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ABSTRACT 

This paper shows a method of the parallel description of transformations of a structure which 
involves two levels of hierarchy and its transformations concern both hierarchy levels. The method 
reworks the cellular automaton model, but uses it in the direction of the indirect von Neumann problem 
(B6RCZI1991). 

Tabular order of the transformational relations between Platonic and Archimedean (without 
distinguished rotational axis) solids was given on the basis of the truncation operation 13 years ago 
(BFIRCZI 1980). In this paper the reformulation of the system by a cellular automata in the form of 
indirect von-Neumann problem (BIRCZI 1985) solution is given. 

THE TRANSFORMATIONS OF A WHOLE BY ITS PHASES 

If we are not present during the transformations of an object: the WHOLE, then 
we need to introduce a principle to be able to describe these transformations. Step 
by step in time, we may observe the transformations, so we can describe the process 
by the sequence of the moment-observations. These moment observations are the 
phases of the transformational process. So the description of the process will be 
given in the form of the sequence of these phases. 

THE TWO HIERARCHY LEVELS OF SYMMETRY 

The concept of symmetry inherently involves two levels of hierarchy of the 
structure. Symmetry is the invariance of a WHOLE over transformations, which 
may exchange some of the ELEMENTS, which build up the WHOLE. S o the 
ELEMENTS and the WHOLE form two different levels of hierarchy. If symmetry is 
manifested in the form of a geometrical object, then the elements, which build up 
the geometrical object, form a pattern. This pattern is a regular arrangement on a 
surface. Both the regular LOCAL arrangement of the elements, and the regular 
GLOBAL structure of the WHOLE are important constituents of the SYMMETRY OF 
THE WHOLE. Both regularities of the two hierarchy levels are used up in construc-
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tion and specification of the cellular automaton model. The coherency between the 
two regularities makes it possible to decipher local operations of the elements from 
the global transformations of the whole. This problem of deciphering will be the 
indirect von-Neumann problem. 

THE CELLULAR AUTOMATON MODEL: A TENTATIVE AXIOMATIC APPROACH 

The unification of the former two structural descriptions: the TRANSFORMA-
TIONS OF A WHOLE BY ITS PHASES (Fig. 1) and the SYMMETRY OF A WHOLE 
results in a constructive approach to build up the cellular automaton model. The 

1. phase 2. phase 3.phase 4 .phase 5.phase 
Fig. 1. T h e TRANSFORMATIONS BY ITS PHASES p r i n c i p l e . 

principle: TRANSFORMATIONS BY ITS PHASES gives a step by step discrete de-
scription of the transformations of the WHOLE and the ELEMENTS. The principle: 
SYMMETRY OF THE WHOLE gives the structural constraint of the description of 
transformations on two hierarchy levels: on the level of the ELEMENTS, and on the 
level of the WHOLE. (Fig. 2). So in the cellular automaton model the description of 
the transformations is given on both hierarchy levels in parallel form. (Fig. 3 and 4) 

higher lev»l_ 
of hierarchy " 

lower level 
of hierarchy" 

WHOLE 

ELEMENTS 

Fig. 2. The decomposition of the WHOLE, which has symmetries, a. The symbol shows, that ele-
ments build up the whole, b. The symbol shows the two hierarchy levels of the whole; used later. 

1. phase 2. phase 3. phase «.phase 
Fig. 3. The WHOLE with symmetry and so with two hierarchy levels has been substituted into the 

graph of the TRANSFORMATIONS BY ITS PHASES principle (Fig. 1) in the form of b. of Fig. 2. 
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global transitional function 

local transitional function 

Fig. 4. Separation of phase blocks to its two parts gives the most characteristical framework of the 
cellular automatic description: the two parallel "equations of motion": that on the higher level of 

hierarchy — i .e. the GLOBAL TRANSITIONAL FUNCTION, and that o n the l o w e r leve l o f hierarchy — 
i.e. the LOCAL TRANSITIONAL FUNCTION. Both functions are discrete functions in time. Detailed 

specifications of the model are given in Fig. 5. 

FRAMEWORK OF THE CELLULAR AUTOMATIC SYSTEM'S DESCRIPTION 

On the basis of the three introductory principles and other earlier works (i.e. 
VOLLMAR 1 9 7 8 , BERCZI 1 9 9 1 ) we may summarize the sturctural characteristics 
and specifications of the description style of cellular automata as a framework. It 
is composed from two parts of the description on two hierarchy levels. The two 
parts are: the CELLULAR BACKGROUND, which is the structural one, and the 
TRANSITIONAL FUNCTION, which is the kinematical one. The two levels of 
hierarchy are: the LOCAL one, that of the cells, and the GLOBAL one, that of the 
WHOLE, the SYSTEM of the cell-mosaic itself. 

The two X two (2x2) system of condiditons of description in the framework 
of cellular automata system suggests a matrix-summary of conditions. So first we 
give the tabular form (from BERCZI 1 9 9 1 ) and then the Relation-table of the 
conditions (Fig. 5). 

A. CELLULAR BACKGROUND 

Aa. Local characteristics of the cell-mosaic system give the form of cells, their 
connections and neighbourhood relations (with initial condiditons) 

Ab. Global characteristics of the cell-mosaic system give the enclosure of the local 
relations to form a whole, a surface of the cell-mosaic system 

B. TRANSITIONAL FUNCTIONS 

Ba. Local transitional function for cell-mosaic elements which are individual 
automata (this is a discrete funciton of steps in space and time) 

Bb. Global transitional function for the whole surface built up by the cell-mosaic 
system as a whole (this function is also a discrete one consisting of the sequence 
of the stages of discrete transformations summarized from cellular steps) 
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L O C A L G L O B A L 

B A C K G R O U N D 

Aa 
the form, the e-
leaentary neigh-
bourhood , the 
connections and 
the initial sta-
tes of cells 

Jib 
the ccll mosaic 
system built to-
gether from cells; 
a surface or spa-
tial region with 
its initial para-
meters 

T R A N S I T I O N 

Ba 
transition of 
cellular states. 
/ local transi-
tional function/: 
depends on the 
states of neigh-
bour cells, on the 
earlier state of 
the cell itself, 
and on the prog-
ram written into 
the cell 

Bb 
transition of the 
cell mosaic system 
/surface or spatial 
region/ composed 
cy the cells: 

this global tran-
sitional function 
is summarized fro«» 
the local trarsit-
lons of the cells, 
step by step In 
time 

H I E R A R C H Y 
First, lower 
level of hierarchy 

Second, higher 
level of hierarchy 

Direction of const" direct von Neumann problem 
ruction of operation — 

Deciphering of state 
changes and their Indirect von Neumann problem 
description 

Fig. 5. Relation table of the specifications of the cellular automata models. Directions of the direct 
and indirect VON NEUMANN problems are also shown below. 

DEFINITION OF THE INDIRECT VON-NEUMANN PROBLEM 

If we consider the cellular automatic description of a deformational motion of 
a cell-mosaic-system as a new motion-description on a flexible or plastic back-
ground, then the first step is the formation and definition of the background and 
the second one is the formulation of transitional function. But in the cellular 
automaton modelling there is a double-level description, so thé direction of 
problem formulation is open both for Ba->Bb and Bb->Ba cases. The classical way 
of construction and development of the cellular automaton modelling was: /1/ 
construction of Aa and Ab background, /2/ construction of the Ba local transitional 
function, /3/ deduction of the Bb global transitional function. Although iteration 
could happen between Ba and Bb function formulation, in the given sequence of 
formulation of problem solving the last step was the summary of the model. So the 
Ba->Bb direction of construction is characteristical to such modelling. We call this 
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direction of construction to the direct von NEUMANN problem. The principal aim 
of the construction of von Nemann's cellular automata model was to build a 
self-reproducing structure on the level of the global background by a global 
transitional function. 

The direction of our efforts in problem solutions in this paper is the opposite 
direction in the level of transitional functions, if compared to that of von NEU-
MANN 'S problem solution. Our aim is to read out local transitional function 
(uniform for all cells) from the given or reconstructed global transitional function. 
Therefore we call our program and formulation to indirect von NEUMANN 
problem (Bb->Ba). (Fig. 5) 

FEED-BACKS AND COHERENCY OF LOCAL AND GLOBAL STRUCTURE 

Symmetry of the cell-mosaic background means a coherency of regularity 
between its local and global structure. Therefore symmetry results in simplicity in 
the formulation of the transitional functions in the cellular automaton model (Ba 
and Bb). But symmetry of the cell-mosaic structure has another benefit, too. 
Symmetry may make it possible to formulate easily the direct (Ba~+Bb) or the 
indirect (Bb->Ba) program in model-construction; these transcriptions make 
complete the cellular automaton model. In our formulations of the indirect prog-
rams (transcriptions of the global transitional function into the local one) we shall 
use up these benefits of symmetry. 

Global structure (background, Fig. 6) is a kind of feed-back of local regularity 
(transitional function, Fig. 6) into itself, if the surface is at least partly closed. 
Movements, which are important cellular-automatic local operations in our for-
mulations, partly rearrange this feed-back structure, too. Movements between cells 
are allowed, because a degree of freedom remains to carry out it: /1/ if the surface 
is only partly closed, or /2/ if a regular separation-operation make cells partly and 
temporaly free in the temporaly and partly loosed structure. After rearranging 
cell-movements cells fix their new contacts. These kinds of operations are the main 
benefits of our modelling symmetry by cellular automata (BÉRCZI 1985). 

In our paper we refer to other ones and show one such kind of model where 
partial and local deformations of the cells form the local operations. 

THE MAPPING OF PHENOMENA IN ORDER TO SELECT THOSE WHICH NEED 
CELLULAR AUTOMATIC DESCRIPTION 

We may construct a compositional diagram for three basic components. The 
components are: basic characteristics of phenomena in everyday experiences. 
These were the following basic characteristics: RIGID, GRANULAR-COARSE, and 
CRUMPLED-SOFT. Different mixing of these components in phenomena occurs in 
those ones which take place inside the triangle (according to the compositional 
regulas of ViviANI's theorem). The mostly viable phenomena which are combined 
from the three basic characteristics can be found in the centre of the triangle 
(Fig. 7.): they are weighted with almost equal weights from the three components. 
These phenomena are: crops of plants and some parts of plants themselves, 
embryos, cell systems and nets, and crystal-structure rearrangements, etc. 

Cellular automatic description of cell-mosaic system's deformational trans-
formations does not fix the time-scale of the phenomena. So the same transforma-
tional process may represent a short and a very long time process. That is the case 
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Fig. 6. Feedbacks appear on two hierarchy levels and in two types of specifications in the cellular 
automaton model, (with black frame). Feedback in the global background is resulted in by the en-

closure of the surface into itself (or with a BORN-KRAMAN boundary condition). 

with our crystal structures during crystallization, or recrystallization under high 
pressure. Different final products of the process can be found in different truncated 
stages but the reconstruction of the transformational sequence can be considered 
as a short term transformation during the development of an individual, (an entity 
of a mineral,) and at the same time it can be considered as a stage of transforma-
tional process which resulted in reaching of different final stages of the process 
modelled by the cellular automatic description. So our first example will show the 
cellular automatic description of truncation of Platonic and Archimedean solids 
and tesselations: it is partly a summary of earlier papers (BERCZI 1979, 1980, 
1991). 

EVOLUTIONARY SERIES FROM MULTITUDE. 

Where can be found a community of the same type of structures in order to 
select a representative series for the development and evolution of the structure of 
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feathering 
corn-field 
waving flag 

iron 
ball roll of paplrus 

wrinkled paper 
rubber 
hose 

dress-
materials 

during washing 
CRUMPLED, SOFT 
CONTINUOOS 

Fig. 7. Mapping of phenomena (different structures) according to three basic characteristics: 
RIGID, GRANULAR-COARSE and CRUMPLED-SOFT. The problem shown in this paper can be found in 

the center of this map, signed by a dot. Other related problems can be found in frame. 

such type? Because the description: CHANGES BY THE PHASES needs such a 
community as a background of the phenomena to model the evolutionary events. 
Individuals in the community grow with different speeds, so in a community (or 
multitude) we can find representatives from different periods of the life-stage of 
individual structures. At one moment these individuals of such multitude represent 
a stage of an evolutionary or developmental sequence (depending on the time scale 
to be considered). Such multitude for example can be an open or globular cluster 
of stars, or a forest of trees. Observing the characteristics of the elements (the 
wholes, the individuals) of the multitude, a sequence of representative individuals 
can be selected from the multitude, they can be arranged into an evolutioary series 
according to these time dependent characteristics. This sequence (or chain) of the 
whole (individuals) gives a discrete description about the stages of transformations 
of the structure type, so in this form the principle of CHANGES BY THE PHASES of 
transformations was used on the multitude. The principle of selection of EVOLU-
TIONARY SERIES FR.OM MULTITUDE is an important tool , w h e n w e intend t o 
formalize the abstract way of the foundation of cellular automatic description of 
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wholes. (Fig. 8.) A further principle is necessary, however, if we want a next step 
to the double-layered description of transformations. This principle has been 
detailed earlier: the S Y M M E T R Y O F T H E W H O L E , which implies two layered 
structure of the whole. 

1. CHANGES BY THE PHASES 

SELECTION OP 
AN EVOLUTIONARY / 
SERIES FROM /MULTISET 

O C M > D 

3. ARRANGEMENT OF THE 
PHASES I STAGES / 

SYMMETRY OF THE WHOLE 
IMPLIES HIERARCHY OF 
THE WHOLE 

ID 

V 
A SEQUENCE OF EVOLUTIONARY 
STAGES OF THE WHOLE WITH 
SYMMETRY RESULTS IN THE 

1 1 I. J 1 1 

I N N (LLLL 1 11 11 

STRUCTURE OF 
CELLULAR AUTOMATA 

Fig. 8. The summary of principles which were necessary to the foundation of cellular automata 
description of the state changes of a whole with symmetry. The steps of the using of these princip-
les in solving a problem can be given as follows: /1 /1 can describe Kinematics by CHANGES BY THE 
PHASES of a whole. /2/ Because of evolutionary events on individual wholes I can select a series of 
wholes from a multiset to describe the evolutionary steps. / 3 / 1 can arrange them into a sequence. 

/4/ If the wholes are with symmetry, than they have two layers of hierarchy in their structure. 
/5/ Then cellular automata decomposition of the evolutionary sequence is possible. 

THE "ACTORS" OF OUR MODEL: THE PLATONIC A N D ARCHIMEDEAN SOLIDS 

The basic process to be studied here by cellular automata description's the 
hypothetical changes of faces on crystal. But the same process advances when 
recrystallization happens under high pressure: there the coordination numbers 
change because of different compressibility of different ion-balls. We shall see 
that this second type of transformation is a higher dimensional equivalent "trun-
cation" problem, as the first one. Both cases can be used in formulating the most 
simple cellular automata model, in crystallography. 

Transformation of a spherical cellular system is a common phenomenon in 
development of embryonal structures too. These transformations may be formu-
lated according to different languages of descriptions. Among the most simple 
cases of such transformations there are those which preserve some properties of 
the initial cellular arrangement. One form of initial simplicity of cellular arrange-
ments is the symmetry. Now we study those spherical cell-arrangements which 
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have symmetries that of the Platonic solids. We do not distinguish solids (which 
are covered by regular faces) and spherical tessellations (which are the correspon-
ding cellular mosaics on the circumscribed spheres by central projection of the 
former solids). 

Platonic solids are covered by congruent regular polygons of the same kind, 
while Archimedean solids are covered by 2 or 3 types of such regular polygons. 
Symmetry of these solids means regularity of not only the covering polygons, but 
the uniformity of the vertex configurations, too. This uniformity of the vertices 
allows a simple naming of these solids according to the polygons meeting at a 
vertex (listed in a given circulating order around a vertex). These are the STEINER 
symbols: the cube is named (4,4,4), the octahedron is (3,3,3,3) according to 
Steiner's terminology, (where numbers mean the sides of a regular polygon 
meeting at a vertex). The solids involved in our problem-solving are given in 
Fig. 9. Those solids, which traditionally are also Archimedean solids, and can be 

(J.S.S) ( 3 , 4 . 3 , 4 ) ( 3 . 5 . 3 . 5 ) 

( 3 , 3 . 3 ) ( 3 . 3 , 3 . 3 ) ( 3 , 3 , 3 , 3 , 3 ) 

( 4 . 4 . 4 ) ( 5 . 5 , 5 ) 

Fig. 9. The complete set of Archimedean solids (upper four rows) and Platonic solids (in their 
spherical tessellation form, lower two rows) which were arranged in a periodic table according to a 

cellular automatic operation: by truncation. 
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given by Steiner symbols, but has distinguished rotational axis, do not take part in 
our transformational system (Fig. 10). These prisms and antiprisms can not 
involved into a sequence where solids are listed according to a coherent transfor-
mational operation on their faces (on sphere on cells): this operation is the 
truncation. 

(3.4.4) 

PRISMS ANTIPRISMS 

( 3 . 3 . 3 . 3 ) 

(4,4,4) 

(5,4,4) 

(6,4,4) 

\ K 

( 4 , 3 , 3 , 3 ) 

( 5 , 3 , 3 , 3 ) 

( 6 , 3 , 3 , 3 ) 

Fig. 10. The complete set of those Archimedean solids, which were not involved in the periodic 
table, because they have distinguished rotational axis (except (3,3,3,3) and (4,4,4), which are regu-

lar solids). 

FORMULATION OF TRUNCATION AS CELLULAR AUTOMATIC OPERATION 

The members of the complete set of regular and semiregular cellular arrange-
ments on sphere (Fig. 11) were considered as stages of tranformational sequences, 
where the transformation was generated by an operation: the truncation (BERCZI 
1980.). This truncation changes the cellular surface of a Platonic or Archimedean 
solid (or spherical mosaic) but does not change the symmetry group of the solid. 
The concept of truncation has a visually imaginable meaning for solids: the 
pyramids at vertices of regular solids are cut leaving a face on the place of the 
vertex: the base of pyramid. The cutting plane is perpendicular to the radius vector 
coming from the center of the regular solid to the vertex. Advanced truncation cuts 
truncated pyramids. In the spherical case truncation means: blowing up of initial 
vertex "points" of a regular spherical tessellation. In both variants of coordinate 
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Fig. 11. Faces of dual regular solids are different regular-face-forming blocks of fundamental regi-
ons in the spherical tessellation of fundamental regions of tetrahedral- (A,B.)» octahedral-(C,D,), 
and icosahedral- (E,F,) groups. A third kind of block-forming should result in rombohedral faces: 

these solids are also missing from the periodic table. 

systems (solid-representation or spherical representation) three different stages 
with equal edge-lengths for all faces appear, when trucation started from a regular 
solid and advanced till the reaching of the dual solid of the initial one. The two 
closing regular (Platonic) solids in the truncational sequence flanks three Archi-
medean solids as stages of truncation operation. It is shown for the case of 
cube-octahedron sequence in Fig. 12 and 13. 

The definition of the indirect von Neumann problem (implicit formulation: 
B6RCZI 1980, 1985, explicit formulation: BERCZI 1991.) allows an easy formula-
tion of the truncational transformations (Fig. 14). Let us consider the simple 
truncational sequences as global transitional functions with 5 stages (steps) for 
solids. (Fig. 15) Then the local transitional functions are the blowing up sequences 
for vertices (or complementary equivalents: the truncational sequences of initial 
faces or polygons (or cells)). These formulations — the global and local transiti-
onal functions — were given parallel for the higher dimensional case of the 
transformations for spatial cube-tessellation (BERCZI 1980.). This was the first 
implicit formulation of the Platonic-Archimedean Spherical Cellular Automata 
(PASCA). (Fig. 16) 

EXTENSIONS OF PASCA: THE PERIODIC TABLE AND HIGHER DIMENSIONAL 
DEVELOPMENTS 

Fitting together the corresponding PASCA sequences of the three 3D spherical 
symmetry groups (terahedral, octahedral, icosahedral) and also to planar and 
hyperbolic tessellation's, ä periodic table was given, as a summary of the deduction 
system built by truncation. (Fig. 17, BERCZI 1980) .This Periodic Table of Platonic 
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right 
screw 

Archimedean cubes (3,3.3,3.4) ^ enantiomorphous 
f pairs 

left 
screw 

octahedron cuboctohedroh cube 

( 3 , 3 . 3 , 3 ) ( 4 , 6 , 6 ) ( 3 , 4 , 3 , 4 ) (3,8,8) ( 4 , 4 , 4 ) 

( 4 . 6 , 8 ) 

( 3 , 4 , 4 , 4 ) 

Fig. 12. Truncations in the octahedron-cube (hexahedron) system. The two Platonic solids close 
the simple truncation sequence. Halfway between them, the cuboctahedron is the generator of the 

complex truncation sequence (below (3,4,3,4)), and the snub-truncated enantiomorphous pairs 
(above (3,4,3,4)). The simple truncation sequence is considered to be the global transitional 

function in Fig. 14. 
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a ® & © © 1 I 3 5 

® z 1 2 3 h 

@ 3 L 1 I 3 

© k 3 2 1 I 

5 h 3 I 1 
Fig. 13. Truncational distance matrix of the cube-octahedron sequence. Numbers mean the number 

of steps between the solids of a column and a row. Identical step is 1, without further truncation. 

and Archimedean Solids and Tessellations shows the price payed for the ordered 
arrangement of solids given in Fig. 9. Some of the structures occurs more than 
once. But, on the other hand, the functional aspect of the relations between solids 
arises the source of simplicity: it is both in symmetry of initial conditions (Sphere, 
symmetric mosaic), and in formulation of the operation. Indirect von Neumann 
problems can be formulated and solved for the first cases when symmetry reduces 
the number of states of cells to small numbers. (Fig. 18) 

SUMMARY 
/ 

A classical problem of the functional arranging of regular and semi-regular / 
(Platonic and Archimedean) solids (and tessellations) was solved and tabularly 
formulated by a cellular automatic operation using up the framework of the indirect' 
von Neumann problem. (Fig. 19) The cellular transformation were double-termi-
nated by regular dual-solids; therefore these arrangements of cells seemed more 
like a wave-motion of a global state of the spherical surface between opposite 
wave-formations. But the method and the approach to the problem may be useful, 
when more complex cellular states and arrangement are to be discerned and 
described. 
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GLOBAL TRANSITIONAL rUNCTXON LOCAL TRANSITIONAL FUNCTION 

Bb-1. ( « . ' , o Ba-1. 

V 
Bb-2. ( 3 , 8 , 8 ) Ba-2. 

Bb-3. ( 3 , 4 , 3 , 4 ) Ba-3 

Bb-4. ( 4 , 6 , 6 ) Ba-4. 

Bb-S. ( 3 , 3 , 3 , 3 ) Ba-S. 

vertices 
begin to 
blow up 
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contracted 
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blown up 
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edges vanish, 
blown up 
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Fig. 14. The global (left column) and the local (right column) transitional function in the cellular 
automatic formulation of the truncational transformation between duals of regular solids. 
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(3.3.3.3) 

(13.3) 13.Ç/6) (3.3.3.3) (3.6,6) 

(4.6.6) [^£.3.0 (3.8,6) (i.i.t; 

r* M 
№ o I» y-
£ 0> t-> M M 
» o ft H y-
O V) 

3 >0 

H-
o f 

f fO » t~> M p> 
w s (t U 
M 1 » 
rt 
H-O 3 10 

U . M . O (4.8.6) (¿.¿.i.o U. 8. 6) u. ¿.i.a 

(7.7 7) 
i 

(W.k.k) 

rt- sr n> >< 
M »O M fl> m 
h tr o o y-> 
r+ K- o o s w 

Fig. 15. One direction of extension of the ordering benefits for simplicity and comprehensive role 
of cellular automatic representation of the simple truncation sequence is to all regular solids (or 

spherical tessellations) and planar and hyperbolic tessellations. (BÉRCZI 1979.) The other direction 
of extension of the principle is to higher dimensional cases of regular solids and tessellations. Fig. 
14. and Fig. 16. show, that the localtransitional function in D dimension is the global transitional 
function in D- l dimensions. Both extensions shown here prove that truncation operation in such a 
cellular automatic formulation is a comprehensive principle in deduction of regular solids and tes-

sellations in any dimensions. 
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Fig. 16. Simple tnincational sequence of spatial tessellation (4,4,4)8 in cellular automatic formulati-
on (B6RCZI 1979, 1980). 
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Fig. 17. The periodic table of Platonic and Archimedean solids and tessellations, or the spherical-, planar-, and hyperbolic tessellations. Regular solids 
are represented by their spherical tessellations for the sake of emphasis: they are the generators for semi-regular ones. (B£RCZI 1979, 1980) 
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Fig. 18. Comparison of the characteristical features of the two cellular mosaic automata system mo-
dels worked out in the form of indirect von Neumann problem by the author. Global symmetry not 
only reflects the global boundary condition and the form of the surface but means the form of feed-

back-directions by the local transitional function. 
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Fig. 19. Depending on the dimensions of the space where the problem is composed the truncation 

sequences may serve both as local and as global transitional functions, as shown here for three 
layers of construction. 
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