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On linked products of groups 
By B. H. NEUMANN and HANNA NEUMANN in Sale (Cheshire, England) 

To Ladislaus Redei for his 60th birthday 

1. Introduction 

Linked products were first introduced in a recent paper [5] by JAMES 

WIEGOLD and the second author; a number of questions were left unanswer-
ed there. We propose to answer some of them in this note. 

The products considered are generalizations of GOLOVIN'S regular pro-
ducts: the group G is a regular product of its subgroups A and B, if A 
and B generate G and are retracts (that is, images under idempotent endo-
morphisms) of G ; or, equivalently,-the normal closure of A in G meets B 
trivially, and the normal closure of B in G meets A trivially. In the case of 
a linked product we ask for a group G generated by A and B in such a 
way that, although A and B have still only the unit element in common in 
G, mapping A onto- the trivial group induces a prescribed homomorphism 
of B onto a factor group B/Y, and mapping B onto the trivial group induces 
a prescribed homomorphism of A onto A/X; in other words, we call G a 
linked product of A and B with kernels X and Y if G is generated by A 
and B, if A and B have only the unit element in common, but the normal 
closure of A in G meets B in Y, and the normal closure of B in G meets 
A in X. We think of A and its normal subgroup X, and of B and its nor-
mal subgroup Y, as given. 

The question immediately arises whether it is always possible to con-
struct a linked product of given groups A and B with given kernels X and Y. 
It was shown in [5], Example 6.2, that this is certainly not possible when 
A and B are both of order 2, and of the kernels X and Y one is trivial and 
the other not. But the positive results obtained in [5j strongly suggested that 
this case is, in fact, the only exception. We still can not prove this conjec-
ture, but we make somme further progress towards it. The "unsymmetrical 
case", where just one of the kernels is trivial, proved the more resistant case 
in [5]. One of our results here reduces it in many cases — we conjecture: 
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in all but one case — to the "symmetrical case", where both kernels are 
non-trivial (§3). (We are not concerned with the case that both kernels are 
trivial: this is, of course, just the case of OOLOVIN'S regular products.) Using 
results of [5] based on a theorem of WIELANDT [6], we establish in particu-
lar the existence of linked products of arbitrary finite groups A and B with 
arbitrarily prescribed normal subgroups X and K a s kernels, apart, of course, 
from the one exceptional case described above. Moreover the proof of the 
reduction theorem shows that these linked products of finite groups can be 
chosen finite. This confirms another conjecture made in [5]. 

It is fairly obvious that linked products, where they exist, are not 
uniquely determined by their constituents A and B and the kernels X and Y. 
In § 5 we give some indication just how widely they may differ: If A and B 
are finite and X and Y non-trivial proper normal subgroups of A and B, 
we show — subject to some restrictions on the orders and indices of X and 
Y arising out of the exceptional case — that there exist finite linked products 
of A and B in which the kernels X and Y generate a simple group, but 
there also are finite linked products of A and B in which X and Y generate 
their direct product. 

In § 4 we prepare the ground for these constructions by restating some 
known facts on the embedding of group amalgams. 

2. Notation 

Groups are denoted by capital letters, their elements by small letters. 
We write ab for b^ab, and [a, b] for the commutator a^b^ab. The unit 
element of all groups is denoted by 1; the trivial group is always denoted 
by E. Small Greek letters stand for homomorphisms of groups. Capital Ger-
man letters are used for group amalgams, that is for set-theoretical unions 
of given groups intersecting pairwise in given subgroups, with multiplication 
defined — in the natural way — for those and only those pairs of elements 
that belong to one and the same constituent group, of the amalgam. 

If the group G is generated by the set M, we write G = gp(AF); simi-
larly G = gp(A, B) means that G is generated by its subgroups A, B. If 
G = gp(A, B), then the group generated by all commutators [a, b], a£A, b£B, 
is normal in G (cf. GOLOVIN [1]). ll is denoted by [A, B] and called the 
cartesian subgroup of G. If G = gp(.4, B) = [A, B], we call G self-cartesian. 

The normal closure in G of a set M, that is the least normal subgroup 
of G containing M, is denoted by M". If again G = gp(A, B), then the 
normal closure of A in G is A'i = A-[A,B) (cf. GOLOVIN [1] ) . 

Finally we denote the order of a group G by | G | . 
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3. A reduction theorem 

In [5], certain reduction theorems were obtained which deduced the 
existence of a linked product of A and B with kernels X and Y from that 
of a linked product of X and Y with kernels X and Y — if both X and Y 
are non-trivial — or from a linked product of X and B with kernels X and 
E in the unsymmetrical case. Here we prove a reduction theorem which oper-
ates, as it were, in the opposite direction: it deduces the existence of a 
linked product of A and Z?with kernels X and Y from that of certain linked 
products of A and B with kernels A and B: 

T h e o r e m 3.1. Let there be a self-cartesian linked product G of A and B 
with kernels A and B, and let X and Y be arbitrary normal subgroups of A 
and B, respectively. Then there exists a linked product of A and B with ker-
nels X and Y. 

P r o o f . Let rp be the canonic epimorphism of A onto A\ = AjX, and 
• the canonic epimorphism of B onto Z?1 = j9/F. We form the direct product 

Gu = AtxGxBu 

its elements are the triplets (acp ,g ,b \p) where a,g, b range over A,G,B, 
respectively. The triplets 

fl„= (ay, a, 1) 

form a group A0 which is clearly isomorphic to A; the subgroup X0 of A 
corresponding to X consists of the triples x0 = ( l , x , 1)- Similarly, the triplets 

b0 = (\,b,bifi) 

form a group B0 isomorphic to B, and the. triplets yn = (\,y,\) form the 
subgroup ,Y0 of B0 that corresponds to Y in B. 

We prove that G0 is a linked product of J4„ and B0 with kernels X0 

and Y0. Firstly, any element of G„ common to A0 and B0 has first and third 
components 1, and as Ar^B = E, also middle component 1; hence in G0, 

Secondly, we find the cartesian subgroup [A,, of gp(Ai, B0). Atyp i -
cal commutator [an, 60] is of the form 

[a0,b)-=(\,[a,b},\), 

and as the commutators [a, b] are assumed to generate G, the commutators 
[a0, ¿o] generate ExGxE. We identify this subgroup of Go with G and 
then have 
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But A and G generate'A, (similarly identified with A x £ x £ ^ G 0 ) , and 
and G generate £?r, thus A and between them generate all three direct 

factors of G0) and 

G, = gp(A,fic,)-
Finally 

At!0 = A0 [ A ,B0] = AoG = A1 >< G. 

Thus Ao"r^Bo = (A"X G)r>Bo, and this consists of all elements (fly,,§", 1) 
that are simultaneously of the form (1, b, b ip). It follows that ci(p = \,g = b, 
and b ip = 1; hence b = y £ Y, and the elements of the intersection are just 
the elements 

y0 = (\,y,}). 

Thus 

Aoar>Bo=Yo. 

A symmetrical argument shows that 

Aor\Bo" — Xo, 

and the theorem follows. The following is an immediate consequence of the 
proof, as G(, clearly is finite when G is. 

C o r o l l a r y 3.11. If G is finite, the linked product also can be taken 
finite. 

C o r o l l a r y 3.12. If the linked product G of A and B with kernels 
A and B is not only self-cartesian, but simple, then in G„ — constructed as 
in the proof of the theorem — every non-trivial subgroup C„ of A, has the 
property 

Co " r^ Bo = Yo, 

and symmetrically, for every D<, £ B„, D„ =j= E, 

A0r^D o° = Xo. 

If both A and B are of order 2, generated by a and b, respectively, 
then the condition of the theorem cannot be satisfied. For in this case, as 
d' = b2 = 1, the group generated by a and b is dihedral, of order 2n or of 
infinite order; in either case the commutator [a,b] = (ab)- is an element of 
the cyclic subgroup of index 2, and therefore cannot generate the whole 
group. This is, of course, in accordance with the fact that in this case there 
is no linked product of A and B with kernels A and E. 

Again we conjecture that this is the only exception, that is, that any 
two groups and B not both of which are of order 2 possess a self-car-
tesian linked product with kernels A and B. We cannot prove this in general. 
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If, however, A and B are finite and not both of order 2, then by a 
theorem of WIELANDT [6] A and B can be so embedded in a finite simple 
group G, that G is generated by A and B and their intersection in G is 
trivial; but clearly a simple group is self-cartesian (with respect to any two 
non-trivial subgroups that generate it). Thus we have: 

T h e o r e m 3.2. Given two finite groups A and B with normal subgroups 
X and Y, where .E^X^A and E^Y^B; then there is a finite linked pro-
duct of A and B with kernels X and Y, unless \A\ = \B\ = \X\-\ Y\ = 2. 

It may be remarked that here we have the situation in which Corollary 
3.12 applies. 

Here X and Y will riot in general themselves generate a simple group. 
In order to establish the existence of linked products with this additional 
property, we have to go back to the procedure used in [5], §3, of building 
up the linked product of A, and B from a linked product of the kernels X 
and Y. In order to ensure that these linked products also are finite when A 
and B are finite, we need some facts on embeddings of amalgams of groups. 

4. Two lemmas 

Let 2( be an amalgam of finitely many finite groups. We assume that 
3( is embeddable in a group; therefore the generalized free product F of 21 
exists. F is characterized by the facts that it embeds the amalgam 2f, is 
generated by it, and that every homomorphism of 2f into a group can be 
continued to a homomorphism of F into that group. We further assume1) 
that 21 can be embedded in a finite group. P, say, which we may assume to 
be generated by 2f. 

L e m m a 4.1 . [3J If cp is a homomorphism of 2f into a finite group D, 
then there is an embedding 6 of 21 in a finite group Q generated by 2(0 
and a homomorphism ip of Q into D such that 

cp = dip. 

For the sake of completeness we here briefly indicate the proof (cf. [3], 
§ 2, where the lemma is proved in a slightly more general situation). 

Let D, = gp(2i9>). Then DX^FIM, where F is the generalized free 
product of 2t and M a normal subgroup of finite index in F. Similarly 
P^F/N where N also has finite index in F. Then Mr\N also is a normal 

]) It is not known whether this is really an additional assumption, or whether a 
finite amalgam that is embeddable in a group is also embeddable in a finite group; 
cf. [2], § 5 . 

A 14 
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subgroup of finite index in F, and we put Q== F/Mr\N. The canonic epi-
morphism F onto Q induces a homomorphism Q of 91 into Q, and this is a 
monomorphism because it can be further multiplied by an epimorphism of 
Q on to / 5 so as to result in the given embedding of 91 in A We take as f>p the 
canonic homomorphism of Q onto its factor group Q/(M/M N)^F/ 
followed by an isomorphism onto . 

The amalgams to which we are going to apply this lemma are suffi-
ciently simple that we can easily check the validity of the embeddability 
assumptions made for Lemma 4.1. We use the following known fact ([4], 
Corollary 15.2). 

L e m m a 4. 2. An amalgam of two finite groups is embeddable in a 
finite group. 

5. Some special types of linked product 

Let A and B be groups containing the non-trivial normal subgroups 
X and Y, respectively. Let Z be a linked product of X and Y with kernels 
X and Y. We form the amalgam 91 of the groups A, B, and Z amalgamat-
ing E between A and B, X between A and Z, and Y between B and Z. 
It is fairly easily seen (and shown in detail in [5], § 3) that the free product 
of A, B, Z with these amalgamations exists and is a linked product of A and 
B with kernels X and Y. 

If X and Y are finite, we know that such a linked product Z of X and 
Y with kernels X and Y exists and can be taken finite; and that, moreover, 
it can be taken as a simple group unless both X and Y have order 2 
( W I E L A N D T [6]). But even if A and B are also finite, the free product will 
be an infinite group as at least one of A and B contains X, or Y, properly. 
To construct a finite linked product also in this case, we use Lemma 4.1. 

It was stated already that the amalgam 91 of A, B, and Z is embed-
dable in a group. To see that it is embeddable in a finite group, we first note 
that, by Lemma 4.2, the subamalgam formed by A and Z amalgamating X 
is embeddable in a finite group, A , say. Similarly the subamalgam formed 
by B and Z is embeddable in a finite group, Bu say. We consider the amal-
gam 23 of A, and Bi amalgamating Z. It contains 9( as a subamalgam. But, 
again by Lemma 4.2, 83 is embeddable in a finite group, and so, therefore, 
is 91. Finally, 9t possesses a homomorphism cp into the direct product 
D = A/Xx B/Y; for mapping A-*AIX. and B-^-B/Y canonically induces 
automatically the mapping of Z on E. The assumptions of Lemma 4.1 are 
therefore satisfied, and we deduce: 
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L e m m a 5 .1 . The amalgam 21 of A, B, and Z can be embedded in a 
finite group Q generated by it, such that there exists a homomorphism riU of 
Q onto D = A/Xx B/Y which maps A in Q onto Ay = A/X and B in Q 
onto By = B/Y, canonically. 

We now show that this group Q is a linked product of A and B with 
kernels X and Y. Q is clearly generated by A and B, as it is generated by 
2f, and the constituent Z of 2( is generated by X ^ A and Y^B. Also 
Ar^B = E in 2i, and therefore in Q. Finally / t i s F ^ K , and therefore 
A'-'r^B^Y. To show that this intersection cannot contain Y properly, it suf-
fices to exhibit one normal subgroup K of Q which contains A and meets 
B exactly in Y. Now Q possesses a homomorphism y onto D = A/XxB/Y\ 
and D can be mapped homomorphically onto B/Y by the retraction that 
maps A/X onto E. The product of these homomorphisms is a homomorphism 
/? of Q onto B/Y which maps A onto E and B onto B/Y canonically. The 
kernel K of /? contains A and intersects B in Y, as required. Similarly one 
shows that B®r\A = X, which completes the argument. We have therefore: 

T h e o r e m 5. 2. If A and B are finite groups, if X and Y are non-
trivial normal subgroups of A and B, respectively, and if not both of X and 
Y have order 2, then there exists a finite linked product of A and B, with 
kernels X and Y, in which X and Y generate a simple group. 

In order to obtain the other extreme, a linked product in which X and 
Y centralize each other, we first use the methods of § 3 to prove: 

L e m m a 5 .3 . If A/X and Y are finite, non-trivial groups and not both 
of order 2, then there exists a linked product of A and Y with kernels E and 
Y in which X and Y centralize each other. 

P r o o f . Let fp be the canonic epimorphism of A onto Acp —A/X. As 
Arp and Y do not both have order 2, there exists a self-cartesian linked 
product .G of Acp and Vwith kernels Acp and Y. We form the direct product 

H, = AxG, 

and consider in it the group A„ consisting of all elements a0 = (a,a<p). 
Again A0 is isomorphic to A, and we show that is a linked product of 
An and Y of the required kind; here Y is thought of as identified with the 
group consisting of all y0 = (\,y). 

As [a0,y] = {(a,a(p),(\,y)} = {\,[a<p,y]), and as [Acp, Y] = G, we have 
(upon identifying E x G ^ H t with G) 

[A, Y] = G. ' 

But Aa and G generate AxE, and therefore Hu so that / / , = gp(A0, 
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Further Aol=Ao-[Ao,Y] = A()-G = Hl^Y, but 
Y'u = {yoy, l = Q H l = = G i 

and so Yjr<r>A0 consists of those elements (a, ay) for which a = l, that is, 
r^ A0 = E. Thus Hx is a linked product of Ao and Y with kernels E and 

Y; and if the subgroup Xn of A0 consisting of all elements (x, 1) is identi-
fied with X in A, it is clear that together with Y in G it generates the 
direct product X x Y . 

The lemma puts us in a position to construct the kind of linked pro-
duct we want: 

T h e o r e m 5. 4. If A and B are finite groups with non-trivial proper 
normal subgroups X and Y, respectively, and if neither A/X and Y, nor B/Y 
and X are simultaneously of order 2, then there exists a finite linked product 
of A and B, with kernels X and Y, in which X and Y centralize each other. 

P r o o f . Construct, by Lemma 5 .3 , a linked product Hx of A and Y, 
with kernels E and Y, in which X and Y centralize each other. Symmetri-
cally, also by Lemma 5. 3, construct a linked product H2 of X and B, with 
kernels X and E, in which X and Y also centralize each other. 

The subgroup generated by X and Y is their direct product in both 
Hx and H2, and we denote it by the same letter, T, say, in both. Let 91 be 
the amalgam of Hx and H2 amalgamating T. Then 9C possesses a finite 
embedding, by Lemma 4. 2. Also, by mapping Y onto E and A identically, 
H, is mapped homomorphically onto A. By further mapping A canonically 
onto A/X we obtain, therefore, a homomorphism tpx of Hx onto A/X in which 
A is mapped canonically. Similarly there is a homomorphism cp2 of H2 onto 
B/Y which maps B canonically. The two homomorphisms cpx and <p2 agree 
on T=Xx Y, which is mapped on E by both. If, therefore, we define the 
mapping cp of 91 into D = A/Xx B/Y by <p = (px on Hx and (p = cp2 on H2, 
then cp maps the amalgam 9( homomorphically into D. By Lemma 4.1, 
there exists a finite group Q embedding the amalgam 9t and generated by 
it, such that Q possesses a homomorphism ip mapping it onto D in such a 
way that A and B are mapped as by cp, that is canonically onto A/X and 
B/Y, respectively. 

Again we can show now that Q is a linked product of A and B with 
kernels X and Y; for Q is generated by Hx and H2, that is by A, Y, B, and 
X, and thus by A and B. Also 

= T=Xx Y, 

and so A r\ B = (A r^ T)r\(Br^ T) = X Y = E. 
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Finally A^^ AH^Y, and so Aqr\B^Y. But, as before, Q possesses 
a homomorphism ip onto A/Xr\B/Y, and therefore also a homomorphism ft 
mapping A on E and B canonically onto B/Y. The kernel of (3 is a normal 
subgroup of Q which contains A and intersects B exactly in Y, and so it fol-
lows that A® r^ B = Y. Similarly one shows that B^r^A = X. Finally X and 
Y generate the direct product T=XxY in Q, so that Q is a linked 
product of the required kind, and the theorem follows. 
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