THERMAL STABILITY AND OXIDATION OF Mn₃O₄*

GY. GRASSELLY

ABSTRACT. On the basis of thermal, X-ray, and infra-red investigations, it was found that Mn_3O_4 heated in air within the thermal stability range of Mn_2O_3 will be slowly oxidized to α - Mn_2O_3 if it is pure; however, oxidation will be initiated and accelerated by the presence of other manganese oxides and also by ferric oxide. If the possibility of oxidation is excluded, as in N_2 or CO_2 atmosphere, the Mn_3O_4 remains unchanged during prolonged heating in the temperature range cited above. However, Mn_2O_3 heated in a CO_2 atmosphere in its own thermal stability range will be decomposed into Mn_3O_4 and even more MnO appears as a new phase. These experimental facts presumably may be used in interpreting the formation of manganese oxide assemblages in different metamorphic processes.

INTRODUCTION

Thermal properties of artificial and natural manganese oxides, oxide hydrates, and manganese carbonate, as well as their transformations with increasing temperature were studied by several authors. The main results of these investigations were reviewed by SUPRIYA ROY [1972] in his paper about metamorphic manganese deposits.

It is well known — and therefore authors will not be cited here — that heated in air, different modifications of MnO_2 transform at about 560 °C into α - Mn_2O_3 , which in turn transforms by further increase of temperature, according to some authors at 870 °C, according to others at 950 °C, into low temperature (tetragonal) Mn_3O_4 . It is also known that at 1050 °C [D. H. DASGUPTA, 1965] or at 1160 \pm 5 °C [J. J. VAN HOOK and M. L. KEITH, 1958] high temperature modification of Mn_3O_4 forms.

The study of solubility and oxidation of different manganese compounds, in the first line of manganese carbonate, as a function of pH and Eh of aqueous solutions is of great importance for interpreting the conditions of formation of supergene manganese oxide deposits. Similar importance is, however, to be attributed to studying thermal properties and transformations of manganese oxides from the point of view of formation of metamorphic manganese deposits.

As generally known, Mn_3O_4 is the stable oxide of manganese at higher temperatures above about 940 °C, i.e. the different manganese oxides and oxide hydrates transform into Mn_3O_4 at that temperature. Less data are found, however, in the related literature concerning the range of temperature and the conditions in which

^{*} Lecture delivered at the technical session of the Commission on Manganese (IAGOD) during the XXIV IGC, 23 August, 1972, Montreal, Canada

the stability of Mn_3O_4 really exists. As the authors dealing with the metamorphism: of manganese deposits point out, both chemical and mineral composition of the mineral assemblage formed during the metamorphism are strongly influenced by f_{CO_2} and f_{O_2} as well as by temperature and pressure and by the initial chemical and mineral composition of the metamorphized sediment.

The question arises, therefore, whether the Mn_3O_4 corresponding to hausmannite, at temperatures lower than its temperature of formation, shows changes to be taken into consideration in interpreting the formation of metamorphic manganese deposits.

OXIDATION OF Mn₃O₄

Oxidation in aqueous medium

References concerning oxidation of Mn_3O_4 in aqueous, slightly acidic media are to be found in the paper of several authors, such as MOTOAKI SATO [1955] and O. BRICKER [1966]. According to BRICKER during prolonged oxidation in slightly acidic aqueous medium the cinnamon brown colour of Mn_3O_4 became darker and, though the X-ray pattern remained the same as characteristic for Mn_3O_4 , the grade of oxidation of the product proved to be $MnO_{1.44}$. BRICKER and HUEBNER [1969] similarly suppose that, during the oxidation mentioned above, γ -Mn₂O₃ was formed, the X-ray pattern of which cannot be distinguished from that of hausmannite.

Unpublished results [1964] of the present author support the above statements with the addition that, in strongly acidic medium and at higher temperatures, the oxidation of Mn_3O_4 does not end at the grade of oxidation $MnO_{1.5}$ corresponding to Mn_2O_3 , but approaches that of MnO_2 . According to our investigations, the same situation is found to be valid in the case of α -Mn₂O₃ treated with strongly acidic solutions at higher temperatures.

In strongly acidic medium (pH=1) and at higher temperatures (40–60 °C) the oxidation was very intensive, and the grade of oxidation of the Mn_3O_4 treated reached $MnO_{1.437}$ after 3 hours, 10se to $MnO_{1.659}$ after 10 hours and to $MnO_{1.70}$ after 24 hours. The water content increased almost linearly with the grade of oxidation from 0.57% to 3.86% after 5 hours and to 4.37% after 24 hours. The oxidation at pH=1 and 25 °C is also definite, but its rate is lower; the grade of oxidation of Mn_3O_4 was $MnO_{1.44}$ after 24 hours treatment, and the water content reached 3.56%. A similar behaviour was found with α -Mn₂O₃, however, with a slower increase in grade of oxidation and water content.

The progress in time of the oxidation of Mn_3O_4 treated at 60 °C in a solution of pH=1 could be well followed by IR-spectroscopic investigation of the products. While the spectrum of the sample treated 3 hours corresponded to that of Mn_3O_4 , after 9 hours, and even more after 24 hours treatment, the spectra of the samples ceased to show the characteristics of Mn_3O_4 ; neither did the characteristic absorption bands of α -Mn₂O₃ appear, the spectrum resembled much more to the IRspectrum of a cryptomelane species from Urkut (Hungary) or to that of an artificial γ -MnO₂.

Oxidation at higher temperatures

Oxidation of Mn_3O_4 between 250—550 °C in nitrogen-oxigen mixture (0—100% oxigen) is mentioned by H. R. OSWALD and M. J. WAMPETICH [1967]. According to these authors, in the oxidation of the small hausmannite grains an oxide of

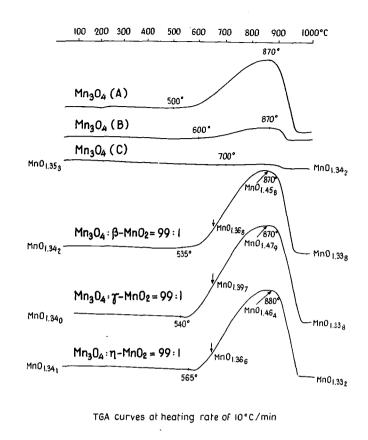
 Mn_5O_8 (MnO_{1.60}) composition is formed as a transitional step, which transforms into α -Mn₂O₃ above 550 °C.

The author [GY. GRASSELLY and É. KLIVÉNYI, 1956*a*, 1956*b*] called the attention to the fact, supported also by the present investigations and the results of the authors mentioned above that, though Mn_3O_4 is really the stable oxide of manganese above 940 °C, however, heated in air in the temperature range of stability of α -Mn₂O₃, it is oxidized into α -Mn₂O₃ in the presence of other manganese oxides.

The dependence on temperature and time of the oxidation of Mn_3O_4 into α -Mn₂O₃ can be especially well followed by thermal investigations. The initial temperature of oxidation, the beginning of the decomposition into Mn_3O_4 of the α -Mn₂O₃ formed during the former oxidation and the end of this retransformation, as well as the increase and the decrease in weight due to these changes can be especially well read from the TGA curves. Knowing the grade of oxidation, i.e. the composition of the starting material, the grade of oxidation belonging to different temperatures can be calculated from the data of TGA curves.

RESULTS OF THERMAL INVESTIGATIONS

Thermal investigations were performed with ERDEY-PAUL'K'S "Derivatograph"; the heating rate was 10 °C/min. The instrument permits to record T, TGA, DTGA and DTA curves contemporaneously. From these, TGA curves obtained with uniform heating are presented in *Figs. 1* and 2, while *Fig. 3* shows TGA curves during prolonged heating at constant temperature 650—670 °C.


In Fig. 1, curves A, B and C are TGA curves of the same Mn_3O_4 sample obtained by heating over 1000 °C, but with different rates of cooling of the products. In the case of curve, A, the sample was cooled slowly in a closed furnace after several hours ignition at 1050 °C; for curve B the cooling period was shorter than for curve A, while in the case of curve C it occurred in a comparatively short time. The rate of oxidation decreased in the order of the curves A, B, C: the slower the cooling of the Mn_3O_4 formed by ignition above 1000 °C was, the higher the quantities of Mn_3O_4 transformed into α - Mn_2O_3 between 600–800 °C; resulting an increase in weight which can be seen from the TGA curve. It can also be stated that the less the admixture of α - Mn_2O_3 to the Mn_3O_4 is, the higher the temperatures at which the oxidation starts: in curve A already at 500 °C, in curve B at 600 °C and in curve C at about 700 °C. As starting material for further investigations, this Mn_3O_4 sample was used.

The question may arise, how the oxidation of Mn_3O_4 is influenced by other manganese compounds present.

The answer to this question can be found in the TGA curves shown in Fig. 1, $\cdot 2$ and 3.

In Fig. 1, beside the TGA curves of the Mn_3O_4 samples mentioned above those of Mn_3O_4 samples containing 1% of β -MnO₂, γ -MnO₂ and η -MnO₂, respectively, are presented, with the starting temperature of oxidation. The grade of oxidation -calculated from the TGA curves at 650—660 °C is also given, as well as that for the temperature 870—880 °C at which the decomposition of α -Mn₂O₃ formed by oxidation of Mn₃O₄ begins.

On the basis of TGA curves of Fig. 1 the following statements can be made: a) While in the TGA curve of the comparatively pure Mn_3O_4 only oxidation of negligible degree can be seen, the oxidation of Mn_3O_4 to α - Mn_2O_3 in the thermal

							_		
100	200	300	400	500	600	700	800	900	1000 °C

Fig. 1. TGA curves of Mn_3O_4 and mixtures of Mn_3O_4 with MnO_2 -modifications heated in air with 10 °C/min rate (see the text)

stability range of the latter is significantly accelerated by adding 1% MnO₂-modification to the Mn₃O₄.

b) The starting temperature of the oxidation seems to be influenced by the character of the MnO_2 ; the oxidation starts at a substantially lower temperature — depending on the MnO_2 -modification present — than that of pure Mn_3O_4 .

c) The most intensive effect on the oxidation of Mn_3O_4 was exerted by γ -MnO₂.

d) With the heating rate 10 °C/min used the product at 870–880 °C approximates fairly well the composition $MnO_{1.50}$ corresponding to α -Mn₂O₃, though to reach this composition a more prolonged heating would be necessary.

Thus, with the heating rate mentioned the predominant part of the Mn_3O_4 was oxidized to α - Mn_2O_3 up to 870 °C.

e) At this temperature the transformation of the Mn_2O_3 into Mn_3O_4 begins. As can be seen from the TGA curves, this process is faster (the corresponding section of the curve is steeper) than the preceeding oxidation. The transformation

into Mn_3O_4 occurs between 870–970 °C, the rate of the reaction being the highest at about 940–950 °C. The composition of the resulting Mn_3O_4 (after rapid cooling) is near to the ideal $MnO_{1.33}$.

In Fig. 2 beside the TGA curves of the starting Mn_3O_4 and of α - Mn_2O_3 teh curves of different mixtures of both materials, as well as those of samples containing 1% manganite and Fe_2O_3 , respectively, are shown. Similarly as in Fig. 1, the starting temperatures of oxidation and the grades of oxidation reached at 650–660 °C and about 860–870 °C are indicated.

The TGA curves of Fig. 2 permit the following statements:

a) By comparing the TGA curve of pure Mn_3O_4 with those of the mixtures it can be seen that the oxidation of Mn_3O_4 is significantly accelerated by the presence of other manganese oxides in the temperature range 500-870 °C.

b) The starting temperature of oxidation depends on quality and quantity of the material added to Mn_3O_4 . In the presence of 50% α -Mn₂O₃ the oxidation begins at about 460 °C, with 1% α -Mn₂O₃ at about 490 °C, while in the presence



Fig. 2. TGA curves of Mn_3O_4 , Mn_2O_3 and mixtures of $Mn_3O_4 - \alpha - Mn_2O_3$, $Mn_3O_4 - manganite:$ and $Mn_3O_4 - Fe_2O_3$ heated in air (see the text)

-of manganite and Fe_2O_3 the starting temperature of oxidation is between 570--580 °C.

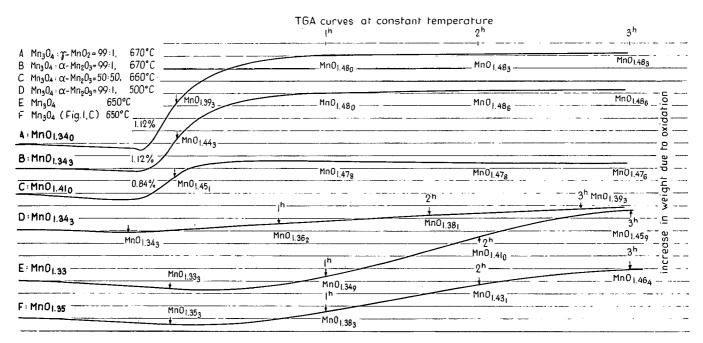
c) The most intensive effect on the oxidation of Mn_3O_4 is exerted by α - Mn_2O_3 , the oxidation being more intensive than in presence of other compounds, MnO_2 included.

d) With the given heating rate the oxidation terminates at 860–870 °C and the grade of oxidation at this temperature is more or less near to the composition of Mn_2O_3 depending on the material added. At the same temperature the retransformation into Mn_3O_4 begins.

e) The composition of the Mn_3O_4 formed as endproduct (with rapid cooling) is near to the ideal also in this case

In Fig. 3 TGA curves of Mn_3O_4 samples containing γ -MnO₂ (curve A) and α -Mn₂O₃ (curves B, C, D) in the concentrations indicated as well as those of comparatively pure Mn_3O_4 samples, rapidly cooled after heating, (curves E, F) are presented.

Up to the temperature indicated (500 °C, 660–670 °C and 650 °C, respectively) the heating rate was 10 °C/min, then the heating was pursued at the same temperature for 3 hours. On the TGA curves the composition calculated from the increase in weight at the given temperature is indicated (inrespective of the material being not monophase) as well as the composition (grade of oxidation) reached after 1, :2 and 3 hours.


From the TGA curves of Fig. 3 the following conclusions can be drawn:

a) In DTA and TGA investigations with the heating rate generally used (here 10 °C/min), the possible oxidation may be overlooked (*Fig. 1*, curve *C*) because no significant changes can be observed neither in the DTA nor in the TGA curves. This is comprehensible, namely the oxidation of Mn_3O_4 to α - Mn_2O_3 is not an instantaneous reaction, the rate of which being possible influenced by several factors. Therefore, even if no oxidation is observed in the usual DTA-TGA investigation, by heating the sample at a given temperature for a shorter or longer time the fact of the oxidation will become evident.

Curves E and F of Fig. 3 are TGA curves of two relatively pure Mn_3O_4 samples heated at 650 °C for 3 hours. DTA and TGA curves of these samples with normal heating rate showed practically no changes. At the same time heating the samples at 650 °C, the oxidation begins and after 3 hours the grade of oxidation of both Mn_3O_4 samples reaches approximately the value $MnO_{1.46}$, though it is perceivable that the oxidation has not been finished during the time.

b) The initiating and accelerating effect exerted on the oxidation of Mn_3O_4 by other manganese oxides can be well observed by comparing the curves A to D and E, F. The Mn_3O_4 , the oxidation of which begins only slowly at 650 °C and which reaches the grade of oxidation $MnO_{1.38}$ after 1 hour in pure state, with admixture of 1% of other manganese oxides will exceed this value at the moment of reaching the temperature 650—660 °C and after 1 hour the grade of oxidation will be almost stabilized with the value $MnO_{1.48}$.

c) According to Fig. 2 the oxidation of the mixture 99 % $Mn_3O_4 - 1 \% \alpha - Mn_2O_3$ starts at 490-500 °C. This temperature does not belong to the thermal stability range of $\alpha - Mn_2O_3$, being under the lower limit of the latter. The oxidation of the mixture begins, however, at this temperature (curve D), though the process is slow and the grade of oxidation rises only to $MnO_{1.39}$ after 3 hours. Heating the sample for a suitable period of time would evidently lead to complete oxidation of the Mn_3O_4 even at 500 °C.

Fig. 3. TGA curves of $Mn_3O_4 - \gamma - MnO_2$, $Mn_3O_4 - \alpha - Mn_2O_3$ and Mn_3O_4 samples during prolonged heating at constant temperature (see the text).

The oxidation of Mn_3O_4 in air between 500 and 800 °C as well as that accelerated by other manganese oxides of higher valency is supported by qualitative investigations with IR-spectroscopy and X-ray, too.

IR-spectra were recorded with a Zeiss UR-20 spectrophotometer in the spectral range 400—800 cm⁻¹. X-ray patterns were obtained with an X-ray diffractometer DRON-1 with Fe K_{α} radiation (30 kV, 10 mA). Both in the IR-spectra and in the X-ray patterns the evanescence of the characteristics of Mn₃O₄ and the coming into prominence of the bands of α -Mn₂O₃ can be well followed in its dependence on the time of heating.

As can be seen from the X-ray patterns, the intensity of the reflexions characteristic for Mn_3O_4 begins to decrease in the samples heated to 660 °C, then with prolonged heating the reflexions of α -Mn₂O₃ become more and more dominant, though the presence of some Mn_3O_4 can be observed even after heating for 3 hours. The oxidation of Mn_3O_4 to α -Mn₂O₃ could not be considered as complete on the basis of TGA curves.

TABLE 1

		I _{estim}				
d(Å)	Phase	starting material	samples heated at 660 °C for			
			0 ^h	1 ^h	3 ^h	
4.88	Mn ₃ O ₄	m	m			
3.84	$\alpha - Mn_2O_3$		w	s ·	s	
3.07	Mn ₃ O ₄	m	m			
2.86	Mn ₃ O ₄	m	w			
2.76	Mn ₃ O ₄	vs	S	vw		
2.74	$\alpha - Mn_2O_3$	1 <u>-</u>	S	VS	vs	
2.47	Mn ₃ O ₄	vs	s	w	VW	
2.35	$\alpha - Mn_2O_3$ Mn_3O_4	m	m	m	m	
2.02	Mn ₃ O ₄	m	m		m	
1.98	$\alpha - Mn_2O_3$	- ·	w	m	m	
1.84	$\alpha - Mn_2O_3$		w	m	m	
1.78	Mn ₃ O ₄		m			

d(Å)-values of the starting material 99% Mn_3O_4 —1% α - Mn_2O_3 and those of sample heated to 660 °C, after 1 hour and 3 hours

The IR-spectra are also in full accordance with the results of TGA and X-ray investigations.

Comparing curves 3 to 6 of Fig. 4, it is evident that, while the absorption band at 670 cm⁻¹ characteristic for α -Mn₂O₃ appears already in the spectrum of the sample heated to 670 °C and rapidly cooled, this band becomes more and more intensive after 1 hour and 3 hours treatment; curve 4 is more similar to the spectrum of the starting mixture, the characteristics of α -Mn₂O₃ become more and more conspicuous in curves 5 and 6.

The same is valid in the case of the 50-50 % mixture. The starting mixture shows the characteristics of both components. The IR-spectra of the samples heated

	Phase	I _{estim}					
d(Å)		starting material	samples heated at 660 °C for				
			0 ^h	1 ^h	3 ^h		
4.88	Mn ₃ O ₄	m	vw	vw	vw		
3.84	$\alpha - Mn_2O_3$	m	S	s	s		
3.07	Mn ₃ O ₄	m	vw		_		
2.86	Mn ₃ O ₄	w	vw	_			
2.76	Mn ₃ O ₄	VS	m	-			
2.72	$\alpha - Mn_2O_3$	vs	vs	VS	vs		
2.47	$Mn_{3}O_{4}$ $Mn_{3}O_{4}$	vs	m	vw	vw		
2.35	$\alpha - Mn_2O_3$	m	m	S	s		
2.02	Mn ₃ O ₄	m	vw		_		
1.98	$\alpha - Mn_2O_3$	m	m	s	s		
1.84	$\alpha - Mn_2O_3$	m	m	s	s		
1.78	Mn ₃ O ₄	m	vw				

d(Å)-values of the starting material 50% Mn₃O₄ — 50% α-Mn₂O₅ and those of sample heated to 660 °C, after 1 hour and 3 hours heating in air

to 660 °C (curve 8), and those of samples treated at that temperature for 1 and 3 hours (curves 9 and 10) become more and more similar to the IR-spectrum characteristic for α -Mn₂O₃ (curve 2).

BEHAVIOUR OF Mn_3O_4 AT HIGHER TEMPERATURES IN CO_2 AND N_2 ATMOSPHERE

To obtain further information on the behaviour of Mn_3O_4 , the behaviour of the starting materials consisting of Mn_3O_4 and α - Mn_2O_3 , as well as different mixtures of both was investigated in CO_2 and N_2 atmosphere, too, after heating the samples at 670 °C in the atmosphere indicated for 2 or 3 hours and then cooling in CO_2 or N_2 stream. We intend to continue these investigations in the future.

Some results are presented in *Fig. 5*. On the left of *Fig. 5* the IR-spectra of Mn_3O_4 and α -Mn₂O₃ as starting materials and of different mixtures of both, as well as the spectra of the products obtained from α -Mn₂O₃ by heating at 670 °C or 2 hours are to be seen.

The Mn_3O_4 heated in CO_2 stream at 670 °C for 2 hours shows no changes, its spectrum is nearer to that of ideal Mn_3O_4 than the spectrum of the starting aterial. In contrary heating α - Mn_2O_3 and mixtures containing α - Mn_2O_3 in CO_2 tream at the given temperature more substantial changes are observed. The spectrum haracteristic for α - Mn_2O_3 disappears and it is substituted by that characteristic or Mn_3O_4 . While by heating in air between 600 and 800 °C the Mn_3O_4 was oxidized into α - Mn_2O_3 , during heating in CO_2 atmosphere the Mn_3O_4 remains unchanged and α - Mn_2O_3 transforms into Mn_3O_4 . It is to be remarked that the endproducts obtained by heating both α - Mn_2O_3 and its mixtures in CO_2 stream are heterogenous according to X-ray investigations; with reflexions of the dominating Mn_3O_4 as a rest those of α - Mn_2O_3 are to be seen; even MnO appears as a new phase, especially

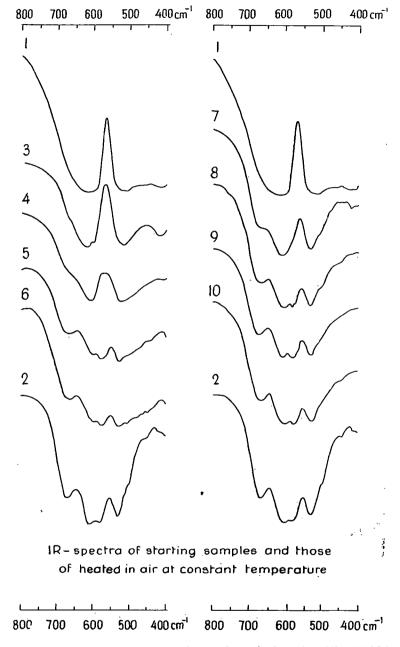
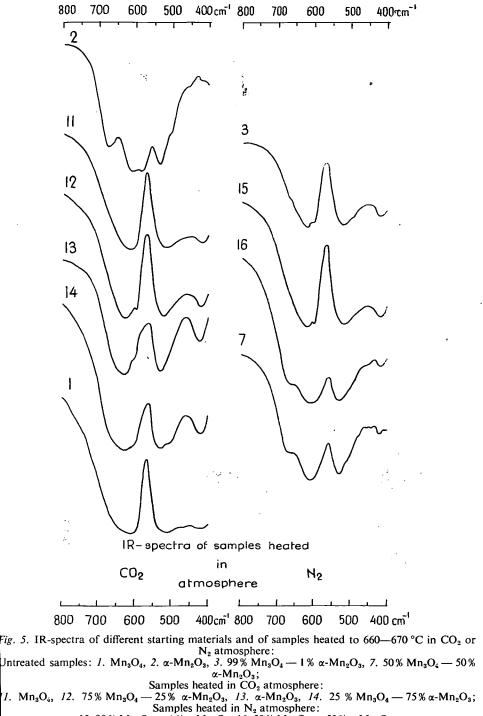



Fig. 4. IR-spectra of the starting materials and of samples heated to 660-670 °C in air: 1. Mn₃O₄, 2. α -Mn₂O₃, 3. 99 % Mn₃O₄ - 1% α -Mn₂O₃, 4. The same as 3, heated to 670 °C .5-6. The same sample heated at 670 °C for 1 hour and 3 hours, respectively. 7. 50% Mn₃O₄ -50% α -Mn₂O₃, 8. The same as 7, heated to 660 °C, 9-10. The same sample heated at 660 °C for 1 hour and 3 hours, respectively.

15. 99% $Mn_3O_4 - 1\% \alpha - Mn_2O_3$, 16. 50% $Mn_3O_4 - 50\% \alpha - Mn_2O_3$.

.

TABLE 3

d(Å)	Phase	α-Mn ₂ O ₃	75% Mn ₃ O ₄ 25% Mn ₂ O ₃	25% Mn ₃ O ₄ 75% Mn ₂ O ₃	Mn ₃ O ₄	
4.88	Mn ₃ O ₄	m	m	w	m	
3.84	α-Mn ₂ O ₃			m		
3.07	Mn ₃ O ₄	s	s	m	m	
2.86	Mn ₃ O ₄	w	w	vw	vw	
2.74	Mn ₃ O ₄	vs	vs	s	vs	
2.72	α-Mn ₂ O ₃	_		vs		
2.56	MnÖ	s	vw	vw	_	
2.47	Mn ₃ O ₄	vs	vs	vs	vs	
2.35	Mn ₃ O ₄	w	w	w	w	
	α -Mn ₂ O ₃					
2.22	MnO	vs	vw	w	-	
2.02	Mn ₃ O ₄	w	m	w	w	
1.98	α -Mn ₂ O ₃	i —		w		
1.82	Mn ₃ O ₄	vw	vw	w	vw	
1.78	Mn ₃ O ₄	w	w	w	—	
ition of mples	at the start	MnO _{1.53}	MnO _{1.38}	MnO _{1.46}	MnO _{1.35}	
Composition of the samples	after heating	MnO _{1.24}	MnO _{1.33}	MnO _{1.37}	MnO _{1.25}	

d-values of samples heated at 670 °C in CO₂ atmosphere for 2 hours

TABLE

d-values of samples heated in N_2 atmosphere at 670 °C for 3 hours

d(Å)		50% Mr 50% M		99% Mn ₃ O ₄ + 1% Mn ₂ O ₃	
<i>d</i> (A)	Phase	before	after	before	afte
		treatment		treatment	
4.88	· Mn ₃ O ₄	m	m	m	m
3.84	α-Mn ₂ O ₃	m	m	. —	_
3.07	Mn ₃ O ₄	m	m	m	m
2.86	Mn ₃ O ₄	w	w	m	w
2.76	Mn ₃ O ₄	vs	s	vs	s
2.74	$\alpha - Mn_2O_3$	vs	vs	· —	_
2.47	Mn ₃ O ₄	vs	vs	vs	vs
2.35	Mn ₃ O ₄	m	m	m	w
	$\alpha - Mn_2O_3$		ł	(L	
2.02	Mn ₃ O ₄	m	w	m	w
1.98	$\alpha - Mn_2O_3$	m	w	· —	vv
1.84	α -Mn ₂ O ₃	m	w	· -	
1.78	Mn ₃ O ₄	m	w	-	w
Composition of the samples		MnO _{1.39}	MnO _{1.40}	MnO _{1.343}	MnO

٠,

markedly in the X-ray pattern of α -Mn₂O₃ heated in CO₂ stream at 670 °C for 2 hours. With weaker intensity the reflexion of MnO can be observed in the X-ray patterns of the treated mixtures, too.

By comparing curves 15 and 16 of Fig. 5 with curves 3 and 7 it can be stated, in accordance with the results of X-ray investigations, as well as with the chemical composition that in N_2 atmosphere no changes occurred in the mixtures; both the Mn_3O_4 and the Mn_2O_3 component remained unchanged.

SUMMARY

Summarizing the results obtained from the IR-spectra and X-ray patterns and those of the thermal investigations, the following may be established concerning the oxidation and stability of Mn_3O_4 in the temperature range of the thermal stability of the Mn_2O_3 :

A. In air

1. Though the DTA and TGA investigation of pure Mn_3O_4 at the generally used heating rate (10 °C/min) does not or only hardly point to oxidation, a slow oxidation of pure Mn_3O_4 is proved by TGA curves taken at constant temperatures during prolonged heating (or by slow heating rate). The composition of a Mn_3O_4 sample after heating at 670 °C for 3 hours proved to be $MnO_{1.46}$.

2. The presence of other manganese compounds $(MnO_2 \text{ modifications, man-ganite, } Mn_2O_3)$ or that of Fe₂O₃, in an amount as low as 1 per cent, exerts a significant influence on the oxidation of Mn_3O_4 :

a) The oxidation of Mn_3O_4 is initiated and accelerated by the presence of other manganese oxides; the composition of a Mn_3O_4 sample containing other manganese oxide and heated at 660—670 °C reached the value $MnO_{1.48}$ after 1 hour, whereas the composition of a pure Mn_3O_4 sample in the same conditions proved to be only $MnO_{1.35}$.

b) The starting temperature of the oxidation of Mn_3O_4 is lowered by the presence of other manganese oxides and, depending on their quality and quantity, the oxidation starts at 460-560 °C.

c) The most intensive effect on the oxidation of Mn_3O_4 is exerted by Mn_2O_3 .

B. In CO_2 atmosphere

1. The Mn_3O_4 , also in presence of other manganese oxides, remains unchanged even after prolonged heating.

2. On the contrary, the Mn_2O_3 heated in CO_2 decomposes, even MnO appears as a new phase. In mixtures the Mn_2O_3 shows a similar behaviour and in the IRspectra as well as in X-ray patterns of samples heated the characteristics of Mn_3O_4 are dominating beside weak traces of MnO and Mn_2O_3 .

C. In N_2 atmosphere

Heating in nitrogen atmosphere both Mn_3O_4 and Mn_2O_3 as well as their mixtures remain unchanged as it is proved by the IR-spectra and X-ray patterns.

Thus, in the temperature range of the thermal stability of the Mn_2O_3 :

a) if a possibility of oxidation exists, the Mn_3O_4 will be oxidized into Mn_2O_3 , slower or faster;

b) if the possibility of oxidation is excluded, both the Mn_3O_4 and Mn_2O_3 remain unchanged, and

c) if the thermal effect is associated with CO_2 atmosphere, the Mn_3O_4 remains unchanged, the Mn_2O_3 will be, however, transformed into Mn_3O_4 , and even, MnO appears as a new phase.

It seems that the experimental facts summarized above may be used in interpreting the formation of manganese oxide assemblages in different metamorphic processes.

REFERENCES

BRICKER, O. [1966]: Some stability relations in the system Mn-O₂-H₂O at 25° and one atmosphere pressure. Amer. Miner., 50, 1296-1354.

DASGUPTA, D. R. [1965]: Oriented transformation of manganite during heat treatment. Miner. Mag., 35, 131-139.

GRASSELLY, Gy. [1956a]: Remarks on the determination of the composition of MnO₂—Mn₂O₃— Mn₃O₄ systems. Acta Miner. Petr., Szeged, 9, 41–46.

GRASSELLY, Gy. and É. KLIVÉNYI [1956b]: On the stability of Mn₃O₄. Acta Miner. Petr., Szeged, 9, 33-40.

HOOK, H. J. VAN and M. L. KEITH [1958]: The system Fe_3O_4 —Mn₃O₁. Amer. Miner., 43, 69–83, HÜEBNER, STEPHEN [1969]: Stability of rodochrosite. Amer. Miner., 54, 457–481.

OSWALD, H. R. and M. J. WAMPETICH [1967]: Die Kristallstrukturen von Mn₅O₈ und Cd₂Mn₃O₈. Helv. Chim. Acta 50, (7), 2023–2034.

ROY, SUPRIYA [1972]: Metamorphism of sedimentary manganese deposits. Acta Miner. Petr., Szeged, 20/2, xxx-xxx.

SATO, MOTOAKI [1960]: Oxidation of sulfide ore bodies. 1. Geochemical environments in terms of Eh and pH. Econ. Geol., 55,

Manuscript received, August 12, 1972.

PROF. DR. GYULA GRASSELLY Institute of Mineralogy, Geochemistry and Petrography, Attila József University, Táncsics M. u. 2., Szeged, Hungary