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ABSTRACT 
Putting silicon atoms in the corners of a regular pentagonal dodecahedron as well as oxygens in 

the mid-points of edges, silico-dodecahedrane units are obtained. These, in turn, linking together by 
face sharing, provide a "decoration" of the icosahedral PENROSE-MACKAY quasilattice. Thus, a silicate 
quasicrystal model is obtained. Some of the properties and relations of this hypothetical structure are 
discussed in the paper. 

I N T R O D U C T I O N 

The notion of quasilattice has been introduced by A L A N M A C K A Y (1981), who 
described it as a non-periodic space filling composed of two kinds of rhombohedra. 
The two different rhombohedral unit cells, by repeated juxtaposition, fill the space 
without gaps and overlaps in such a way that the structure exhibits icosahedral 
orientational symmetry (i.e. the characteristic directions are parallel to the axes of 
a regular icosahedron; a mathematically rigorous association of the icosahedral 
point group to such type of quasilattices has first been given by K R A M E R and N E R I 
1984). 

This construction arose from purely mathematical considerations, and as 
M A C K A Y (1981) admitted in his paper, "we cannot find any evidence for the actual 
appearance of our pentagonal structure". However, the experimental discovery of 
Al-Mn alloys exhibiting icosahedral diffraction symmetry ( S H E C H T M A N et al. 
1984) changed the situation radically. Mackay's idea became the starting point of 
a series of models attempting to explain the structure of such alloys (see e.g. 
L E V I N E a n d S T E I N H A R D T 1 9 8 4 , 1 9 8 6 ; J A R I C 1 9 8 6 ; K A T Z a n d D U N E A U 1 9 8 6 ; 
S O C O L A R a n d S T E I N H A R D T 1 9 8 6 ; G R A M L I C H 1 9 8 7 ; P R I N C E 1 9 8 7 ; Y A N G a n d K U O 
1987; Y A M A M O T O and H L R A G A 1988; J A N O T et al. 1989). L E V I N E and S T E I N -
H A R D T (1984, 1986) coined the name "quasicrystal" (quasiperiodic crystal) for 
such structures. Now this term is used in a very broad sense independently of the 
contradictions which arise theoretically and conceptually ( P A U L I N G 1987; S E N E -
C H A L and T A Y L O R 1990). 

In what follows, we raise the question of what the structure of a silicate 
quasicrystal may be like. The question is not totally meaningless, since the plenty 
of quasicrystalline samples obtained in various laboratories of the world from 
various alloys can give the impression that quasiperiodicity is reserved by Nature 
for alloys only. In an earlier issue of this journal we shortly discussed a related 
problem ( G É V A Y and S Z E D E R K É N Y I 1987—1988). In the present note it is shown 
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that, at least theoretically, such construction is possible. Our arguments are largely 
geometrical and the question of a possible crystal chemical or even mineralogical 
reality of the model is left open. 

DESCRIPTION OF THE SILICATE QUASICRYSTAL MODEL 

A hierarchical organization is assumed, thus we take the individual levels one 
after the other. 

Our basic unit is the silica tetrahedron (Si04)4" which is common in almost 
all silicates. These tetrahedra are assumed to link together forming five-membered 
rings by corner sharing. Since we consider regular pentagonal rings, this point is 
a definite departure from classical crystal chemistry in that such rings are unknown 
in the world of minerals, although irregular pentagonal rings do occur (ZOLTAI 
and STOUT 1984). (This lack is clearly related to the crystallographic prohibition 
of pentagonal symmetry.) On the other hand, the status of our regular pentagonal 
ring is rather peculiar, as we shall see at once. ZOLTAI and BUERGER (1960) 
performed electrostatic energy calculations for rings with different numbers of 
tetrahedra taking into consideration several possible symmetries of the tetrahedral 
arrangements. They found that for the symmetry that is also relevant to our case 
(Fig. 1), five tetrahedra per rings is the energetically most favourable number. We 
consider this result as somewhat supporting our conception. 

regular pentagonal dodecahedron (Fig. 2). This idea originates from our work on 
a related field (GEVAY and KEDVES 1990) where we assumed a hydrocarbon 
C20 H20 molecule in the same manner, i.e. at the vertices of the dodecahedron 
carbon atoms are located. In the meantime we got to know that our hypothetical 
dodecahedrane was an existing compound synthesized recently and some of its 
properties had already been established (PAQUETTE et al. 1981). It seems quite 
natural to transmit the schema to silicates taking into account the close chemical 
relationship between carbon and silicon. 

Thus, in our "silico-dodecahedrane" the silicon atoms are located at the 
vertices and three of the oxygens coordinated around a silicon atom are at the 
mid-points of edges and every fourth oxygen is directed outwards. The formula of 
the frame can be given as (Si2o05o)20". 
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Fig. 2. Regular pentagonal dodecahedron, the 
geometric skeleton of the silico-dodecahedrane 

(C20O50)20" units. ,20-

There are numerous ways to go on further. For the bio-organic case work is 
in progress (KEDVES 1 9 8 8 ; GEVAY and KEDVES in preparation.) Here we consider 
one way of linkage of the silico-dodecahedrane units, notably that by face sharing 
(this does not contradict Pauling's rules, as the dodecahedron here is not a 
coordination polyhedron). Even face sharing itself offers a variety of possibilities 
to form chains of dodecahedra having face in common. Taking into account that 
the interfacial angle of a regular pentagonal dodecahedron is 7t-arctan 2=116°34' 
(the interaxial angle of five-fold rotations is arctan 2 = 63°26'), the only values of 
the angle that is formed by the centers of three consecutive dodecahedra in a chain 
are 63°26', 116°34' and 180°. These angles are realized in a rhombic arrangement 
of 16 dodecahedra (Fig. 3) at the acute angle, obtuse angle and at the edge of the 
rhombus, respectively (see the dotted lines). 

We obtained a "golden rhombus" of silico-dodecahedrane units, as the ratio 
of its diagonals is T = (l+/5~)/2 s 1.618, the golden section (actually, 
tan 1/2 arctan2 = T). At the acute angles of this rhombus three adjacent dodeca-
hedra have pairwise one face in common, hence some distortion is to be presup-
posed: the interfacial angles at the common faces must be somewhere between 
116°34' and 120°. (On the other hand, small distortions occur at the "edge-dode-

Fig. 3. The „golden rhombus" composed of 16 
dodecahedral units. The dodecahedra are drawn as 
non-transparent so l ids for the sake of better 
visualization. The abstract rhombus skeleton is 
indicated by dotted lines. 
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cahedra" as well, since the tetrahedral and dodecahedral geometry are not perfectly 
compatible, being the relevant angles 109°28' and 108°, respectively. We assume 
that the Si-O-Si bond chains can relax to an appropriate state so that the structure 
will be relatively strain-free). 

Now the rhombuses can be the faces of two different rhombohedra, with acute 
angle or with obtuse angle meeting at the poles (Fig. 4). These rhombohedra 
correspond just to the unit cells of the Mackay quasilattice, the copies of which 

Fig. 4. The prolate (a) and oblate (b) rhombohedron composed of golden rhombuses. Their volume 
ratio as well as ratio of frequency in the icosahedral Mackay quasilattice is T. 

"tile" the three-dimensional space. The icosahedral orientational symmetry ap-
pears as follows. There are 10 distinct orientations (up to central inversion) for the 
three-fold axes of rhombohedra — these are just the directions of three-fold 
rotations of a regular icosahedron. On the other hand, the directions of edges of 
the rhombohedra are parallel to the five-fold axes of icosahedron (the axes of 
icosahedron are shown in Fig. 5). Thus the chemical bonds fit to definite directions, 
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Fig. 5. Rotation axes of the icosahedron, the dual counterpart of the regular pentagonal 
dodecahedron. 
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hence the bond orientation order (declared as one of the defining properties of a 
quasicrystal by LEVINE and STEINHARDT 1986) is ensured. 

There are a number of papers discussing various properties of abstract (ico-
sahedral) quasilattices (see e.g. the references in this note). Here only we note that 
in one of the simplest cases there are altogether (up to rotations and inversion) 24 
distinct arrangements of cells ("vertex neighbourhoods"), which involve from four 
to twenty rhombohedra ( K A T Z and D U N E A U 1986, G l N G L 1988). At the same time, 
it is an interesting fact that in this case the average number of cells meeting at a 
vertex is 8 (cf. the classical lattices !) (G lNGL 1988.) 

It is somewhat difficult to illustrate packing of the rhombohedra. Here we 
show (Fig. 6) an appropriate projection of one layer of the rhombohedral packing 
which provides just the famous PENROSE pattern (a two-dimensional quasilattice 
with decagonal orientational symmetry: the prototype for MACKAY's construction 
that has therefore been called 3-dimensional PENROSE lattice). 

Fig. 6. The 2-dimensional Penrose quasilattice. 

To sum up, the levels of the hierarchy are as follows: 
(a) The silica tetrahedra (SiO-*)4"; 
(b) the regular pentagonal ring of tetrahedra; 
(c) the regular pentagonal dodecahedron (Si2oC>5o)20"; 
(d) the "golden rhombus" composed of 16 dodecahedra; 
(e) rhombohedra, prolate and oblate; 
(f) the silicate quasicrystal itself. 
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The reverse conception (which is more usual in solid state physics) is as 
follows. Take an abstract quasilattice (i.e. the bare geometric skeleton) and 
decorate it by atoms (or clusters of atoms). In this sense our silicate quasicrystal 
is an icosahedral quasilattice decorated appropriately by silico-dodecahedrane 
units. "Appropriateness" may mean a lot of things, but let us see here some 
elementary geometric relations. 

Observe that the symmetry elements of the lattice as well as of the decorating 
dodecahedra coincide (apart from small local distortions that may occur). Further-
more, the rather elementary requirement is met that the silico-dodecahedrane units 
have enough room within the rhombohedra (that is why the rhombohedron edges 
should be assumed to consist of three dodecahedra: the poles of the oblate 
rhombohedron are rather close to each other). 

This is the point to mention the free oxygen bonds. Our quasilattice is not a 
pure (Si02)oo structure, because not all corners of the dodecahedra are shared by 
other dodecahedra. Thus, one should suppose presence of cations compensating 
the net negative charge of the frame. 

SOME FURTHER REMARKS AND CONCLUSIONS 

It would be difficult to assign our silicate to any of the traditional classes of 
silicate structures. It is not a proper ring silicate, because a five-membered group 
is not an isolated unit here but part of a polyhedral cage (the difference is reflected 
in the distinction between the terms ring and loop (ZOLTAI and STOUT 1984); in 
our case loop would be more suitable). With the dodecahedra as repeating units, 
this structure is similar to, for example, the well known sodalite structure where 
the characteristic units are truncated octahedra. But it is not a proper network 
silicate either, because of the cavities within the rhombohedra (actually, as YANG 
and KUO (1987) observe, in an icosahedral quasilattice the prolate rhombohedra 
form the main skeleton and the oblate rhombohedra fill the empty space left by the 
former). Thus, it could perhaps be termed as a "quasi-network" silicate (or 
quasiperiodically polymerized silicate). 

On the other hand, like in network silicates, we assume the possibility of 
substitution of silicon by other suitable cation (e.g. Al3 +) in the tetrahedral sites, 
with simultaneous appearance of the necessary charge compensating secondary 
cations. 

What is more, just as we exploited the analogy between carbon and silicon, 
one may take into consideration the Si-Ge analogy as well. Indeed, as classification 
of the silicate minerals served as a pattern for classification of germanates (STRUNZ 
1960), it is natural to suppose that our model can be considered a hypothetical 
germanate quasicrystal as well. 

Some of the features of this structure, not discussed here, provides analogies 
to other non-classical structures. The well-known self-similarity property as well 
as the hierarchical organization relates it to the structure discussed e.g. by 
SCHNEER (1988). The unit (Si2o05o)20" might well be a building element of less 
polymerized structures, or of structure built by other construction principles 
(GEVAY and KEDVES 1990), etc. 

In sum, we demonstrated geometrically that a certain variant of quasicrystalline 
silicate structure is possible. Although we did not apply arguments that would go 
beyond the limits of a field which might be called a "solid state geometry", our hope 
is that the model will bring us closer to the reality of non-metallic quasicrystals. 
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