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A NEW, QUASI—NEWTON—TYPE PROCEDURE HAS BEEN DEVELOPED FOR FINDING SADDLE 
POINTS. BY ASCRIBING THE INDEFINITE OPTIMIZATION PROBLEM TO A POSITIVE DEFINITE ONE THE 
HIGH NUMERICAL EFFICIENCY C H A R A C T E R I S T I C ; O F THIS CLASS OF ALGORITHMS ( iN MINIMIZATIONS) 
HAS BEEN RETAINED WHILE THE INHERENT PROBLEMS OCCURING IN INDEFINITE OPTIMIZATIONS COULD 
BE AVOIDED. ' : 

Introduction 

Theoretical (and in many respects also practiced) investigations of chemical 

reactions require some knowledge of the geometrical features of the Born—Oppenheimer 

potential energy surfaces. 

Among the many geometrical characteristics of the potential surface, the most 

important ones are the minima, the saddle points and the reaction path. The minima 

correspond to stable molecular configurations and are characterized by the matrix of second 

derivatives (Hessian) having only positive eigenvalues. The saddle point of the potential 

surface is a critical point where the Hessian also has one negative eigenvalue1. The reaction 

path is the unique curve of steepest descent, which starts at the saddle point and goes to 

the minima. The saddle point corresponds to.the transition.state of the.chemical reaction. 

i ; 

'The existence of only one negative eigenvalue (first order saddle point) has only chemical 
reasons [22], i.e. it is not a mathematically motivated restriction. 
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and represents the maximum .of.the react ion path.--

. .. - .„The main.difference, bet ween the problems of finding a minimum a n d a saddle5 point?'"' '' 

.is. significant. Whereas ,.the:. knowledge of . the slope of the surface is enough to reach" a ; ' v 

minimum, to find .a saddle point the curvature of the surface is also needed, the 

computational work thereby increasing substantially. 

In a short survey on the multitude of methods used to determine saddle points, the 

pioneering work of McIVER and KOMORNICKI [1,2] should be mentioned first. Their 

algorithm is based on minimization of the square of gradient norm. Since their procedure is 

theoretically well established, it is widely used in spite of the relatively high numerical cost 

and the possible collapse to a minimum/maximum. During the past" two decades; many' 

other techniques have appeared for finding the transition state [3—8], together with 

excellent surface walking algorithms [9—1'3] which are suitable for'controlling of the walking * 

process to any kind, of stationary points! Quite recently the quasi—Newton methods have 

begun to ,be used to locate saddle points [14—19]. Their power in finding minima justifies 

the significant efforts that have been made to solve the problems which arise: when these '' 

algorithms are used for indefinite optimizations. 

The aim of the present work was' to establish a method which does not require the' 

evaluation of the full matrix of second' derivatives, but furnishes a high computational 

efficiency. This intention has been realized in a quasi—Newton-4ype algorithm using the 

first derivative of the function and a one—dimensional projection of the Hessian. 

The paper is structured in several sections. In Section 1 the frame of quasi—Newton 

algorithms will be discussed briefly. Section 2A contains the basic idea, while 2B presents 

the general development of the method. Section 3 discusses .the main properties of the 

algorithm,.and Section 4 is devoted to the.numerical-illustrations. The Appendix gives a 

short account of the relation of the present method and the BELL-CRIGHTON-

FLETCHER [17] algorithm, . . J : / : . : ' . i - ! . " . ! . . , . • 
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J.) The quasi-Heaton procedure 

To outline the main properties of a quasi—Newton algorithm, a quadratic function 

will be considered: 

f(x) = f ( X o ) + goP + 5 p'Gp, (1.1) 

where f is a scalar, x0 and x are position vectors, g0 (=g(x0)) is the gradient, p (=dx) is tlie 

change of coordinates, and G is the Hessian2. 

The gradient at point x is given by 

g(x) = g = go + GP . (1.2) 

If a symmetric, positive definite H matrix is given (playing the role of an 

approximation to the inverse of the Hessian), the successive steps (from the kth one) will be 

generated as follows [21,24—26]. 

a.) Generation of the step direction: 

dk = -HkSk- (s tdk<0) 

ii. I as l mn i inn ol ike s lep-itnu lit:. 

x k + l = ~k' 1 "k dk' 
<*k = { <*k / g* (xk + a k d k )d k e g j + 1 d k = 0 } 

The parameter «k is determined by the requirement that the acceptable point (xk_j_j) must 

be a local minimum, implying that the gradient (gk_^|) has no component along the 

2Small letters denote scalars and vectors, capital letters matrices, and superscript t refers 
to transposition. 

(1.4) 

= - « k V d k G d k - ^ 
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step—vector. 

c.) Evaluation of quantities which can be derived from primary data and characterize 

the curvature of the surface: 

Pk = x k + i - x k = °kdk' ( L 6 ) 

Tk = f 5 k + l - g k = GPk ( L 7 ) 

(on a quadratic surface, g ^ ^ j is given by (1.2)). 

d.) The previously eval~<Ucd quantities are used to update Ike H matrix by. absorbing l i ^ . 

information collected on the curvature of the surface. This means that a correction term is 1 

added to Hk. Taking the DFP procedure [21,24—26] as an example: i 

t t PkPk ^ k 7 k ^ 7 k Hk> 
H k + i - H k — t r z • ( L 8 ) 

\ Pk 7k H k 7 k 

The correction ensures a perfect description of the portion of the surface explored by the 

actual step. This point distinguishes mainly the various quasi—Newton algorithms. 

•e.-) After checking results stop or return to step a. 

Some important characteristics of the whole quasi—Newton family are the following 

[21,24-26]: 

— one dimensional searches are used successively; 

— only the function values and gradients relating to the actual and immediate 

previous points are used; 

— the location of the stationary point of a quadratic function requires (at 

most) as many steps as the number (n) of independent variables (quadratic 

convergence property). 
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For an indefinite matrix, non—zero (singular) vectors) exist(s), satisfying the 

relation: 

d\ G d, = 0. (1.9) 

If a quasi—Newton algorithm is applied to an indefinite objective function, such a 

singular vector may cause the total breakdown of the algorithm. Neither the step—length 

nor the update (1.8) of the H matrix can be defined [18]. , 

When a native quasi—Newton algorithm is used, the presence of a negative eigenvalue 

prevents the approximation of the saddle point by an incorrect choice [11] of the search 

direction, even in the absence of a singular direction of search. 

. The existing techniques [14—18] developed for handling such functions explicitly 

modify a parent quasi—Newton method for adaption to identify optimization problems. 

The framework of this very significant class of algorithms has been presented briefly 

in order to show the most important problems which occur when these methods are applied 

to indefinite objective functions. 

In the following sections the theoretical background and technical aspects of the 

present algorithm will be discussed. 

2.) Def inition of tke method 

A. Qualitative considerations 

The idea of the present algorithm was bom from the intention to exploit the full 

computational efficiency of the quasi—Newton methods by avoiding somehow the problems 

of their application to indefinite functions. 

Instead of modifying the algorithm itself, it seemed more attractive to define a new 

(associated) surface, which is convex and contacts the original surface at its saddle point. 

This means that (in the sense of the idea) the two surfaces are in a first—order 

touching contact characterized by identical function values and first derivatives, but their 
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second derivatives differ in nature. While the critical point of the original surface is a 

saddle point, the "associated convex surface" has a minimum with the same coordinates. 

The introduction of an associated convex surface would allow the application of 

quasi—Newton methods to find the minimum, which is located at the same point as the 

saddle point of the original surface . 

B. The family of "associated convex surfaces" 

Let the quadratic surface be determined by (1.1) and let its Hessian have one 

negative eigenvalue ("saddle surface"). Because of the quadratic nature of the function, the 

surface is unambiguously defined if the coordinates of the stationary point and its Hessian 

are known. 

Let the eigenvectors and eigenvalues of G be 

{ u . M A ; } ; i 6 [l,n] (2.1) 

and let a set of independent vectors be given: 

{ zj } , i e [l,n] 
(2.2) 

which satisfy the following inequalities: 

z) G z, < 0, 

z j G z , > 0 ; j 6 [2,n] 

(2.3) 

(2.4) 

and 

z i G Zj = Zj Wj = 0 ; V(i ft j). t (2.5) 
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Relations (2.3) and (2.4) account for the indefiniteness of G, while (2.5) expresses the 

conjugated nature of the vectors (2.2) and the biorthogonality3 of the dual vector pairs: 

{ z; } and { = Gz ; } ; i 6 [l,n]. 
(2.6) 

With the help of the specially chosen vector systems (2.1) and (2.2), projector 

matrices will first be constructed: 

p i u ) = F i u ) = 5 > i u i . ( 2 - 7 ) 
i = I 

n t / X Y 1 w-z-
p ; 1 z ) = L - p , (2.8) 

i -1 Wji; 
n t / \ , w. z • 

• • V . U f . 

where F ^ a n d F ^ denote adjoint matrices. The projectors are of rank n, and yield the 

identity: 

X = p ( » ) x = p W x = F ^ x (2.10) 

and the general projector property: 

p ( u ) = p ( u ) 2 . p ( z ) = p ( z ) 2 . pr(z) = p-(z)2 

n n ' n n ' n n 

(In general, our statements will be formulated with the help of the (orthogonal) 

eigenvectors (2.1) and the biorthogonal vector systems (2.6).) 

Through the use of (2.7)-{2.9) the Hessian and its inverse will be represented in 

3The upper/lower indices for contravariant/covariant vectors will not be used, 
— . 
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fact őrized forms: 

G = P ( a ) = £ = F ^ G P ( u ) =EA.u .UÍ , (2.12) 
n n t n n TT i l l v ' 

i = 1 Z i W i i = l 

u u 

G1 = F ^ G V 2 ) = S ^ = F ^ G ' " F ^ = E A;1 u.uj. (2.13) n n TT t n n TT 1 1 1 v ' 
. 1 = 1 W j Z i 1 = 1 

The sign of the individual terms in (2.12) and (2.13) depend on the signs of the diagonal 

elements 

{ A i } ; { z l w i = z l G z i = W-G-'WJJ ( 2 1 4 ) 

of the Hessians transformed by the (congruence) transformations 

[ u t ] c [ u ] ; [Z 1]G[Z]; '[W^G-'JW] (2.15) 

into new (orthogonal and non^orthogonal) vector systems. ( [U], [Z] and [W] are matrices 

whose columns axe vectors { u ; } , { zi } , { w; } ; i€ [l,n].) Since the number of diagonal 

elements having negative, zero and. positive signs is conserved by the congruence 

transformation (SYLVESTER inertia theorem [23]). The number of terms with a given 

sign in (2.12) and (2.13) is equal to the number of eigenvalues with the same sign. 

As our future aim is to manipulate the signs of the individual terms in (2.12) and 

(2.13), tlie (reflector) matrices 

B ^ = I-2u,uJ, (2.16) 

B ( z ) = I _ 2 « M z j _ ( 2 1 7 ) 

z ,w, 
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will be introduced (I is the identity matrix4).These matrices change the sign of that 

component of a vector which is parallel to u, or z,. 

With the help of (2.16) and (2.17) new matrices (of second derivatives) will be 

constructed by evaluating the following products: 
i '' • ' n ' 

B ( U )G = - A , u i u i + X A-u-uj, (2.18)' 
j = 2 

" t 
t \ t V 1 w-w- , 

B(z) G = _ w p + 2 , - j - L . (2.19) 
Z , W , j = 2 z j W j 

(It has been assumed that the Hessian has one negative eigenvalue ordered on the 

first place") The negative signs (introduced only into the first terms) ensure the positive 

definiteness: 

x ^ B ^ O x > 0; V 1 6 R n , (2.20) 

x 1 (b ( z ) G)X > 0; V 1 G R n . (2.21) 

The first Hessian (2.18) differs from G in the reversion of the sign of the first 

eigenvalue"' It therefore determines a convex surface the main curvature of which has been 

the, same absolute values as G. The second new Hessian (2.19) represents a somewhat 

different case. To show this, the effect of multiplication by the projectors (from the left and 

right in (2.12) and (2.13)) has to be investigated. This is a two-step procedure, consisting 

of a congruence transformation (2.15) converting G into a non—orthogonal basis, and a 

back—transformation by the inverse matrices. The congruence transformation into a 

non—orthogonal basis changes the values of the diagonal elements. The multiplication by 

(2.17) reverses the sign of the first term, and therefore the back—transformation provides a 

4They have also the following property: 

I = B<u)2 = B ( < 
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new Hessian (2.19) having main curvatures5 (even in absolute values) other than G. 

By this point, two Hessians (2.18) and (2.19) have been constructed, both of them 

determining convex surfaces. The first matrix (2.18) requires a knowledge of the 

eigenvector relating to the (one) negative eigenvalue and determines a surface of fully 

identical shape in the subspace of eigenvectors relating to the positive eigenvalues. The 

second matrix (2.19) requires exclusively a knowledge of a vector (z,) satisfying the relation 

z\ G z, = zj w, < 0 (2.22) 

and determines a surface differing from G in its curvature properties, in the "positive 

subspace" too. Since the eigenvectors are usually not known, only this last case is of 

practical significance. This last surface will henceforward be referred to as the "associated 

convex surface". , 

Although the associated convex surface has different main curvatures (also in 

absolute values) from those of the original surface (determined by G), the position of the 

critical point (where the gradient is the zero—vector) remains unaffected. This implies that 

the critical points of the two surfaces are common first—order touching points, i.e. their 

function values and first derivatives are equal: 

f(x c r) = T(xcr), (2.23) 

g(x c r) = g(x c r) = 0, (2.24) 

where x c r is the coordinate of the critical point, and the designittion ~ will denote 

quantities defined on the convex surface. 

6The difference between the convex surfaces determined by B ^ G (2.18) and B ^ G (2.19) 
depends on the non—orthogonality of the basis vectors {zj } . 
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The associated convex surface depends on the choice of the vector (z,) fulfilling the 

condition (2.22). Since an infinite number of such suitable vectors exists, an infinite 

numbers of surfaces contact at the critical point constitute the "family of associated convex 

surfaces". 

The coincidence of the critical points (relating to the saddle—surface and the 

associated surface) allows a search for a minimum instead of a saddle point of identical 

location. This fact is of particular importance in establishing the new algorithm. 

3.) The algorithm 

Thejrame of the algorithm strictly follows the ideas described previously. Only the 

main properties will be discussed in a form which is rather 'conceptual1 regarding that a 

detailed and neat program description will be presented (as a manual) elsewhere6. 

4. Generation of the convex surface 

To show clearly the mechanism of the algorithm, a quadratic function will be 

considered with a Hessian having one negative eigenvalue7. 

There are two explicit requirements: 

— an objective function to have a form which allows the evaluation of its first 

derivative is assumed, 

— the existence of a vector (z, ) which fulfills condition (2.22) is assumed. 

A suitable guess for z( is usually the line—segment connecting the minima at the 

"endpoints" of the reaction path (or an initial Hessian can provide a good choice). The 

vector W| will first be evaluated (by a finite difference): 

w l = g2g| = G z , (3.1) 

6The FORTRAN code of the program is available, and it will also be submitted for 
distribution to the QCPE. On request copies will be sent by the author. 
7The extension to higher—order saddle points (which have more than one negative 
eigenvalues) involves no new theoretical problem. 

_ 



H.I. BAN 

following afterwards the construction of (2.17). 

If the reference frame is fixed to the stationary point, the gradient (at point x) of 

the saddle—function is given by 

g(x) = G x (3.2) 

and the gradient of the associated convex function by 

g(x) = B ^ G x = B W g ( x ) . (3.3) 

The function value (at any general point) of the associated convex function can not 

be drawn from the data relating to the saddle—surface. The information on the associated 

convex function is therefore restricted (at any general point) to its derivative(s). This 

means that (in the course of searching) the associated convex surface is given only 

partially, without its function value. A full description of the surface becomes possible a 

posteriori, if the function value at the stationary point fixes the position of the graph of 

the function. Fortunately, the function value (of the saddle—function) is not necessary at 

all for the perfect working of the algorithm, and this substantially reduces the 

computational work. 

B. The linear search 

As the function value of the associated convex function is lacking, the line—search 

must be made without any reference to it. The point acceptable as a local stationary point 

has to be determined by the condition (see (1.5)): 

Sk+1 3k = 6 ~ (3-4) 

The important pecularities of the performance of the line—search do not influence its 
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structure and therefore they will not be discussed here. 

C. Updating oj the matrix—H 

Again, an example (see (1.8)) by the DFP [21] procedure: 

« , pkPk ( V k X T k a k ) 
H k + 1 - H k + -ZTZ ¿TITZ > 

\ Pk i * V k 

A = S k + l - 6 k > ( 3 - 6 ) 

Pk = x k + l ~ x k = s k a k- <3-7) 

Although the formula (3.5) contains quantities relating to the associated convex surface the 

strict formal identity with the parent update scheme is obvious. 

If the above conceptual modifications are introduced into a quasi—Newton 

•algorithm, the new algorithm will be able to locate saddle points. Without going into 

details, the separate steps will be formally the same as in Section 1, but the designated 

quantities 

a k , p k , s k , g k , 7 k , f f k (3.8) 

in relation to the associated convex surface will appear everywhere. 

The whole discussion so far referred to a quadratic objective function having a 

Hessian with one negative eigenvalue. For general functions, the structure of the algorithm 

remains the same as already defined, but minor changes and restrictions are indispensable 

to ensure the necessary conditions. 

For non—quadratic functions, the Hessian has only a local meaning sense, so the 

reflector matrix will also be locally defined: 
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(3.9) 

and 

g(x) = B^ z\x) g(x). (3.10) 

All other quantities differ from those in the quadratic case by the appearance of (3.10). The 

vector z, is constant but w,(x) will be reevaluated at any point. In consequence of the local 

character of the quantities the algorithm is defined in a region where the condition 

A continuous approach to the stationary point is ensured only in that area where 

the Hessian has the assumed one negative eigenvalue. 

To reach higher—order saddle points separate matrices (3.9) are needed for each 

independent direction of negative curvature. 

The properties peculiar to the present quasi—Newton—type procedure have been discussed 

while other characteristics conform to the general behaviour of the whole quasi—Newton 

family. 

To summarize the leading aspects: 

i) The algorithm is defined in a region where a constant vector exists, pointing in 

the direction of negative curvature. It is assumed implicitely that the Hessian has one 

negative eigenvalue. 

it) On construction of the reflector matrix- (3.9) the gradient of an "associated 

convex surface" can be obtained through (3.10). The convex surface is only partially 

defined by its derivative(s) and evaluation of the function value of the original (saddle—) 

function is not necessary. 

zjw,(x) < 0 (3.11) 

is fulfilled. 

ISO 



LOCATION OF STATIONARY POINTS II. SADDLE POINTS 

iii) Through the use of the quantities (3.8) relating to the associated convex 

surface, any quasi—Newton algorithm (with the minor technical changes mentioned) will 

provide a minimum at the same coordinates as those of the saddle point of the original 

surface. 

4.) Applications 

The algorithm has been tested on various model surfaces and quantum chemical 

problems. Although the BFGS [21] and DFP [21] methods can equally be used, the 

examples will refer to the DFP algorithm. 

Á. The Adams model—potent ial [12] 

E(X„X2) = 2xft4 - X , ) + x2(4 + x 2 ) - x , x 2 ( 6 - 17e" r° '5) (4.1) 

has a minimum and two saddle points. The walk from the point (1.8,-0.2) to one of the 

saddle points is displayed in Table I. 

The following quantum chemical examples have been chosen to test the efficiency of 

the algorithm in comparison with other procedures. BAKER's paper [27] presents 

convergence data of several rearrangement reactions. These computations have been done 

by the SIMON's algorithm [12] which was implemented and incorporated into the standard 

GAUSSIAN 82 program package. The tests of the present algorithm are relating to 

Table I 

X, x 2 RMS g r a d i e n t 

1 . 1 . 8 0 0 0 - 0 . 2 0 0 0 1 1 . 5 2 5 8 
2 . 1 . 9 5 2 9 0 . 6 4 8 9 3 . 9 5 7 1 
3 . 2 . 2 6 1 3 0 . 4 6 2 5 0 . 5 3 2 2 
4 . 2 . 2 4 0 8 0 . 4 4 1 5 0 . 4 1 4 6 E - 0 2 
5 . 2 . 2 4 1 0 0 . 4 4 1 1 0 . 2 2 3 6 E - 0 4 
6 . 2 . 2 4 1 0 0 . 4 4 1 1 0 . 4 9 0 9 E - 1 4 
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CNDO/2 calculations. For the sake of comparison, the starting geometrical parameters 

were chosen to the same relative value with respect to the optimized parameters, as in the 

reference examples. The accuracy of the computations was also identical (RMS gradient 

0-0003). The direction of negative curvature (z,) was estimated for the vector pointing from 

(he one minimum to the other. 

It has to be mentioned, that SIMON's algorithm requires an analytically evaluated 

starting Hessian, while the present method requires only the direction/(and value) of the 

negative curvature. 

B. The HCN—< CM reaction* 

PM G82 POP SIM 

7(12) 10(?) 9(?) 8(?) 

(Final geometry: r(CN) = 1.221 A, r(CH) = 1.121 A, y<HCN) = 87.14°) 

C. The FCN—i CNF reaction9 

In BAKER's example [27] the start position was chosen very near to the minimum, 

and the Hessian has here only positive eigenvalues. This position is outside the region 

where the conditions of the present algorithm are fulfilled. In this case the midpoint of the 

line segment connecting the minima was used as a starting configuration 

8The abbreviations used have the following meaning: 
PM = present method 
G82 == method of the standard GAUSSIAN 82 program package 
POP = POPPINGER's method [3] 
SIM = SIMON's method [12] 
y(x) = y steps and x gradient evaluations 

9see footnote 8 
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PM G82 POP SIM 

8(13) failed 15(?) 13(?) 

(Fined geometry: r(CN) = 1.263 A , r (CF) = 1.333 A , y<FCN) = 93.30°) 

The program system realizing the above ideas is able to locate also minima and 

points of (so called) gradient extremal curves [20,28]. Along a curve oi this type, it is 

always possible to reach that region where the Hessian already has the required one 

negative eigenvalue. 

D. The optimization of 

The optimization of the structure of methyl fluoride is presented to show the 

working of the algorithm in minimizations. The efficiency of the program system is due to 

some particular modifications of the linear searching and updating steps respectively. 

PM G82 SIM 

8(18) 11(?) 11(?) 

(Final geometry: r(CF) = 1.344 A , r(CH) = 1.118 A , p(FCH) = 109.30°) 

Appendix 

Under certain conditions the BELL—CHRIGHTON—FLETCHER (BCF) algorithm 

[17] and the present one generate an identical succession of points. 

The procedure [17] is based on a separation of the n—dimensional space into a 

one—dimensional and (conjugated) (n—1)—dimensional subspaces. The functions will be 

l0see footnote 8 
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maximized in the one—dimensional subspace, while it will be minimized in the conjugated 

subspace. For general functions these steps will be repeated cyclically. 

It will be shown that for a quadratic function (see (1.1)) identical steps will be 

produced by both algorithms, if the first step of the present procedure is a pure 

maximization. To illustrate the reason for this, those steps will be examined which are 

generated by the algorithms considered. 

From the start point x, along the search direction zi (see relations (2.2)—(2.6)) the 

BCF algorithm yields a step of length aj: 

0 = z|g(x + OiZj) = z-g(x) + ttj zlGzj, ( A . l ) 

a . = _ J i k M (A.2) 
z Gz ; 

The first step is taken uphill in the BCF algorithm ( i . e . z t = z,), therefore 

®!g(x) > 0. (A.3) 

The vector z ( satisfies condition (2.3) implying the relation: 

a, > 0. (A.4) 

The present algorithm determines a step of length from the same start point x, along the 

search direction c ; : 

0 = c j B ^ x + = C y z ) g ( x ) + ftciB^Gc;, (A.5) 
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= c iB ( z ) f i ( x ) , (A.6) 

¿ B ^ G c i i 

. ( B ^ has been defined'by (2.17).) 

If the first step of the present procedure fulfills the identity 

c , = z , (A.7) 

then, because of the equality 

B ^ w , = — w,, (A.8) 

the following relations are valid simultaneously: 

c|B(z)g(x) < 0, (A.9) 

| c|B(z)g(x) | = | z*g(x) | (A.10) and 

implying the identity 

C)B (z )GC, > 0 , (A.11) 

c ^ B ^ G c , I = I Z|GZ| I (A.12) 

ßt H or,. (A.13) 

For those directions of search which are in the subspace conjugated to z ( , the matrix B ^ 

has no effect at all. The steps in the "positive subspace" are therefore identical. 
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While the above separation of the optimization problem (into pure maximization 

and pure minimizations) is an inherent basic assumption in the BCF algorithm, it is a 

special possible case in the present procedure. 
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ИЛ. ВА>-

РАСПОЛОЖЕНИЕ СТАЦИОНАРНЫХ ТОЯЕК.ПОВЕРХНОСТЕЙ . 

ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ II. 

НОВЫЙ МЕТОД ДЛЯ НАХОЖДЕНИЯ СЕДЛОВЫХ ТОЧЕК 

М.И. БАН 

Разработан новый квазн—ньютоновский метод-для нахождения седловых точек. 

При преобразовании • проблемы неопределенной оптимизации в положительно 

определенную, сохранена высокая нумерическая эффективность (в минимализации) ' 

характерная для этого класса алгоритмов. В то же время органические проблемы, 

возникающие в неопределенных оптимизациях, могут быть нзбежены. 
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