecular CT, and the band ($\sim 420 \mathrm{~nm}$) of the tautomeric equilibrium system characteristic of $S B$ of this type [9]. It seems that the interaction with PA does not prevent the formation of the hydrogen-bonds within the $S B$ molecule. In contrast with the example described above, the spectra of 1 and 1a are different from those of the other compounds discussed, whereas those of the parent $S B$ and of 1 and $1 a$ are similar (Fig. 2), and do not change in different solvents.

It is interesting that, while the parent SB undergoes hydrolysis relatively rapidly in concentrated sulphuric acid solution, the PA complexes remain almost unchanged during $60-80 \mathrm{~min}$ (Fig. 1/3).

Figure 2.: Spectra of methanolic solutions of the $S B(n=0)$ (1), $c=4.2 .10^{-4}$; 1a (2), $c=4.3 .10^{-4}$; and the 1:1 DPA complex $(3), c=2.3 .10^{-4} \mathrm{~mol} / \mathrm{dm}^{3}$; $d=0.1 \mathrm{~cm}$.
B) $P A$ complexes $8-15$. The spectral structures of the $P A$ complexes (Table III) do not differ fundamentally from that of the corresponding $S B[14]$; the characteristic 270 nm band is unambiguously observable. In the spectra of the $S B$, there is a flat part between 280 and 350 nm , with an indistinct band at around 340 nm [14], whereas the spectra of the $P A c o m-$ plexes (Figs 3 and 4) display a high-intensity band in this region. The calculated curve and the measured one exhibit a considerable intensity difference, from which we conclude that this range contains bands of different origins, as discussed above. The high-intensity bands below 300 nm result from the $\pi^{\star} \rightarrow \pi$ transitions of the aromatic systems. It is re-

Figure 3.: Spectra of methanolic solutions of 14 (1), $\mathrm{c}=3.8 .10^{-4} ; \underline{9}(2), \mathrm{c}=6.23 .10^{-4}$; and 15 (3), $\mathrm{c}=5.09 \cdot 10^{-4} \mathrm{~mol} / \mathrm{dm}^{3} ; \mathrm{d}=0.1 \mathrm{~cm}$.
markable that the $-\mathrm{NH}-\mathrm{R}$ heteroaromatic ring scarcely influences the spectra; the complexes of $\underline{8}$ and $\underline{9}$, for example, even when $R=H$, give totally similar spectra.

In the IR spectra, a broad, medium-intensity band exists, at around $3000-3100 \mathrm{~cm}^{-1}$, due to the $v 0 H$ vibration. The strong bands between 1630 and $1660 \mathrm{~cm}^{-1}$ correspond to the stretching vibration of the $C=N$ bonds, while there is a strong, broad band between 1550 and $1570 \mathrm{~cm}^{-1}$, which can be assigned as a $v_{a s} \mathrm{NO}_{2}$ vibration. If there is some other, for example $n-\pi$ interaction, two $\nu_{a s} \mathrm{NO}_{2}$ bands appear; one of these is again equal to or greater than the frequency of the

Figure 4.: Spectra of methanolic solutions of the parent sulphonamide of 12 (1), $c=3.8 \cdot 10^{-4}$; the SB (2), $c=3.9 .10^{-4}$; and $\overline{12}(3), c=4: 4.10^{-4} \mathrm{~mol} / \mathrm{dm}^{3}$; $\mathrm{d}=0.1 \mathrm{~cm}$.
single band of PA, while the second band is located at lower frequencies [16]. The bands of the $v_{a s} \mathrm{SO}_{2}$ and $v_{s} \mathrm{SO}_{2}$ vibrations are also well distinguishable in the range of 1340-1370 and $1150-1170 \mathrm{~cm}^{-1}$, respectively. It can be stated that the IR spectra show differences only in the range of the skeletal vibrations; the other ranges are similar. Unfortunately, the spectra are extremely rich in bands, so a full assignment is difficult.
C) DPA complexes. It has long been known that DPA yields slightly soluble compounds with, for example, quaternary ammonium compounds [17] or different organic bases .[e.g. 18, 19], but very few data can be found in the literature on the spectral behaviour of molecular complexes of aromatic SB and DPA.

While the molecular complexes of SB with PA are generally yellow or orange, the complexes of DPA are brick-red, scarlet or violet. From the structure of DPA, it is obvious that donor + acceptor PT is impossible, and thus only CT processes need be taken into account.

Salicylidene-polymethylenediamines (1-7) form red crystalline complexes with compositions $1: 1$ and $1: 2$, the spectra of which are very similar to those of the PA complexes (Figs $1 / 4$ and $2 / 3$); the long-wavelength band shifts to approx. $410-420 \mathrm{~nm}$, due to the increased conjugation systems. On the basis of the high similarity of the spectra, it is reasonable to assume that the PA and DPA complexes have similar structures, and similar excitation processes play important roles in their spectra.

The salicylidene-alkylamines (16-27) also form molecular complexes with DPA in chloroform or methanolic solution, with composition 1:1. In this series, all the spectra display a high similarity to each other; for a typical example, see Fig. 5. The spectra of these compounds are complicated superpositions of the spectra of the components: the longwavelength band also contains the band assigned to the CT processes, in which the aldehyde ring of the SB obviously takes part in the interaction.

Molecular complexes 28-30 exhibit different spectral structures. 28 shows two bands (295-310 and 380-430 nm); the latter one has the higher intensity. In the case of 29 ,

Figure 5.: UV and visible spectra measured in methanol

$$
\begin{aligned}
& \text { (1) DPA; } c=3.19 .10^{-4} ;(2) \quad S B \text { of } 26, \\
& c=2.30 .10^{-4} ;(3) \mathrm{SB}+\mathrm{DPA}, \mathrm{c}_{\mathrm{SB}}=1.9 .10^{-4} \\
& \mathrm{C}_{\mathrm{DPA}}=2.15 .10^{-4} \mathrm{~mol} / \mathrm{dm}^{3} ; \mathrm{d}=0.1 \mathrm{~cm}
\end{aligned}
$$

the bands lie closer together ($340-360$ and $410-430 \mathrm{~nm}$) and they have comparable extinction coefficients, while in the spectra of 30 , only one, high-intensity, broad band exists (Table IV, Fig 6).

The visible band is in every case broad and asymmetric. Accordingly, we presume that this band contains not only the 385 nm band of DPA, but also the band which corresponds to the $\pi-\pi$ CT. An important solvent effect is observable in the spectra of $29-34$ (see Tables $I V$ and V), but no relationship can be found between the spectral changes and the

Figure 6.: Spectra measured in methanol. (1) 28, $c=1.11 .10^{-4}$; (2) $29, c=1.30 .10^{-4}$; (3) 30 , $\mathrm{c}=1.30 .10^{-4} \mathrm{~mol} / \mathrm{dm}^{3} ; \mathrm{d}=0.1 \mathrm{~cm}$.
solvent characteristics. The solution spectra do not rigorously obey the Beer law, so we assume that an equilibrium system is formed in solution. In the reflection spectra of 28-30, no band appears in the visible; only a weli-defined inflection is observed at around 400 nm .

Selected ${ }^{1} \mathrm{H}$ NMR and IR data on $28-30$ are presented in Table IV; partial spectra are shown in Fig. 7. A comparison between the NMR spectra of the studied complexes and those of the components reveals that the signals of the donors and the acceptor are generally shifted to higher and lower δ (ppm) values, respectively. The shifts of the signals due to the pyridine protons are higher, which supports the as-

Table IV

UV, visible ($\lambda_{\text {max }} / \mathrm{nm}$ and $\log \varepsilon$), ${ }^{1} \mathrm{H}$ NMR and $\mathrm{IR}\left(\mathrm{cm}^{-1}\right.$) spectral data on complexes 28-30

Solv.	28		$\underline{29}$		30
MeOH	$310(4.62)$	$421(4.92)$	$348(4.36)$	$417(4.34)$	$419(4.86)$
CHCl_{3}	-280	~ 460	$349^{\mathrm{a})}$	~ 400	$\left.415^{\mathrm{a}}\right)$
$\mathrm{CH}_{3} \mathrm{CN}$	$298(4.43)$	$423(4.84)$	$354(4.44)$	$420(4.43)$	$438(4.82)$
DMSO	$309(4.70)$	$430(4.93)$	$340(4.32)$	$434(4.32)$	$433(4.82)$
Acid	$303(4.65)$	$380(4.58)$	$336^{\mathrm{a})}$	~ 280	$380^{\mathrm{a})}$
Base	$300(4.47)$	$422(4.85)$	$283(4.42)$	$406(4.67)$	$420(4.75)$

Assignments

$\delta \mathrm{CHN}$	8.80	8.80	8.80
$\delta \mathrm{CH}$ (py-ring)	$7.90{ }^{\text {b }}$	$7.68{ }^{\text {b) }}$	$8.08{ }^{\text {b) }}$
6CH (ald-ring)	$6.95{ }^{\text {b) }}$	$7.06{ }^{\text {b }}$	$6.86{ }^{\text {b) }}$
טNH	3100 m	3090m	3160 m
$\nu C=N$	1668s	1625s	1650 s
$\nu_{\text {as }} \mathrm{NO}_{2}$	1588s	1560 s	1585 s
${ }^{\text {s }} \mathrm{NO}_{2}$	1285s	$1305 s^{\text {c }}$	$1305 \mathrm{~s}^{\text {c }}$
$\mathrm{rC}-\mathrm{N}(\mathrm{H})$	1166 m	1170 m	1160 m
	908m	908 m	907m
${ }^{\gamma} \mathrm{CH}$	767 m	764 m	765 m
	738m	740m	738m
	718 m	718 m	720 m

Table V

Spectral data on molecular complexes 31-34

No.	Solv.		m and 10	
31	МеОн	315(4.46)	-	422(4.74)
	CHCl_{3}	~ 280	389(4.42)	~ 440
	$\mathrm{CH}_{3} \mathrm{CN}$	304(4.32)	-	426 (4.72)
32	MeOH	318(4.41)	-	420 (4.73)
.	CHCl_{3}	~ 280	385(4.33)	~ 460
	$\mathrm{CH}_{3} \mathrm{CN}$	313(4.34)	-	425(4.79)
33	MeOH	311(4.68)	-	420(5.02)
	CHCl_{3}	~ 280	$380^{\text {a) }}$	~ 470
	$\mathrm{CH}_{3} \mathrm{CN}$	302 (4.26)	-	425(4.72)
34	MeOH	261(4.72)	350 (4.59)	420(4.58)
	CHCl_{3}	278(4.78)	$350(4.66)$	~390
	$\mathrm{CH}_{3} \mathrm{CN}$	273(4.69)	347 (4.63)	423(4.60)

a) very low solubility
sumption that the pyridine ring is the donating system in the CT interaction. In the case of the parent SB, the two overlapping band systems of the aldehyde and pyridine ring protons lie between 6.7 and 8.1 ppm , while in the spectra of the CT complexes, the two band systems are separated by about 0.8-1.2 ppm.

As a result of the $\pi-\pi$ interactions, the characteristic IR frequencies of both the donors and the acceptor change. The sharp $\cup N H$ frequency of DPA appears at $3095 \mathrm{~cm}^{-1}$;

Figure 7.: Partial ${ }^{1} \mathrm{H}$ NMR (δ / ppm) (a) and $\operatorname{IR}\left(\nu / \mathrm{cm}^{-1}\right)$ (b) spectra of DPA complexes 28,29 and 30.
in the spectra of the complexes it is found at around $3090-3200 \mathrm{~cm}^{-1}$. The $\mathrm{ass}^{\mathrm{NO}_{2}}$ band becomes broader and shows some splitting, indicating a higher differentiation of the
energy states of the nitro groups in the complexes than that in free. DPA. A similar change may be observed for the ${ }^{\nu} \mathrm{s}_{\mathrm{s}} \mathrm{NO}_{2}$ bands. The $\mathrm{VC=N}$ band shifts toward higher wavenumbers as compared to the parent $S B$ molecules. In the range 700-910 cm^{-1}, several bands are observed that are due, to the $\gamma \mathrm{CH}$ vibrations of the different aromatic rings. The $\gamma \mathrm{CH}$ bands of the donors shift to higher wavenumbers, which is a criterion for a CT interaction o $\vec{f} \pi-\pi$ type $[16,20]$. On the other hand, the YCH bands of the pyridine ring exhibit higher. shifts in comparison to those of the benzal ring, indicating similarly that the CT takes place between the pyridine ring and the acceptor molecule.

Issa et al. [21] consider that, in the case of benzy-lydene-aniline derivatives, the aniline ring is the centre primarily contributing to the intermolecular CT interaction; however, in the case of the donor:acceptor 1:2 complexes, the aldehyde ring also takes part in the complex formation. Considering the analytical data and the experimental results, in the case of salicylidene-polymethylenediamines (1-1) and salicylidene-sulphonamide derivatives (8-15), 1:1 + 1:2 and 1:2 complexes are formed, respectively. Since the SB studied are weak electron-donors and PA is a weak acceptor, the resulting CT complex may be expected to be non-ionic. The IR data suggested that the formation of the intramolecular sixmembered ring [22, 23] prevents the intermolecular PT; and since the nitrogen lone pair blocks this, the $n-\pi$ interaction is also improbable; the studied complexes are formed only via an intermolecular CT interaction.

With DPA, 16-27 and 29 form 1:1 complexes, while-28-34 yield 1:2 complexes (not 29). We presume that both the aldehyde and pyridine rings take part in the $1: 2$ complex formation (Structure V), while in the case of 29 the interac-

v
tion occurs only between the pyridine ring and the aromatic sy'stem of the acceptor (Structure VI). However, the dif-

VI
ferent behaviour of 29 is difficult interpret. Saito and Matsunaga [3] have reported amine-PA 1:2 molecular complexes, in which half of the amine molecules act as proton--acceptors, while the other half participate in CT interactions with the picrate ion; l.e. one of the two PA may be a proton-donor, and the other an electron-acceptor. In this case, the IR spectra show the $v-\mathbb{N}_{3}$ band in the range $2500-300 \mathrm{~cm}^{-1}$. We have no experimental data suggesting the simultaneous operation of CT and PT and/or $n-\pi$ interactions. It is very difficult to interpret the real structures of these molecular complexes, because strong steric inhibition influences the conformations of both the donor and acceptor molecules.

It is very important to note that it is possible to prepare molecular complexes with different compositions from similar donors and acceptors, depending on the experimental circumstances (temperature, solvent, etc.); this problem requires still further investigations.

References

[1] Pfeiffer, $P .:$ "Organische Molekülverbindungen"., 2. Aufl., Vlg. von P. Enke, 1927., p. 341-346.
[2] Saito, G., Y. Matsunaga: Bull. Chem. Soc. Japan, 46, 714 (1973).
[3] Inoue, N., Y. Matsunaga: Bull. Chem. Soc. Japan, 46, 3345 (1973).
[4] Saito, G., A. Matsunaga: Bull. Chem. Soc. Japan, 47 1020 (1974).
[5] Hindawey, A.M., Y.M. Issa, R.M. Issa, H.F.•Rizk: Acta Chim. Hung., Budapest, 112, 415 (1983).
[6] Issa, R.M., S.M. Abu-El-Wafa, M. Gaber, El-H.A. Mohamed: Acta Chim. Hung., Budapest, 118, 179 (1985).
[7] Charette, J., G. Faltlhansl, Ph. Teyssie: Spectrochim. Acta, 20, 597 (1964).
[8] Chatterjee, K.K., B.E. Douglas: Spectrochim. Acta, 21, 1625 (1965).
[9] Csásaár, J., J. Balog, A. Makáry: Acta Phys. Chem., Szeged, 24473 (1978) and references therein
[10] Kiss, A., M. Révész, J. Császár, M. I. Bán: Acta Chim. Hung., Budapest, 102, 179 (1979).
[11] Issa, R.M., N. Gaber, A.L.El-Ansary, H.F. Rizk: Bull. Soc. Chim. France, 173 (1985).
[12] Császár, J.: Acta Phys. Chem., Szeged, in press
[13] Szabo, T., J. Császar: Magyar Kémiai Folyóirat, 83, 21 (1977).
[14] Csäszar, J., J. Morvay: Acta Pharm. Hung., 53, 121 (1983).
[15] Császár, d.: Acta Phys. Chem., Szeged, 28, 135 (1982).
[16] Kross, R.D., V.A. Fasse: J. Amer. Chem. Soc., 79, 38 (1957).
[17] Ackerman, D., H. Maner: Z. physik. Chem., 279, 114 (1943).
[18] Kertes, S.: Anal. Chim. Acta, 15, 73 (1956).
[19] Kertes, S., V. Kertes: Anal. Chim. Acta, 15, 154 (1956).
[20] Issa, Y.M. et al.: J. Indian Chem. Soc., LVII, 216 (1980).
[21] Dessouki, H.A., R.M. Issa, E.E. Hossaniz: Acta Chim. Hung., Budapest, in press
[22] Császar, J.: Acta Phys. Chem., Szeged, 29, 139 (1983).
[23] Császár, J., M.N. Bizony: Acta Phys. Chem., Szeged, 31, 729 (1985).

ИЗУЧЕНИЕ СПЕКТРАЛЪНЫХ СВОИСТВ МОЛЕКУЛЯРНЫХ КОМПЛЕКСОВ ШИФФОВЫХ ОСНОВАНИИ ОБРАЗОВАННЫХ ИЗ САЛИЦИЛОВОГО АЛЬДЕГИДА И АЛКИЛАМИНОВ, ПОЛИМЕТИЛЕНДИАМИНОВ, СУЛЬФОНАМИДОВ И ПИРИДИНОВ С ПИКРИЛОВОИ КИСЛОТОИ И ГЕКСАНИТРОБВИФЕНИЛАМИНОМ

И. Часар

Abstract

Синтетизированы и характеризованы с помощью УФ, видимой, иК и ${ }^{1}$ н Яміг спектроскопии 凹иффовые основания (SB) комплексов пикриловой кислоты и гексанитробифениламина, производных салицилового альдегида и алкиламинов, полиметиленодиаминов и аминопиридинов составя sв. A и/или SB. A_{2} (где А молекула акцентора்). Пикриловая кислота и гексанитробифениламин действуют нак акцепторы молекул и связываются к ароматическим кольцам доноров путем межмолекулярного взаимодействия п-п электронного переноса зарлда.

