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1. INTRODUCTION 

The complex anionic potential according to Szádeczky-Kardoss (1954)> 
is the quotient of the charge and the radius of the complex anion and. 
may be considered as a value characteristic of the complex anion as a 
whole. 

Now the question may arise what distance, given in Á units, may be 
considered as the radius of the triangular or tetrahedral oxyanions. 
Namely, the complex anionic radii computed by Fersman and used by 
Saukov (1953) and by Szádeczky-Kardoss (1954) are computed rather by 
simple addition of the ionic radii of central cation and oxygen. The ionic 
distance within the complex anion may be changed depending on the 
polarizing force of the central cation and the contrapolarizing effect of 
the neighbouring cation as well as on its coordination number. This 
possible change of the ionic distances is not taken into consideration 
calculating the complex anionic radii on the basis of simple ionic model. 

Considering the different complex oxyanions as elements of crystal 
lattices of different solid compounds of anisodesmic and mesodesmic 
structure, it has been pointed out by the author (Grasselly, 1958, 1959a) 
that the radius of the complex anions due to the factors above-mentioned 
may be changed f rom compound to compound also in the case of the 
same complex anion and therefore the anionic potentials are to be 
considered as variable values. 

In connection with the calculation of the radius as well as the 
potential of the complex anions a fur ther question may also arise the 
satisfactorily solution of which, in our opinion, implies the possibility of 
the fur ther refinement of the calculation method of the complex anionic 
potential. 

The problem and the way of the solution which seems to be-
practicable at least as approximation, may be discussed as follows. 
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2. T H E M E A N I N G O F THE A N I O N I C P O T E N T I A L 
FROM ELECTROSTATIC V I E W P O I N T 

The ionic potential of the cations from the electrostatic viewpoint is 
•considered by Mason (1952) as a measure of the charge density on the 
.surface of the cation. Similarly Goldschmidt (1954) in his book considers 
the quotient charge/radius, that is the ionic potential, as a measure of 
the field strength at the surface of the polarizing ion. It is to be noted, 
however, that the z/r is not the quite correct expression for the charge 
•density at the surface of the cation as it would be correctly given by the 

z • e •expression- - . The increase of the numerical value of the ionic poten-
4 7i r2 

tials, however, goes together with the increase of the values computed 
from the correct expression of the .charge density if for example the 
charge increases at constant radius, though the rate of the increase of the 
values of these two kinds differs. 

Apart from these necessary remarks, howewer, the ionic potentials 
may be considered at least as a qualitative measure of the charge density 
on the surface of the cation. Under constant charge the larger is the ra-
dius the lower will be the ionic potential that essentially means the de-
crease of the charge density at the surface. 

Analogously the anionic potential of the simple anions — considering 
them also as spheres apart from the possible deformation — introduced 
by Szadeczky-Kardos (1954) may be considered as a qualitative measure 
•of the density of the negative charge at the surface of the anion. 

3. T H E CALCULATION METHOD P R O P O S E D FOR T H E D E T E R M I N A T I O N 
OF T H E RADIUS OF N O N - S P H E R I C A L C O M P L E X O X Y A N I O N S 

As it has been already mentioned, Szadeczky-Kardoss has computed 
the complex anionic potentials in the same manner as the potential of the 
•cations, i. e., as the quotient of the charge and „radius". In practice it is 
customary to speak about radii of complex anions and to calculate with 
these values too and this consideration implies that these complex anions 
are considered to be spherical. Now the question arises, whether the non-
:spherical tetrahedral or triangular oxyanions may be considered as rigid 
spheres and hence it may be calculated with their „radius", or not? 

On the one hand, it is a fact that these, essentially nonspherical, com-
plex ions may be considered only in that case as rigid spheres when in the 
lattice the rotation of these complex ions may occur, consequently show-
ing in statistical average a spherical symmetry. The fact of the rotation 
of complex ions in crystals especially at higher temperatures is pointed 
out by several authors. For example, in the lattice of NH4N03 (structure 
type: CsCl) stable over 125° C both the NH4+ and the N O j - groups ro-
tate. The radius of the rotation sphere corresponding to the NH4+ group 
is 1,46 A, whereas that of corresponding to the N03

— group is 2,35 
On the other hand, Goldschmidt (1954) dealing with the ionization 

potential as a measure of polarizing force of ions mentions that the non-
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spherical complex ions as the triangular ions B03
3~, C0 3

2 - , N 0 3
1 - or the 

tetrahedral ions like Si0 4
4 - , P 0 4

3 - S04
2~, C K V " can be considered to 

be rigid spheres, with a fair degree of approximation if their internal 
bonds give them a fair degiee of rigidity, that is, these internal bonds 
within these complex anions are strong in comparison with the electrical 
forces exerted by neighbouring cations. 

The radius of the . complex anion equals 2 a— r c , where a is the ionic 
distance measured roentgenographically and rc is the radius of the cent-
ral cation. The distance, considered as the radius of the complex anion, 
essentially is the radius of the sphere circumscribed around the tetra-
hedron. 

Still an other question is, whether the complex anion would be rightly 
represented by the sphere of radius 2a—rc and thus would be accurately 
characterized by the complex anionic potential calculated with this value 
or it would be better to substitute hypothetically the complex anion with 
an other sphere, the radius of which differs from that mentioned above. 

Should the Mason's opinion be applied to the complex anions too, 
i. e., the complex anionic potential would be considered as a qualitative 
measure of the density of the negative charge at the surface of the 
complex anions'considered as spheres, it seems to be expedient to calculate 
with such a' radius, to substitute the complex anion with such a sphere, 
the surface of which is close to the effective surface of the complex anion. 
On the other hand, also the importance of volume relationship in the 
lattice of crystals is well known. 

Therefore, it seems to be expedient to substitute hypothetically the 
complex anion with such a sphere, the volume anS surface of which 
mostly approach that of the complex anion. 

This consideration can be presented by showing the possibilities of 
the calculation-method of the anionic potential of S 0 4

2 - anion. 

Fig. 1 
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a) In the lattice of anhydrite, according to Wooster (1936), the dis-
tance of S—O is 1,55 A and that of 0—O is 2,50 A. in general the radius 
of the complex ion S04

2~ equals r = 2 X 1,55 — 0,28 = 2,82 A. Calculating 
the complex anionic potential too, it will be 0,70. In Mason's opinion this 
value can be considered as a measure of the density of negative charge 
at the surface of the sphere to be circumscribed around the tetrahedron 
and having a radius of 2,82 A. In Fig. 1, the full line circle represents 
this sphere. It is observable that this sphere includes to a significant 
extent such a space too actually not engaged by the S04 tetrahedron. 

b) Fig. 2 demonstrates within the S0 4 tetrahedron, the tetrahedron 
whose edge equals with the distance of O—O measured roentgenographi-
cally, that is with 2,5 A. In the Fig. 2, the circle drawn with full line repre-
sents the sphere having the same volume as the tetrahedron of edge 
2,5 A. The radius of the sphere is 0,76 A and the complex anionic poten-
tial calculated from this value is 2,6. It is obvious that the complex anion 
can not be symbolized by this sphere and the radius of this sphere can 
not accepted as the radius of the complex anion. 

c) Fig. 3 shows' the tetrahedron wherein the distance between its 
centre and corner , is 2,82 A that is it equals with the radius of the S0 4 
complex anion. The centre of the tetrahedron coincides with that of the 
central cation. The radius of the sphere having the same volume as this 
tetrahedron is 1,40 A and the computed anionic potential from this value 
is 1,42. As it can be seen in Fig. 3, also this sphere is of less volume and 
surface than the S0 4 tetrahedron, therefore, tending to calculate the 
complex anionic potential, the S04 anion presumably can not be 
substituted by the sphere obtained in such manner. 

d) So far it was examined how the spheres deduced in different way 
from data obtained from roentgenographic measurements can be related 
to the S04 complex anion regarding to their volume. Moreover, sketches 
of b) and c) demonstrate that the S 0 4

2 - complex anion can not be 
substituted by spheres obtained in the manner given under b) and c). 

Fig. 2 Fig. 3 
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Intending to find the sphere probably most corresponding in its 
volume to that of the S 0 4

2 - complex ion, firstly the oxygen ions are to 
be drawn representing by circles, taking as distance between their centre 
the O—O distance roentgenographically determined. Then tangents will 
be drawn to these circles on the three sides adn the triangle so obtained 
is to be considered as a plate of the tetrahedron, the volume of which had 
to be. calculated. Finally, the radius of the sphere identical in its volume 
to that of the tetrahedron constructed is to be calculated. The O—O 
distance in the present example is 2,5 A. The radius of the sphere, 
adequate in volume with the tetrahedron constructed as mentioned above 
is 2,12 A and the complex anionic potential is 0,94. 

In Table 1 are comprised the data referring to the surface, volume 
and radius relations of the spheres and tetrahedra, respectively, deduced 
in the manner given under a), b), c) and d). 

To illustrate which of the different spheres characterized by the data-
given in Table 1 corresponds mostly to the S 0 4

2 - complex ion as to its 
volume and surface, let us make the following calculation of approxima-
tive character. The radius of the oxygen ions in S04 from the roentgeno-
graphic data may be taken as 1,27 A, since the S—O distance is 1,55 
A and the Ahrens's radius of the S6+ ion corrected for four-coordination 
number is 0,28 A. On this basis the volume of each oxygen ion considered 
as spheres, with radius 1,27 A, amounts to 8,5 A3 and that of the four 

„oxygen ions is 34 A3. The surface of the single oxygen ions, at the same 
radius value, will be 20 A2 and that of the four oxygen ions 80 A2, respec-

t ively. 
As it can be seen the volume and surface values calculated for the 

S 0 4
2 - anion are close, to that of the tetrahedron and of the sphere with 

equal volume, respectively, constructed in the manner, given under d), 

Fig. 4 
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especially taking into consideration that owing to the tetrahedral arran-
gement of the oxygen ions only a part of the whole surface of the oxygen 
ions can be effective from viewpoint of the bonding. 

Consequently, owing to this conformity, it seems to be very 
presumable that the S 0 4

2 - ion is hypothetically to be substituted in the 
lattice by a sphere, the radius of which is determined in the way given 
under d) and that the complex anionic potential calculated with this 
radius would be presumably more characteristic of the anion than the 
anionic potential calculated in the so far manner, i. e., taking as radius 
of the complex anion that of the sphere to be circumscribed round the 
tetrahedral anion. 

T a b l e 1. 

a b e d 

Volume of the tetrahedron and the sphere A3 93,87 1,84 11,50 40,40 

Surface of the tetrahedron A 2 148,83 10,82 36,65 84,86 

Surface of the sphere A2 99,89 7,16 24,62 56,42 

Radius of the sphere A 2,82 0,76 1.40 2,12 

Complex anionic potential 0 ,70 2,b3 1,42 0,94 

T a b l e 2. 

0 — 0 distance Anionic 
Anion A Compound Radius potential References 

BOs3" 2,35 NasBsOs 1,96 1,53 Ssu-Mien Fang (1^38) 

COa2" 2,13 BaCOa 1,81 1,10 Colby, La Cosie (1935) 

NOs1" 2 ,10 KNOs 1,76 0.56 Edwards (1931) 

S i O i 4 ' 2,56 BaTiSiaOo 2,12 1 ,88 Zachariasen (1930) 

2,61 CaMgSi20o 2,19 1,82 Bragg (1930) 

2,68 KAlSisOs 2,24 1,78 Structure Rep. vol. 9. 

AsOi3" 2,60 AL'3AS04 2,20 1,36 Structure Rep. vol. 11. 

2,76 NaAlFAkC>4 2,30 1,30 Kokkoros (1939) 

2,85 BiA- 0 4 2,32 1,29 Structure Rep. vol. 11. 

SO« 2 2,50 CaSC>4 2,12 0,94 Wooster (1936) 

CrOi2" 2,61 Na2Cr04 2,16 0,92 Miller (1936) 

C104 1 - 2,51 NaCI04 2,09 0,47 Braekken, Harang (1930) 

J 0 4 1 - 2,67 NaJOi 2,22 0,45 Hazlewood (1938) 

Table 2 includes some of complex anionic radius values determined 
in the way given in this paper as well as the O—O distances on the 
basis of which the construction of the hypothetically spherical ion has 
taken place, the. radius of which is considered as the radius of the 
complex anion. Similarly the new complex anionic potentials are denoted. 
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4. C O N N E C T I O N B E T W E E N T H E T H E R M O C H E M I C A L R A D I I 
. O F C O M P L E X A N I O N S A N D T H E R A D I I D E T E R M I N E D I N T H E W A Y 

P R O P O S E D I N T H I S P A P E R 

The probability of the correctness of our assumption relating to the 
computation method of anionic radii proposed in this paper seems to be 
supported when comparing these values with the thermochemical radii 
computed by Kapustinski. The term of thermochemical radius is intro-
duced by Kapustinski and in his opinion it means the radius of a hypo-
thetically spherical ion which isoenergetically substitutes a given ion in 
the crystal lattice. As it can be seen this definition and our view, discus-
sed above, expresses almost the same. 

T a b l e 3. 

Anion 
Radius used in general 

computed from equation. 
R = 2a—r c 

R 

Thermochemical 
radius 

R' 

Radius computed 
by the author 

R" 

Ratio 
R " : R' 

BOa3" 
CO32" 
NO31" 

2,50 
2,40 
2,34 

1,91 
1,85 
1,89 

1,96 
1,81 
1,76 

1,02 

0,97 

0,93 

AsOi3 ' 

J041-

Si044-

Cr042" 
S ( ) 4 2 -

C1041-

2,93 
2,88 

2.90 
2,74 
2,76 

2.91 

2.48 
2.49 
2,40 
2,40 
2,30 
2,36 

2,27 
2,22 
2,18 
2,16 
2,12 
2,09 

0,91 
0,89 
0,90 
0,90 
0,92 
0,88 

In Table 3 the thermochemical radii and the radii graphically deter-
mined by the author on the basis of roentgenometric data are compared. 
The thermochemical radii used are taken from Jazimirski's work (1956) 
dealing with the thermochemistry of complex compounds. 

As it can be seen in Table 3, the radius values of the triangular 
complex oxyanions computed by the author are nearly the same as the 
correspondig thermochemical radii and in the case of the tetrahedral 
oxyanions our radius values are more close to the thermochemical radii 
than the radii used in general calculated on the basis of roentgenographic 
data from the equation: R =2a — r c . 

The thermochemical radii can be computed according to Kapustinski 
as follows. Knowing the heats of formation of the ingredient ions in 
gaseous state of a given compound as well as the heat of formation of 
the crystallized compound, from these data, firstly the lattice energy of 
the compound is to be computed according to the following equation: 

Uk= — AH°ka+ ¿H\+ AH°a 

where Uk means the lattice energy, —z1H°ka, —/IH°k and — AH°a are 
the heats of formation of the crystallized complex compound and that 
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of the cation and the anion, respectively. Then the value Uk obtained is 
to be substituted into the Kapustinski's equation: 

In zl- z2 0,345 
U k = rl + r, 

where 2n means the number of the ingredient ions in the molecule, z1 
and z2 the charges and r1, r2 the radii of the ions, respectively. Knowing 
the radius of the cation, the radius of the complex anion can be 
determined. 

As it may be seen the computation method proposed by the author 
based only on roentgenometric data (on the O—O distances within the 
complex anions) gives nearly the same radius values for complex oxyani-
ons as the method above-mentioned based on thermochemical data in 
the case of the triangular oxyanions and the new radius values in the 
case of tetrahedral oxyanions are very close to their thermochemical 
radii and the quotient of these two values are nearly constant, 0,9 ± 0,02. 

In our opinion, during the thorough investigations in progress con-
cerning the connections afore-said, this conformity may offer partly the 
possibility of a calculation into the opposite direction, i. e., of the calcula-
tion of some thermochemical data from these radius values determined 
graphically from roentgenometric data and partly the possibility of the. 
further refinement of the complex anionic potential calculations and 
finally it will be also possible to find connections between the complex 
anionic potentials and thermochemical data. 

SUMMARY 

The radius of the complex anions in general as a rule is calculated 
on the basis of roentgenographically measured data (central cation — 
oxygen distance) from the following equation: R = 2a — r c , where a 
means the distance measured and r c the radius of the central cation. 
This is essentially the radius of the sphere to be circumscribed round the 
tetrahedral anion. The complex anionic potential is given by the quotient 
of its charge and radius and may be considered as a qualitative measure 
of the charge density at the surface of the anion, however, from crystallo-
chemical viewpoint, from the viewpoint of diadochy, substitution of 
complex anions also the volume relations are essential, therefore, a non-
spherical complex anion is probably hypothetically to be substituted in 
the crystal lattice with such a sphere, the surface and volume of which 
are closest to that of the complex anion. 

It is proposed a graphic method based on roentgenographically 
measured O—O distance within the complex anion to construct the sphere 
whereby the anion is to be substituted in the lattice, the radius of which 
sphere may be considered as the effective radius of the complex anion. 
These graphically determined „effective" anionic radii agree well with 
the thermochemical radii of anions introduced by Kapustinski and cal-
culated from thermochemical data, from heats of formation and lattice 
energy. 
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