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THE AIH OF THIS SERIES OF PAPERS IS TO PROVIDE THE INDISPENSABLE THEORETICAL 
BACKGROUND AND ALL PRACTICAL INSTRUCTIONS FOR USING A NEWLY DEVELOPED PROGRAM SYSTEM 
SUITABLE FOR THE EFFICIENT LOCATION OF SADDLE POINTS, MINIMA/MAXIMA AHD POINTS OF 
GRADIENT EXTREMAL CURVES. 

1.Iniroduciion 

Program system has been developed for the efficient location of saddle points, 

minima/maxima and points of gradient extremal curves'. It consists of two conceptually 

largely independent parts. Part I is designed for the determination of any kinds of 

stationary points of a function describing the potential energy surface of a chemical 

reaction. Part II relates to the determination of saddle points of gradient extremal curves. 

The necessary theoretical considerations and technical instructions for the use of 

Part I are discussed in this paper, while Paper II will be devoted to the questions relating 

to Part II (see p. 109 this volume). 

Since a detailed theoretical discussion of the method has also been presented [1], the 

basic considerations concerning the algorithm will be mentioned here only when 

unavoidable. The FORTRAN code of the program is available; it will be submitted for 

distribution to the QCPE, but on request the author will send copies. 

1 The substantial comments provided in the program will also help the user. 
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f . The framework of the algorithm 

To analyze the behaviour of the present algorithm, a quadratic objective function 

will be considered.: 

f(x) = f (x c ) + ¿ p + 1/2 p 'Gp (1) 

where x and x0 are the position vectors, g0 = g(x0) is the gradient, G is the matrix of 

second derivatives and p = dx is the coordinate differential2. 

If the matrix of second derivatives (Hessian) is positive/negative definite, the 

stationary point of the function is a minimum/maximum. An indefinite Hessian determines 

a saddle surface and a saddle point for a critical point3. 

During the past two decades, the quasi—Newton algorithms4 have proved to be very 

powerful in finding minima, and therefore they have also begun to be used for the location 

of saddle points [3]. If a genuine quasi—Newton method is applied to an indefinite objective 

function, several serious inherent problems occur. 

With indefinite Hessians, singular vectors exist which satisfy the condition 

v lGv = 0. (2) 

Such singular directions of search cause the total breakdown of the algorithm. 

Neither the step size nor the update of the H—matrix is defined along a path of zero/very 

small curvatures. The existing techniques developed for handling such functions explicitly 

modify a parent quasi—Newton method for adaptation to indefinite optimization problems. 

The concept of the present'algorithm approaches the problem of location of a saddle point 

in a different way. Instead of modifying a parent quasi—Newton algorithm, it seems more 

2Small letters denote scalars and vectors, capital letters denote matrices, and superscript t 
refers to transposition. 
3 A saddle point can be of first or higher order, depending on the number of negative 
eigenvalues. 
4 For the common properties of the quasi—Newton family, see [2]. 
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attractive to define a new (associated) surface, which is convex and contacts the original 

surface at its saddle point. This means that, in the sense of this idea, the two surfaces axe 

in a first order touching contact characterized by identical function values and first 

derivatives, but their second derivatives differ in nature. While the critical point of the 

original surface is a saddle point, the "associated convex surface" has a minimum with the 

same coordinates. The introduction of the associated convex surface allows the use of any 

quasi—Newton method to find its minimum located at identical coordinates as the saddle 

point of the original surface. The present algorithm will carry this out. 

The procedure is defined in an area around the saddle point where a constant 

direction vector (z^) exists, along which the curvature of the surface is negative5: 

ZJG2 I < 0. (3) 

With the help of z^ and w^ = Gzj the reflector matrix 

w l z l B = I — 2 —i-^— (4) 
z l w l 

can be constructed. The matrix B is used for the transformation 

S = Bg, (5) 

the new gradient (5) being related to the convex surface6. 

If the algorithm is applied for the location of a minimum, the construction of (4) 

6 It has been presumed for chemical reasons that in the area to be explored the Hessian has 
only one negative eigenvalue. 
6 The transformation (5) of the gradient involves the implicit transformation 

G = BG 
of the Hessian and yields a positive definite quadratic form: 

x 'Gx > 0; Vx6Rn. 
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and the transformation (5) are omitted. The further steps in both cases follow the general 

scheme of the quasi—Newton family. The minor changes introduced into the algorithm are 

of a practical nature and do not affect the common inherent structure of these procedures. 

The peculiarities of the linear search, the properties of the update of the H-matrix 

and numerical examples will be presented in the forthcoming sections. 

3. The I »near search 

The present description concerns the practical performance of the linear search step 

of a modified quasi—Newton algorithm suitable for the location of saddle points7. At any 

general point, the associated convex surface is defined exclusively on its derivative 

properties because the function value of the associated surface can not be evaluated from 

the primary data relating to the saddle surface8. 

The consequences of this fact are twofold: 

i) the linear search must be based on the behaviour of the gradient, disregarding the 

continuous descent of the function value, which is an essential property of the 

quasi—Newton family, and 

ii) the function value of the original (saddle—)surface becomes superfluous, saving 

part of the computational work. 

In the search for a saddle point, the basic requirement is to know a constant vector 

(zi) satisfying condition (3). The line segment connecting the minima at the "endpoints" of 

the reaction path is generally a suitable estimate. 

At a point (x) of a general (non—quadratic) function the gradient and the (locally 

defined) B—matrix (4) have to be evaluated8: 

7The essence of the necessary modifications relates to any member of the family, and 
therefore the method used will not be specified more closely. 
8The function value is given only at the critical point. 
^ h i s is generally performed in a finite—difference approximation: 

wi(x) = g(x + qzi) - g(x); q « ! . 
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Wi ( x ) z î 
B(x) = I - 2 - i — 1 . (6) 

Z j W ^ x ) 

The gradient will be transformed into the form 

g(x) = B(x)g(x), (7) 

relating to the associated convex surface. 

The direction of search (s) will be chosen according to the parent algorithm. The ith 

search direction can generally be written as 

si = - H ig i , l> 

where Hj is a positive definite matrix, the double—index ( i , l ) is to be read "the gradient at 

point 1 along the ith search direction" and the vector Sj must satisfy the condition 

r i , l = g! , l s i < 0. (9) 

The position (r) of a point is measured by the component of the gradient parallel to the 

path (directional derivative): 

r = r(x) = f a . (10) 

A point (x*) will be accepted as a local stationary point if the condition 

r(x*) = g l(x*)s = e s 0 (11) 

is fulfilled. 
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The step length ( a ) will be determined in a slightly different way if the point is on 

the side of descent/ascent around the local minimum, and therefore the linear search 

process will be discussed separately. 

i) Side of descent: 

The first step (at x^) is 

x- 0 = x- < + a- ,s. 

and the second step (at x^) is 

x i ,3 = x i ,2 + «i.tfi-

The step length will be determined by using the information obtained on the 

curvature of the surface. The average curvature of the surface relating to the first step is 

(12) 

(13) 

GSi,2 = (ri,2-ri,l)/«i,l < 1 4) 

where r. 0 and r. are the values of (9) at x- 0 and x- , . 1,/ 1,1 1,1 
If 

G'SJ 2 > 0, (15) 

the length (a- 0 ) of the step will be chosen as 

a i ,2 = - r i , 2 / ( w l G S i , 2 ) ( 1 6 ) 

where 

U)X < 0. (17) 
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The factor uî  accounts for the possible diminishing of the curvature and it is chosen 

for slight overestimation of the step length (generally, w^ = 0.8). 

If 

GS- 0 < 0, (18) 

the step length will be estimated for a fixed factor (or. 0 = 4.0). 

The k th step on the descent side at x^ will be 

x i , k + l = xi,k + ai,ksi" ( 1 9 ) 

If both of the average curvatures (GSj ^ GSj are positive, the change of the 

curvature will be approximated by 

<"i = G S i , k / G S i , k - l ( 2 0 ) 

determining the step length: 

a i i k = - r . k / ( w i G S . k ) . (21) 

If GSj is negative, as ^ will be determined by (16) if GSj ^ is positive, ^ = 

4.0. 

This procedure is repeated until the actual point can be accepted as a local 

minimum on the descent side, or the point passes the minimum having reached the ascent 

side. 

There are two criteria to be fulfilled at the local minimum. The first criterion 

requires an acceptable reduction of the gradient along the path. It is applied in two forms 

of optional use: 
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a) ri k < r i A (22) 

and b) r ^ < u y j ^ . (23) 

The form condition (22) is a loose requirement used at the beginning of the 

iteration, while (23) is used if the point is closer to the minimum. The second criterion 

tends to ensure an acceptably close distance from the exact local minimum. This means 

that the step length of the k th step will be reevaluated (and checked) through use of the 

data obtained in the k th step: 

G S ! ,k = ( r i , k + i - r i , k ) / % k ' ( 2 4 ) 

«i,k = " r i , k / G S i , k - (2&) 

Before taking steps, the step length (21) is determined by using data on the curvature 

relating to the (k—l)th step (see(14)). 

If 

V ° £ > "3 ( 2 6 > 

(generally, = 0.8), the point can be taken as acceptable. 

If the first and second criteria are fulfilled simultaneously, the point will be accepted 

as a local stationary point. The last (approximating) point will always be stored. 

it) Side of ascent: 

The ( k + l ) t h point (reached in the k th step and corresponding to x^) is defined by 

(19). The local minimum has been passed: 
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r i j k > 0 , (rj j < 0; VI < k ) . (27) 

It will first be checked whether x. . is too fax from the minimum, i.e. the change 1,K 
of r must be smaller than a given limit: 

l r i , k l / l r i , k - l l < " 4 - ( 2 g ) 

If this condition is not fulfilled, a step back (based on the measured curvature) will 

correct this situation. If the point is in a suitably close position, it will be stored (as will 

every successive approximation) and a bracketing process begins. 

The ( l+2) t h point (corresponding to x^ or x£) is 

x i ,k+2 = xi,k + a i , k+ l s i ' ( 2 9 ) 

Using the (directional) first derivatives, the second derivatives will be 

approximated: 

G G 1 = ( r i , k - r i , k - l ) / a i , k - l ' ( 3 ° ) 

G G 2 = W - r i , k ) / v 

If both of them are positive, then an (approximate) third derivative is also 

computed: 

GGG = ( G G 2 - G G l ) / ( a i k _ 1 + a i k ) . (32) 

Because of the averaged nature of the second derivatives (GG1, GG2), the local 

value at point x k will be approximated by the weighted sum: 
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GG(XK) = GGC = (A:|K_1+ ^ 0 0 2 ) . (33) 

When the change in the function up to third order is taken into account, the two step 

lengths are: 

K k + 1 ; ° i , k+ l ) : - ( - G G c V DISCR)GGG-' (34) 

where 

DISCR = GG2 - 2RJ KGGG. (35) 

The solution is chosen to be closer to 

* i , k + l = " r i , k / G G 2 <3 6 ) 

which provides the result of the second-order interpolation. If GG1 or DISCR is negative, 

(36) is used for estimation of the step length. 

The new point (xj k^_2 a n d also subsequent points) can be on the descent side or 

the ascent side. After storage in the appropriate array, the bracketing process will be 

repeated, taking into account the points (k+2). If one of the two second derivatives GG2 is 

negative, the third-order interpolation will be substituted by the second-order step (36). 

The conditions for exit are the same as discussed previously. The accuracy of the 

line search can be controlled via the parameter u^ The usual choice (a^ = 0.1) prescribes a 

moderate accuracy, implying simultaneously a small number of gradient evaluations 

(generally in the range 1.8—2.3 per search direction). 

4. Update of the H-matrix 

To absorb the explored characteristics of the surface, the H—matrix will be updated 
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in each step. Because of the widely proved computational qualities, the present procedure 

allows the optional use of the DFP [4] and BFGS [5] update schemes. 

The formulas 

DFP DFP ^ ( H i T ; ) ( 7 i H i ) , , H V ^ = HV* F + - r 2 H — . (37) 
1+1 1 ~t r ~tri ~ 7- 5- 7-H-7-'l l 'i l 'l 

H B F G S = HBFGS + L + fofo ( 3 8 ) 

1 + 1 1 L %U- J $8. 7*5. 

These are formally strikingly similar to the original definitions in [4,5] (7^ and & will be 

given below). 

Since the coordinates and gradients relating to the last points (on both sides) are 

always preserved, there is some freedom in determining the curvature. Including the last 

point (accepted as a local minimum ), there are altogether three points (and gradients) for 

this purpose (xg, x^, x^, (x^)(k=3)). Theoretical considerations and computational 

experience show that the best choice is the use of the weighted composition 

Ti = r l (Si ,k+2 - «i,k> + T2^i ,k+1 - Si,k+2)> ( 3 Q ) 

= Tl( x i ,k+2 - x i ,k) + T2^xi,k+1 " x i ,k+2) ( 4 ° ) 

r i = "imi'V' ( 4 1 ) 

r 2 = 1 - Tj. (42) 
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The storage of the last points ensures a significant exclusion of higher than 

second—order effects. 

The above update strategy yields a significant (30—40 percent) decrease in the 

number of steps (and gradient evaluations) necessary to attain the same accuracy as with 

the parent algorithm. The algorithm ensures a second—order convergence on quadratic 

surfaces. 

5. The necessary conditions 0} the procedure 

The explicit necessary condition is the knowledge of a vector (zi) satisfying 

condition (3) in the whole region around the saddle point. Transformation (5) accounts for 

the reversion of the negative curvature of tho surface (along zi) into a positive one. 

If the Hessian has more than one negative eigenvalue, the directions of negative 

curvature (conjugated to the Hessian) must be known to construct separate B—matrices. 

Those areas where the Hessian has more than one negative eigenvalue are not of 

chemical importance, and therefore the present scheme of the algorithm covers the needs of 

chemical interest. The assumption that the Hessian has only one negative eigenvalue in the 

region of search is an implicit condition. 
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РАСПОЛОЖЕНИЕ СТАЦИОНАРНЫХ ТОЧЕК ПОВЕРХНОСТЕЙ 

ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ I. 

ВВЕДЕНИЕ К НОВОЙ СИСТЕМЕ ПРОГРАММ ДЛЯ УСТАНОВЛЕНИЯ 

КРИВЫХ С ЭКСТРЕМАЛЬНЫМ ГРАДИЕНТОМ 

М.И. БАН 

Цель данной серии публикаций заклочается в представлении необходимого 

теоретического обоснования и всех практических инструкций требуемых для пользо-

вания новь развитой системы программ пригодной для успешного установления 

седловных точек'мигамумов/максимумов и точек кривых с экстремальным градиентом. 
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