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AN ACCELERATED ITERATIVE MATRIX DIAGONALIZATION TECHNIQUE REDUCING THE 
COMPUTATIONAL WORK IS DESCRIBED. THE METHOD IS USEFUL WHEN THE RATE OF CONVERGENCE IS 
NOTORIOUSLY SLOW AND THE ITERATIVE PROCEDURE CAN NOT BE AVOIDED. 

1. Introduct ion 

Iterative procedures used to determine the eigenvectors (and the spectrum) of 

matrices yield the eigenvector belonging to the eigenvalue largest in absolute sense . The 

overall rate of convergence depends on the structure of the spectrum very strongly and the 

usual procedures require in most cases too many iterations to be of practical value. In order 

to determine the rest of eigenvectors (and eigenvalues) several methods reducing the rank 

of the matrix, or projective elimination techniques are generally used. 

The diagonalization of large matrices is an acute problem extending to many fields 

of computational sciences (molecular physics, quantum chemistry, etc.). A typical 

computational task in recent molecular physics and quantum chemistry is the 

determination of some (e.g. generally the largest) eigenvalues and eigenvectors of the 

Hamiltonian at the post—SCF level. 

In this paper an effective acceleration procedure reducing substantially the number 

of iteration steps necessary to reach convergence will be described. The procedure is 

especially useful in cases where the separation of eigenvalues is small. 
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2. Method 

Let us consider a positive (semi—)definite matrix A with real elements and denote 

the ordered set oi its eigenvalues by Aj: 

Aj : = (A j > A2 > A3 > ...> AJeR, j=l , . . ,n (1) 

and its eigenvectors by ê , where R is the assembly of real numbers. 

As is well known, the existence of the following limit values' can be verified2[l—4]: 

l im - V °u = °u = V l + S e 2 + - + ° V n > ( 2 ) 
k-tm A^ 

and 

min Q = U _ A U = An, (3) 
(u) u u 

ma* Q = H_A_J! = A r (4) 
(u) u u 

where k is the sequential number of the iteration step, °aj is the 0 t h coefficient vector and 

the vector3 u in the formulas (3) and (4) run over the whole configuration space, while Q is 

the so called Rayleigh quotient [5]. The classic iterative procedure, the "power method"[5] 

consists of consecutive multiplications by a tried vector. In the following section a 

modification of this method will be described. 

Let us examine the following schemes (in the left and right columns the steps of the 

power method and the modified procedure respectively, are compared): 

'The superscripts on the left and right of symbols refer to the sequential number of 
iteration and the exponents, resp. 
2Theorem of von MISES. 

3u is the transpose of u. 
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! « = A °u, *v = \ 

2u = A \ 2v = \ 

S A S—1 S S TD u = A u, v = u , s = B s , ' ' w s v' 
S + l 1 s v = A w, 

S + r A S+r—1 S + r a S+r—1 S + r O s + r u = A u, 1 v = A v. w = B . v. ' ' s+r 

The operator B g performs a non—linear transformation of the trial vector. This step is 

embedded into the basic procedure and it will repeatedly be applied by using the actual 

vectors stored in the given cycle. 

Now we try to construct the operator B g in such a manner that the vector 

s + 1 v = ASw approximates a vector ^u of the basic procedure where k > s + l (or even more 

favourably: k » s + l ) . 

3. Details of the procedure 

To define the operator B g we express °u, ^u, etc. by the eigenvectors {e^} in the 

space used for the computations4: 

°u = o j e j + a 2 e 2 + ... + (5) 

V = a l X i l + a ^ + ... + a n x i n , (6) 

ku = a j A f e j + a2A^e2 + ... + (7) 

\ = a l A l x i l + a 2 A 2 x i 2 + - + a n A i x i n " 

4The coordinates of the eigenvectors in this system are: {e^} = 
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By constructing the sequence (2) we obtain: 

k « i = < V i i + « 2 ( ^ 2 + - + in ~ V i i + M [ ^ ] k -

where M is constant. 

Each component vanishes separately according to a function 

(9) 

tyk) = (10) 

where a- = (Aj/A^) and the meaning of 7 - follows from e?n.(9). Regarding (10) and (1) 

the rate of convergence is apparently determined by the second largest eigenvalue. 

Now combining (9) and(10) 

V i l + 

j = 2 
a k (11) 

is obtained. 

The next goal is to determine a single function 

©i(t) = 0 < t < 00 ( 1 2 ) 

which approximates satisfactorily the function5 

n 

F i ( k) = X ¥ k ) . (13) 

j - 2 

'Function (13) having an integer argument is not a continuous function in contrast to (12) 
which has a real argument. 
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Substituting fjj(k) by 

^ ( t ) = (14) 

then for integer values of t the equality 

V V i i + 5 > i j ( k ) = a i x i i + 2 > i j ( t ) 

j=2 j = 2 
(15) 

t=k 

will hold. It can readily be shown that as an exact substitute for (13) no function of type 

(12) is expected to be found. To realize this, let us consider the difference function iHj(t) 

and its derivatives 

u,i(t) = e i C t ) - ¿ ^ ( t ) = ^e—i 4 - X ^ e - ^ i 4 

j=2 j=2 

j -2 

4 r ) ( t ) = ( - D ^ i ^ i ' - ^ ( - D ^ f i f ^ = 
j = 2 

{ î é r i i - - ' 1 - -¡J ( > ' ) 
j = 2 1 

From (16) and (17) follows that at a given point, in general, u/j(t) and its 

derivatives can not simultaneously be zero unless one of the following conditions is 
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fulfilled«: 

P~ 
¿ 1 = 1 , j = 2,...,n, 

i 

b u t / J ^ O i f j H 

Tjj^O, but 7.. = o if j # 1. 

Now for judging the possibility of an approximation, let us examine the behaviour of (15) 

describing the changes of the components of the iterated vectors in the course of iteration. 

We represent first (15) in the form 

k " i = V i l + 2 = V i l + { 2 V * * ^ } e _ i , t (18) 
j = 2 j=2 

The expression in the parentheses can be transcribed as follows: 

2 t i ^ = 2 (19) 
j=2 j=2 

where 

«¡(0 = - -
i v ' / i -.¡I 
j - 2 j - 2 

t 

«All these cases lie outside the region of practical importance. 

92 



A RAPID ITERATIVE DIAGONALIZATION METHOD FOR LARGE MATRICES 

—z;jt 
- e 

l n ft 1J 
, (20) 

d . — Z i L (21) 
1J n v ' 

S7« 
1 = 2 

and 
n 

I d i j = 1- ( 2 2 ) 
1=2 

The sum in the argument of the logarithm is increasing or decreasing strictly monotonously 

depending upon the signs of z - . In the first case ( z - < 0) the range of the argument 

function is between 1 and oo if 0 < t < oo and the relations7 

ln X v 
j = 2 

< l n 

j - 2 

= ln(e~ z i 'm i" t ) = |z- I4 
v ' 1 i,max' (23) 

hold. 

If the second case (z^ > 0) occurs, the argument function ranges between 1 and 0 if 

0 < t < oo and the relations 

ln Iv*«' ' j = 2 
< l n IS Lj=2 

?z- • and Z; denote the minimum and maximum elements in the set %••. i,min i,max ij 
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= K e " i , B i n t ) = I V i / ( 2 4 ) 

will be satisfied. 

For z ;. < 0 

t-tCD 

and for Z j j > 0 

Iz- • I1 X In P » I'roin ' , , ŷ v̂ v 
l u n i / t ) — ! ^ = - | , . ¡J (26) 
t-trn 

iwill be valid. 

It seems that in any case &(t) becomes constant in the course of iteration. By using 

these last results we get an approximation for the exact formula8: 

ii n 
k " i = V i i + X v - ^ 4 s °iXii +

 X 7 i j e ^ Z i " ° a x / , n i n + ^ 
j=2 j . 2 

We expect this approximating formula (27) to be satisfactory for practical purposes only if 

it is used after having reached the required accuracy. 

The computations proceed as follows: 

i) Because of the possibility of the presence of negative eigenvalues (in contrast 

8The subscript max/min means either maximum or minimum in conformity with the 
former remarks. 
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to our assumption about the positive semidefinite nature of A), if the accuracy 

is below a predetermined limit, each second vectors start to be stored. For 

computational efficiency it is practical and enough to use but three vectors. 

it) The formula (27) will be used in the form 

« Sj(t) = 0 j ( t ) + Kj. (28) 

To have a descending sequence, if necessary, the i t h components of the vectors 

used are to be transformed. By supposing that the following equation system 

can be set up for each component of the trial vector separately, it will be 

solved for all the unknown parameters3: 

Î j e ^ i + K; = \ (29) 

¿ . e " " ^ + Kj = 2 b ; , (30) 

i j e - " ^ + Kj = \ (31) 

k. 

k p k 2 = k j + 2; kg = k 2 + 2 axe the serial numbers of iteration, •'bj are the 

ith components of the iterated vectors, and v- and Kj are the unknown 

parameters to be determined. To get v. one has to solve a second order 

equation, however, and Kj are in linear dependence. 

9It is justifiable to use an equation system, instead of using a least—square type procedure, 
only if we assume that (27) is exactly valid. Computational experience shows this 
procedure to be admissible without any significant deterioration concerning the accuracy of 
the results. 
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i i «7 The ith component of the last vector will be replaced by the limit value10 of 

(28): 

1 im Sj(t) = Kj. (32) 

t-»oo 

iv) The original iterative scheme' will be continued by repeating the same 

procedure, until the accuracy is above a predetermined limit. 

If there are only positive eigenvaluee, to enchance the efficiency of the 

procedure three consecutive vectors are to be used in eqns. (29—31). In special 

cases, for increasing the separation of eigenvalues any usual method (e.g. 

raising the matrix to power, etc.) can be appealed to. 

Examples 

'• The results obtained in the course of testing the procedure are summarized in 

Table I. In the columns 1, 2 and 3 the dimensions of matrices ( M D ) " , the ratios of the total 

number of iterations (NIR) in the accelerated procedure related to that in the basic 

procedure and the ratios of the total iteration times (TIR) formed similarly as NIR are 

displayed. For testing purposes real symmetrical matrices having pseudo random number 

elements were used. 

All the testing examples —quite independently from the dimensions of the matrices 

used—show the savings in the total numbers and times of iterations mainly to be between 

0.4 and 0.6, i.e. the acceleration reduces both quantities roughly to the halves of their 

original values, thus giving hope to expect similar gains at larger matrices. When using a 

backstorage device for the high dimension of the matrix to be diagonalized, the gain in 

10If necessary, it has to be retransformed. 
"The dimensions of matrices were confined to 55 regarding that —for practical reasons— the 
method was tested on a microcomputer. 
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computer time is expected to be even larger. 

Table I 
-Data comparing.results 

MD NIR TIR 

3 0.52 0.60 
3 0.56 0.69 
4 0.59 0.68 
5 0.60 0.70 
6 0.52 0.58 
6 0.48 0.52 
7 0.60 0.68 
8 0.51 0.58 
8 0.52 0.55 
10 0.51 0.54 
10 0.32 0.44 
12 0.48 0.51 
20 0.51 0.53 
30 0.56 0.57 
55 0.56 0.57 
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МЕТОД БЫСТРОЙ ИТЕРАТИВНОЙ ДИАГОНАЛИЗАЦИИ 

ДЛЯ БОЛЬШИХ МАТРИКСОВ 

М.И. БАН 

Описана ускоренная техника итеративной диагонализации матриксов, позволя-

ющая сократить время необходимое для проведения расчетов метод особенно 

полезень, когда скорость конвергенции чрезвычайно мала и итерационный процесс не 

мохет быть завершен. 
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