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A prime decomposition symbol for certain 
non Abelian number fields 

By A. FROHLICH in London 

Dedicated to Professor L. Redei on his 60th birthday 

In a recent paper (cf. [4])1) I gave a rational description of normal2) 
fields A of prime power degree /"+l which contain an Abelian subfield K of 
degree /". This made it possible in particular to determine in purely rational 
terms the group extensions of a group of order / by the Galois group of. K 
which are realised by such fields / / , and the relative ramification types of 
yl/K which will occur. 

In the present paper we shall consider normal non cyclic fields A of 
degree 8. Every such field will contain a biquadratic field3) P(|/tfi ,frf2) and 
so the theory of [4] can be applied. We shall principally be concerned with 
a new symbol [ait a2, a\:\ the variable c is a factor system class of the 
"Vierer-gruppe" in the group of square roots of unity, and the variables 
a u a 2 , a are non zero rational numbers satisfying certain conditions. In the 
significant cases au a2 coincide with the independent quadratic discriminants 
d,,d2. When a is then a rational prime which is total norm residue of 
P(]fdi, the value of the symbol will determine the decomposition of (a) 
in a field A, belonging to the factor system class c. Though we are of course 
principally interested in non Abelian fields, it will be useful for a proper 
theoretical understanding to treat simultaneously all fields containing P(|/i/i, )fd2). 
in order to keep this paper at a reasonable length we shall however make 
at some stage (cf. (2.15)) the restriction that i/a, d2 be odd. 

It will be seen that the symbol [au a2, a]c is unrestrictedly multiplicative 
in a and c, and partially multiplicative in au a2. It moreover admits two 
basic inversion laws. For the first of these we shall interpret the symmetric 

') Numbers in square brackets refer to the literature list. 
2) Terms such as "normal", "Abelian", "degree" are to be understood in the absolute 

sense, i. e. with respect to the rational field, unless otherwise qualified. 
3) P is the rational field. 
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group of permutations on three symbols simultaneously as group of permuta-
tions of the three quadratic discriminants associated with the field P(]/tf,, \rd>) 
and as a group of automorphisms of the "Vierer-gruppe". Each permutation 
then gives rise to an inversion formula. The second inversion law on the 
other hand is closely connected with quadratic reciprocity in quadratic fields. 

We shall also give explicit expressions for the new symbol in terms of 
values of rational residue characters associated with certain rational ternary 
quadratic forms, and thus obtain rational prime-decomposition criteria for a 
class of non Abelian fields. Some of the multiplication laws and inversion 
formulae will then have interesting interpretations in terms of the explicit 
expressions given. 

Decomposition criteria for certain non Abelian fields of degree 8 ') were 
found for the first time by S. KURODA (cf. [7]), whose results where sub-
sequently extended by FURUTA to the relative case (cf. [5], [6]). The class of 
fields covered by S. KURODA was discussed again in a paper of the author 's 
(cf. [3]), in conjunction with a general theory of the restricted biquadratic 
residue symbol. In view of our present restriction to odd quadratic discriminants 
there is no overlap between the class of fields considered here and that con-
sidered in the quoted papers. The results of [3] can however easily be 
rephrased in terms of suitable symbols [a,, a2 , o],;. 

Our symbol has a "restricted" argument domain. It was L. R£DEI who 
first, saw the importance of such restricted symbols when dealing with 
problems of a "non-Abelian" nature (cf. [10], [11]). Altogether our subject 
matter is closely related to L. R£DEI 'S work on quadratic fields (cf. [8], [9] , 

[11]), and in particular to the symbol defined by him in [9], and applied to 
a number of problems. L . R£DEI 'S symbol is in fact essentially the same a s 
ours for a certain fixed value of the variable c, and the multiplication and 
inversion laws for this case can already be found in his original paper. 

§1. 

P is throughout the rational field. The Galois group of a normal 
extension A of an algebraic number field K will be denoted by F(A/K). We 
shall use the results of. class field theory in a finite number field K a s 
formulated in terms of idele class characters (cf. [1]), i .e . of continuous 
characters of the idele group of K which take trivial value on the principal 
ideles. To each Abelian extension A/K there will then correspond a g roup 
<jp(y//K) of such characters; &(A/K) can also be considered as the group of 

-1) And of course for composites of such fields with Abelian fields. 
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continuous characters of F(AIY). If cp is an idele class character in K we 
denote by K(/, the associated class field; thus 0(Kv/K) is a cyclic group with 
generator cp. 

If Q is a subfield of K we can associate with every idele class character 
•>p in -Q, a character5) R y o y in K by the rule (cf. [4]) 

(1.1) Rw V (m) = V (Nw m) 

for all ideles m in K, NK/o being the norm mapping. Rk/q is a homomorphism. 
Denote by Qrp the group of ideals in K which are integral for and 

prime to the conductor") f(cp) of the character cp in K. For a £ Q y choose 
any idele in with contents (m) = a, whose components mp have value 1 
whenever p divides f(y>) or is an infinite prime, «¡p(m) is then independent 
of the particular choice of m within the stated conditions so that we may-
write 

(1 .2 ) </>('") = W 

By is a character of the ideal group Qv,; 0 v (a ) = l if and only if we 
have for the Artin symbol of a, (Ktf/K; a) = 1. For characters r p u f 2 we get 

(1 .3 ) = 

whenever a £ Q ^ n Qv.,. 
Let QJ, be the group of non zero elements a of K with ( « ) £ Q y W e 

write for a £ Q% 

(1 .4) Zv(cc) = Jl<pv(a) 

the product extending over the finite prime divisors ramified at </>. %<p is a. 
residue character, and again 

(1-5) z<Pl <p,(u) = zVl (a) X'P.,(U) 

for a £ Qy, n Q*v,. As cp (a) = 1 we also get 

(1.6) 0<t((a)) = xv
1(a)cpw(ci) 

where cpm is the product of the infinite components of (p. 
Assume now K to be normal over a subfield £2. An ideal 9( in K is said: 

to. be primitive (with respect to £2) if in its prime power decomposition 

;>) The term "character" without further qualification will be used as synonymous 
with "idele class character". 

(1)•[(?>) is considered as an ideal, i .e. the prime divisors of i(<p) are the finiie= 
ramified prime divisors (prime ideals). 
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no two of the prime ideals occurring non trivially are conjugate over 
Let (p be a character in K such that Kv is a central extension of K over uQ, 
i .e. that K,> is normal over Q and F(KVJK) lies in the centre of F(K<f/Q). 
Such a character <p is characterised by the equations 

(1 .7 ) ,fy = <P for all yi F(K/.Q). 

Let JV(K/i2) be the group of ideals in which are norms of ideals in K. 
Every ideal a in N(K/i2) is then also the norm of a primitive ideal 91 in K; 
if a is integral for and prime to the conductor f(r/>) then so is 9i. Hence 
6<p(W) is defined; in view of (1. 7) its value will not depend on 9i but solely 
on a. We may thus .write 

<1.8) -df(*i) = (Nm6<p)(a). 

If a, and n2 are ideals in 7V(K/i2) then they are norms of primitive ideals 
91, and 9(a so that 9t,9t2 is again primitive. Hence 

•(1.9) (Nm 6<r) (n,a,) = (Nm6v) (a,) • (Nm69) (a,). 

On the other hand we have by (1 .3) 

(1. 10) {Nm e9t (a) = (NmeVl) (a) • (Nmdv.) (a). 

Both in (1 .9 ) and in (1 .10) the left hand side is defined provided that the 
right hand side is. 

§2. 

Throughout F is a fixed, non cyclic group of order 4 with yx, y, as a 
.given, ordered pair of generators. F is the group of factor system classes 
of F in the group E of square roots of unity. For any factor system c in a 
given class c the elements 

< 2 . 0 ( / = i , 2 ) 
( c ( / i , Y*)c(Y*. 7I) = ( - 1 ) < y " 7 J 

depend only on c and will in turn determine c uniquely. Accordingly we 
represent the elements of F as sequences 

(2-2) c = [c(y),c(y,),c(-y,y,)\ 

of integers mod 2, multiplication in F being given by component-wise addi-
tion mod 2. Each such sequence will in fact represent an element of F. It will 
be useful to write 

<2. 3) y,y2 = yH> c(y)~c(y,) + c(y,) + c(yu y2) (mod 2). 
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W e shall find it convenient to consider the c(yf), and c(y,,y2) actually as 
integers, normalised to the values 0 or 1. 

Let dx,d2 be an ordered pair of independent quadratic discriminants. 
Then 

( 2 . 4 ) K = 

is a non cyclic, biquadratic field. We shall repeatedly use the symbols 

/2 | d-A = dtd2l(dud2f, 
K ) \ fi = (da,d№), fi = (d,, d), / , = (</„ rf2), 

where (a, b) is always taken to be positive. With the given pair dud2 we 
associate the isomorphism 

g<,t,*, = g: K/P) • 
uniquely determined by 

(2 .6 ) • y ^ ) - 1 = ( _ ! ) ' * (/, y = 1,2), 

d/j being the Kronecker symbol. 
Let 2 be the symmetric group of permutations on the symbols 1, 2, 3. 

For each we have then K = P ^ d ^ i ) , Ydnp)) and there exists a unique 
isomorphism 

g n , K/P) 

such that 

(2 .7 ) = ( / , 7 = 1 , 2 ) . 

There will then exist a unique automorphism ft' of F such that 

( 2 . 8 ) g„ = g oyr ' . 

The characters cp in K with 

( 2 . 9 ) ' 1 = 9 7- i 

for all y £ r(K/P) form a group which we shall here denote by <th- The fields 
(

(

p £ 0K) are precisely those cyclic extensions of K of relative degree 2 (or 1) 
which are central extensions of K over P, i. e. which are (absolutely) normal. 
For each cp /"(K^/P) is a group extension of F(Kf/K) by T(K/P) and thus 
determines a class b

v
 in the group F(K, cp) of factor system classes of 

jT(K/P) in r ' ( K V K ) . To describe this extension in terms of the fixed g r o u p / 7 

we only have to note that the isomorphism g: F^r(K/P) together with the 
homomorphism cp: F(K<p/K) —*• E gives rise to a homomorphism 

(2 .10) g*: F(K,cp)^F. 

A 16 
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If (p=f=\, then cp is an isomorphism, and so g* is an isomorphism. On replac-
ing g by gM we get 

(2 .11) g l ^ r f o g * 

where ?c* is the automorphism of F induced by n . 
For fixed eh, d2 we shall write 

(2 .12) g\bv) = cv. 

Explicitly we have for c = cv, for any representatives f t of g(y) in F(K<p/P) 
( / = 1 , 2 ) , and for co as generator of the relations7) 

(2. 13) y\ = ( / = 1 , 2 ) , (p, , y2) = a>°<v • v»). 

Thus Kip is non Abelian if and only if c(y,, y2) = 1. 
The c,P are those classes in F which in terms of the given isomorphism 

g are realised arithmetically by actual extensions of K. By [4] (Theorem 1) 
we have 

Theorem 1. cp->-cv is a homomorphism whose kernel is the group 
of characters Pk/pV with i / r = l . 

The classes c9 will thus form a subgroup A(du d.2) of F. As a special 
case of the general criterion in [4] (Theorem 7) we get 

T h e o r e m 2. An element c in F will lie in A (d,, d2) if and only if 

for all rational prime divisors p. 

It will of course always suffice to consider only the prime factors p 
of du d2. 

Those characters cp in <Z>K whose conductor \ (cp) contains only such 
prime ideals which are also contained in d^d2 form a subgroup f/Jj of (Z-Vf((p) 
is always the relative discriminant of Ky/K. The element cp of are thus 
characterised in <Z>K by the property that every rational discriminant prime 
divisor of K</> is already a discriminant prime divisor of K. The importance 
of the group 0K was exhibited in Theorems 5 (Corollary l ) and l l in [4]. 

Let K* be the genus field of K (in the narrow sense) i .e . the maximal 
(absolutely) Abelian field which contains K and has relative discriminant ( l ) 
over K. @(K*/K) is then the subgroup of <Z>* of those characters satisfying 
the equations 

(2 .14) X 9 = \ , cv= 1. 

") In (2.13) ( y u y 2 ) is the commutator. 
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From now on, and for the remainder of this paper it will be assumed that 

(2 .15) d, = d2 = 1 (mod 4). 

Then we have (cf. [4], Theorems 8, 11): 

T h e o r e m 3. For each c£A{dud.^ 3 y £ 0{ with c = cv, and the 
characters cp £ 0 i< with this property form a coset 0* (c) = 0* (d], d2, c) of8) 
0 1 mod f/>(K*/K). 

From the last assertion it follows that for each c£A(dud2) we have a 
unique residue character 

( 2 . 1 6 ) x» = X9 {<(>i0*{dud2,c)), 

and so a unique conductor * 

(2.17) be = f(9>). 

b„ is the relative discriminant over K of all fields K^ with <p£&*(c). 
For an explicit description of ye we note firstly that in view of (2. 9) con-

jugate prime ideals in K have the same ramification behaviour in K?. In the 
second place as "even" prime ideals can be neglected the only possible non 
trivial prime components of yc are those given by the quadratic residue 

symbols ^ J . It will thus suffice to find those rational prime factors of d ^ 

which are coprime to b(,. Every rational prime factor p of d^d2 divides one 
and only one of the integers fi defined in (2 .5) . Assume, say p \ f . Then the 
inertia group of p in K/P is generated by g(y2), and so by (2. 13) CD6^) w n i 
generate the inertia group in K /̂K of the prime divisors of p in K. In this 
manner we have proved the 

P r o p o s i t i o n 2 . 1 . (p, b,;) = l if and only if 

Next we consider criteria for Kv to be real, assuming now that K is 

real. If first ^ — = — l for some i and some p, then K* is imaginary. 

It follows easily from Theorem 3 that there will be both real and imaginary 
fields Ky with y£ 0*(c). 

Now. assume that | — = 1 * o r a11 & a n c l * o r i = 1 > 2 - t 5 l i s c a s e 

the restricted biquadratic residue symbols 
—1 — 1 

f 
are defined (cf. [3]), 

s) 0*(c) will actually depend on the ordered pair dud2. Whenever this is to be 
stressed the symbol <t>*(d\,ditc) will be used. 
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and the criterion of Theorem 2 reduces to 

P Thus if c(yuy2) = l then for p\fi we have = therefore the symbols 

fi 
d, 

are defined. We then have 

T h e o r e m 4. Assume c/,, d2 to be products of primes = 1 (mod 4), 
and that c^A(d1,d2). The property of Kf(<p £ &*(c)) to be real or imaginary 
will then solely depend on c. 

For c(y1,y2) = 0, Kf is real if and only if 

= 1. '—1" c(7,) — 1 '•(Vi) 

L dx \ . d2 \ 

For c(yu /,) = 1, Kf is real if and only if 

'—I — R C (7a) 
R/IL 17*1 R / » I "—l ' 

L <*i . [d2 . K J K J K J I f s i 
= 1. 

We shall not give a proof of this theorem. Such a proof would follow 
the line of argument in [2] p. 248—249. For (dltd^=\, c{y,) = c(yn) = 0, 
C ( 7 U 7 2 ) = 1 criterion is effectively due to L. R £ D E I (cf. [8]). 

There is an apparent asymmetry in the factor occurring in the last 

formula of the theorem. The hypothesis however implies that = 

and in fact more generally that = i o r a " ' . 7 = 1 . 2 , 3 ; i=f=j. 

§ 3 . 

We consider triplets 
{du d2,c} 

where dt, d, are square free integers = 1 (mod 4) with di = 1 as possible 
values and where c £ F. The following postulates are to be satisfied: 

A . (i) Whenever du d2 are independent quadratic discriminants ( i .e . 
\=j=d,=}=d2=f=\) then c £ A(du i- e. for all p 

- 1 ,rf, c(Yi) - 1 ,d, i - (7 i , 7a) 
1. 
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(ii) Whenever dx = d2 then for all p 

1 di 
P 

A triplet {dx, d2, c} with dud2 independent quadratic discriminants will 
be called non-degenerate. The degenerate triplets are thus those for which 
di=\ for some i or dx = d2. In the non degenerate case we shall for fixed 
dx,d2 adopt' the notation of § 2 . 

With each triplet {dx, d2, c} we associate a multiplicative group d2, c} 
of non zero rational numbers. We consider separately three cases (i) {du d2, c} 
is non degenerate; (ii) {d1,d2,c} is degenerate, dx = d2=fc\ and c(y2) + 
+ c ( / i , / 2 ) = l (mod 2); (iii) {dx,d2, c} is degenerate but the other conditions 
in (ii) are not both satisfied. In all cases S{dud2,c} is generated by its 
integral elements. It will therefore suffice to give the conditions for an integer 
a to lie in this group. 

B . Case (i): 

j i ^ i } = 1 for /=1,2 and for all p, (a, 

also a >0 whenever d,d, has a prime divisor p = 3 (mod 4). 
Case (ii): 

" (a, dx ^ = 1 for all p, (a, c?i) = 1. 

Case (iii): a always lies in S{dlt d2, c}. 
The defining condition in case (i) apart from the sign condition can be 

restated in the form 
B \ (a) is prime to the relative discriminant bc. Also (a) is norm of some 

ideal 31 in K, and for every such 9(, (K7K;2l) = l . 

For every triplet {(/,, d2, c} and for all a £ S(dx, d2, c) we now define the 
symbol 

[dud2,a\c 

as follows. In case (iii) 
(3 .1) [dud2,a]c=\. 
In case (ii) 

— 1 (sign o-l)/2 
(3 .2 ) d i 

where we note that by B the restricted biquadratic residue symbols 

are defined (cf. [3]). 
a 

1 [ d, 
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In the non degenerate case (a) will be ideal norm of K. Also we see 
that the ideal (a) is integral for and prime to bc so that the symbol 
(Nk/p d<p) (a)) (cf. § 1 . (1 .8 ) ) is defined for all cp £ ®*(du d2, c). Let 9f be a 
primitive ideal in K with norm (a). By B ' (K*/K;9I )=1 . If cp,cpx£ ®*(d„d2,c) 
then </>,<?-'£f/>(K7k), whence 0^(91) = 0,, (31). Thus (NK/?69)((a)) solely depends 
on c and not on the actual choice of cp, and we can write 

( 3 . 3 ) [d1,di!a]c = (N,/?d9)((a)). 

One can extend the definition of the new symbol by writing 

(3. 4) [b\ dx, b\ do, a\c = [dx, d2, a]0 

whenever bu bo are non zero rationals. We may however always restrict our 
attention to the case bx = b2 = 1. 

Directly from the definitions we have 

T h e o r e m 5 (First Decomposition Theorem). The domain of values 
of [i/,, dit a\. is + 1 . — If {du do, c} is non degenerate, and if a £ S(du d2, c) 
then " 

[dud2,a]c=\ 

if and only if for some (for every) cp £ ®*(dud2,c) and for some (for every) 
primitive ideal 9t in K with norm (a) 

( I V K ; 9 l ) = l . 

In particular if a is a prime power then (a) is ideal norm of K9 if and only if 

[di,do_,a]c=\. 

In view of this Theorem we shall refer to the symbol [dud2,a\e in all 
cases as the decomposition symbol. Together with ordinary quadratic residue 
symbols it will in the non degenerate case suffice to provide a decomposition 
cr i ter ion_in _S(du d2, c) for every normal field of degree 8 containing 
K = We recall that every such field is of form K? with cp ̂  <I)K. 

T h e o r e m 6 (Second Decomposition Theorem). Let dx, d2 be independent 
quadratic discriminants, K = P(|//£/],|/cc7,). To every normal field K,f, (<p £ <l\) there 
belongs a triplet {du cl,, c) and a rational quadratic residue character % with 
conductor \(y) prime to dxd2, and to every triplet {dud2,c} and every such 
residue character y there belongs a field Ky (cp $ in the following sense: 

For every prime power pr £ S(du d2, c) prime to f ( / ) , (pr) is ideal norm 
of Ky if and only if 

y(pr) [dud,, p'%= 1. 
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P r o o f . Let M be the group of rational idele class characters ,« with 
¡•i" = 1 of conductor prime to dxd2. Every character 

(3 . 5 ) > = cp' RK;P!> (<P 6 ,» 6 M) 

lies in and every character cp £ (¡h has a representation (3. 5) (cf. [4], 
Theorem 5). The theorem now follows by observing that when pr satisfies 
the hypothesis of Theorem 6 then by (1.10) 

(NtifOf) ((p')) = (Nt/pdcp,) ((p1)) ( N ^ f d f , 

with cp" = /?K/pf. The first factor on the right is [dx,d2,pr]c for c = c<p, = c<p 
by Theorem 5. For the second factor we have from the definition of the 
mappings TVK/P, /?K/P the equation N*/ df„ = 0M, and then by (1. 6), dli((pr)) = 
= /¡¿(p1). Finally we note that every rational quadratic residue character y 
of conductor prime to dxd2 is of form y^ for some ,« £ M. 

T h e o r e m 7 (First Uniqueness Theorem). The ordered pair dlt d2 together 
with the character cp determine the class c and the character / in Theorem 6 
uniquely. Two characters rpt, cp2 £ ( f \ will determine the same class c and the 
same character y if and only if y, <p2' £ <3&(K*/K). 

P r o o f . The first part follows by the uniqueness of cp and in (3 .5) 
for given cp £ <PK (cf. [4] Theorem 5). 

For the second part we first note that the prime power ideals for 
which |yVK/p^'| lies in S(d-i,d2,c) are precisely those which split completely 
in K*, disregarding powers of factors of bc. Two characters cpx,cp2 will then 
determine the same class c and the same character y if and only if for all 
such prime powers -p'", = i .e. e- € 
€ 0>(K7K). 

From our discussion we also obtain another characterisation of the 
symbol [du d2, a]c. 

Let {dud2,c} be a non degenerate triplet and let y be a quadratic 
residue character of conductor prime to dxd2. There exists a unique field A of 
degree 2 (or 1) over K*, which is absolutely normal such that 

(i) the prime powers p\ prime to f ( y ) , which lie in S(dx,d2,c) are 
precisely those rational prime powers for which (pr) is ideal norm of I<* and 
which are prime to the relative discriminant of A/K*; 

(ii) the prime powers pr for which in addition y(pr)[du d2, pr]< = 1 are 
precisely those for which (pr) is an ideal norm of A. 
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§ 4 . 

We recall the definition of the isomorphisms gr(K/P), and of auto-
morphism n* in § 2. From equation (2.11) and from the definitions in § 3 
we have 

T h e o r e m 8 (First Inversion Law). Let n^S and let {dud2,c} be nan 
degenerate. Then {d7t.({), d7t(:i), n(c)) is non degenerate and [d,, d2, a]c = 
= [dU{\), d-ciiu a\7i*(,:) where the right hand side is defined whenever the left 
hand side is. 

Let H be the permutation (1 ,2) . Then 

(4 .1) **c(7 l) = c ( 7 2 ) , Z ' c ( / , ) = c( / , ) , 5iV(/i , "/•>) = c(y,, y2). 

From Theorem 8 we have thus in particular 

(4. 2) [d,, d2, a]c = [d,, d,, a\x* w . 

When c(-/ ])==c() '2)==0, c ( 7 1 , / 2 ) = 1 our symbol can be shown to coincide 
essentially with that defined by L . R £ D E I in [ 9 ] . In this case c — x*(c), and so 

(4. 3) [d,,du fl],: = [d2, du a)e. 

This is one of the inversion formulae found by L. R £ D E I in [9]. 
On the basis of the first inversion law the uniqueness theorem 7 can 

now in the non Abelian case be strengthened to 

T h e o r e m 9 (Second Uniqueness Theorem). Let {dud2,c} be a non 
degenerate triplet with c(y,, y2) = 1. If % ' is a rational quadratic residue 
character and {d(,d2,c'\ a triplet such that for all primes p £ S(d,, d2, c) il 
n S{d;,di,c') with (p, f (^ ) ) = 1 

/ ( p ) K , d.;, p],> = [d, ,d2,p],, 

then for all such primes p, x(P) = 1, f(^) is a divisor of d,d2, and 3 n £ 2 
such that dl=dx[l) (/=1,2), c! = -it*(c). 

P r o o f . We shall troughout restrict ourselves to primes which are not 
divisors of d id 2 d[d 2 f (^) . We can write % = %%" where %', x ' are quadratic 
residue characters, ( f ( / ) , i / 1 r f 2 )= 1, f ( x " ) \ d l d 2 . For the primes in S(dud2,c), 
x'(p) = x(P)- We m a y ^ u s assume already that (ffo) , dxd2) = 1. 

The primes in R = Sid^do, c) n S(d[d2, c') are precisely those which split 
(completely) in some Abelian field K. Let K = P ( Y d x , Y d ) , ( p < k < P { d u d 2 , c ) . 
Then those primes in R for which [du d2,p]c= 1 are precisely those splitting 
in K<n K. Note that K? and so Ky>K is non Abelian, but normal. 

On the other hand the primes in R for which %(p)[d{, d'2, p\, = 1 are 
those splitting in some normal field A. When {d'u d'2,c'} is degenerate this 
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follows directly from the definition, otherwise by Theorem 6. In the degenerate 
case A will be Abelian. _ _ 

Assume now the hypothesis of the Theorem to hold. Then v4 = KKy. . 
Hence A is non Abelian, and so {d[,d'2,c'} is non degenerate. Let 
K' = P(}fd'uVd!2) and choose a character <p so that belongs to 
{d[,d'2,c'} and % in the sense") of Theorem 6. Then ^ = KK^==KK?>. Hence 
in the first place K?, is non Abelian and so c ' ( y i , / 2 ) = l . Moreover on 
inspecting the Galois group f(A/P) we find _that K as the maximal Abelian 
subfield of Kv belongs to the centre of F(A/P); the same is true for K', 
i . e . K —K'. On applying a suitable permutation / c ^ S we may assume that 
d[ = dx, d', = d,. By the first uniqueness theorem it follows then that c' = c and 
2 = 1 . 

T h e o r e m 10 (First Multiplication Law). 

With ¡t/,, d2, C]}, {dud2,c2} also [dx, d2, c,c2} is a triplet, and 

[i/,, d,, a\h [d,, dt, == [d,, d,, a]0l , 

where all symbols are defined, provided that two of them are defined. 

P r o o f . By the definitions and by Theorem 1. 

T h e o r e m 11 (Second Multiplication Law). 

[du d2, a]c[dx,d2, b]c = [d,,d2, ab],:, 

where all symbols are defined, provided that two of them are defined. 

P r o o f . _By the definitions and by (1. 9). 

§ 5. 

In this section we shall state a number of Theorems, whose proofs are 
to be given in a second paper. 

We consider the quadratic subfield 

(5 .1) Si = ?(]fdi) 

of the biquadratic field K = P()[d1,YdS). The generating automorphism of 
will be denoted by r . We have 

(5 .2 ) K = i2M 

for a certain idele class character a in £2. The set of characters ip in £2 

Note that we may now also assume (f(z), d\d2)= 1. 
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for which 
Rm<pi®*(dud2,c) 

will be denoted by lP*(d2,c). 
We shall consider the residue characters in £2 associated with idele 

class characters (cf. (1 .4)) . We write 

(5. 3) = 

For any residue character y we denote by yv the product of its p-components, 
running through the prime divisors of p in £2. Then we have 

T h e o r e m 12 (Criterion for Residue Characters). Let c^A(dud2). 
A residue character y in £2 will be of form y,,,, -tb £ LP*(d«, c), if and only if 

(i) for all p: zl = rZ™, 
• (ii) for ( p , / 0 = 1 1 if and only if 

In the case c(j /
1) = c(72) = (V c(yu y2) = 1 it follows that the characters 

y,/,(rip £ lP*(d2, c)) are precisely the quadratic residue symbols whose denomi-
nator is a primitive ideal with norm (G?2). From this it follows that for the 
given value of c our symbol coincides essentially with that of L. R £ D E I 

(cf. [9]). Moreover one gets in analogy to L. R £ D E I ' S result: 

T h e o r e m 13 (Second Inversion Law). Let {dud2,c}, {dx,d,c} be 
triplets with c(7,, 72) = 1, c(y1) = c(y2) = 0. If both decomposition symbols are 
defined then 

[d,,d2,d]c = [d„d,dn],t 

where t= 1 unless d,, d}, d are all distinct from 1, and either ds< 0 or d< 0. 
In this latter case we may assume without loss of generality that d < 0 and 

-1 ,d,: 
that 

t = 
— 1 
d, 

= 1 for all p and for /=1,2. Then 

'if d2 = dx; / = 
. u 

if d,=f=do. 

T h e o r e m 14 (Third Multiplication Law). Let c(y1) = 0. If{dud2,c}, 
{i/,, d2, c}, are triples, and if d2 = d2d2/(d2, d2f then also {d1, d2, c} is a triplet, 
and 

\d,, d2, a\c [i/,, d2, a\: = [ f / , , d',', a\,, 

where all symbols are defined provided that two of them are defined. 
By combining the stated multiplication and inversion l a w s ' o n e can 

derive further such laws, and in particular a multiplication law for the first 
argument rf,. 



Prime decomposition symbol 243 

In conclusion we give explicit expressions for the decomposition symbol. 
For completeness sake we first deal with the case when the fields belonging 
to the given triplet are Abelian. Throughout all that follows {dltd2,c} is a 
given, non-degenerate triplet. 

T h e o r e m 15 (Explicit Form in.the Abelian Case). Let c(y}, y2) = 0. Then 

[dud2,a]c 

a ' — f (sign«-l)/2 

Ji. U . 

a —1 (sign rt-1)/-

1 ~d> do 

a — 1" (signa-l)/2 

J*. . (k J 

1 

if c(-/,) = 1, c(y2) = 0, 

if c(y,) = 0, c ( / 2 ) = 1, 

if c ( / , ) --= c(-/,) = 1, 

if c( / 1) = c( / 8) = 0. 
For the non Abelian case we first observe that every element in 

S(dud2, c) is the product of elements av and p2s of the following types: 
(i) a is a square free integer in S(dud2,c). 
(ii) p is a prime, p$S(dl,d2,c) but p- £S(dud2, c). By Theorem 11 it 

will thus suffice to give explicit forms for elements of these two types only. 

T h e o r e m 16 (Explicit Form for Prime Squares). Let c(y,,y2)=\ 
and let p- be of type (ii). 

(a) If (p, d1d,)= 1 then 

[tf,, d2, p% ^ 

(i = 2, 3) when 

: (YI ) 

( i = 1, 3) when d2 

(Ya) 

(/=1,2) when 

= 1 , 

= 1. 

(b) If p\d,d2 then [tf,, d2; p>% = 1. 
For square free integers we shall use a representation by ternary quadratic 

forms, which is easily derived from the theory of quadratic fields. 

P r o p o s i t i o n 5 .1 . For every square free integer a with 
for all p, there exist rational integers 2x,2y, z such that 

(i) x2 — f d , — z2a = 0, 
(ii) x — y is an integer and (2x,2y,x—y)=\, 

= 1 

(iii) 2 > 0, (z, adid2) = 1 and 
2, dx = 1 for all p\z. 
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Assume now that a £ S(du d2, c), c ( " / ] , / 2 ) = 1. Then we get: 

P r o p o s i t i o n 5 . 2 . Let p \ f . If pc^ = 3 (mod 4) then 

( 5 . 4 ) ( I ) — ., ( . , „ ) _ 1, ( f ) - 1 . . 

if pdv,)=] (mod 4) then j = 1 50 that 3e with 

(5 .5 ) dx = el (mod p). 

Moreover if x, y, z give a representation of a as in Proposition 5.1 then e 
can be chosen so that 

( 5 . 6 ) {x + ye,p) = \. 
If (p,a)= 1, (5 .6 ) of course will hold for a lLpossible values of (5. 5); 

the existence of a suitable e when p\a follows from a more detailed analysis 
of the conditions in Proposition 5 .1 . The remainder of Proposition 5 . 2 is 
immediate from the definitions. 

Let now 2x, 2y, z give a representation of a as in Proposition 5 .1 and 
let p \ f . We define a symbol 

' x-y I 
P ta' 

In the second case possible by Proposition 5 .2 , namely when ( — 1 = 1, we 
write . 

( 5 .7 ) = { ± ± 1 1 
( p ta I P 

with e satisfying (5 .5) , (5 .6 ) . If p\a then e is uniquely determined mod p. 

If pXa then anc^ s o the value of the right hand side in (5. 7) will 

remain unaltered if e is replaced by —e. Thus in all cases the left hand 
side is not affected by the possible choices of e. 

The other possible case is (5. 4). Then 

P 
and so there exist integers u, v such that 

(5 .8 ) ui + v3di=x, 2uv = y (mod p). 

The value of the symbol 

(5 .9 ) 
( P ta I P 

is then independent of the particular choice of u and v. 
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We shall write f[ for the product of the primefactors of f which are 
= 1 (mod 4). Then we have . 

T h e o r e m 17 (Explicit Form for Square Free Integers). Let c(yu y*) = 1 
and let a be a square free integer in S(du ds, c). Then for every representation 
of a as in Proposition 5.1 

[du d.2> a)c = rs 

is the product of a "residue factor" r and a "signature factor" s. 
The residue factor is given by 

11 
)'IA 

f W 
v\t\ 
az1 

/: J 

X,y 

p 

x,y j 
P 

n 
Mf, 

x,y 

P Li 
az1 

n \ 
X,y 

p 

when 

when 

when 

when 

c(yt) = c(yj = 0, 

c ( 7 l ) = 0, c(y,) = 1, 

c(7.) = c ( / , ) = 1. 

The signature factor is given by 

s = 
—1 
d, 

<'(YI> -1 
d, 

c(Ysi) — 1 
A J 

(sign il-1)/-

when all prime divisors of dxd2 are = 1 (mod 4), by s = (—-l)isiKn'^,):- when 
i/i > 0, d,< 0, and by s = 1 in all other cases. 

An important feature of this theorem is the invariance of value of the 
explicit expressions given for rs; though these involve functions of x, y, z they 
are in fact quite independent of the particular choice of these parameters. 
Moreover the inversion laws, and in particular the second inversion law and 
the special formula (4. 2) arising out of the first inversion law lead now to 
reciprocity formulae for the explicit expressions given in the theorem. Both 
these phenomena were already noted in a similar context in [3]. Finally the 
multiplication laws for the decomposition symbol, and in particular Theorem 11 
exhibit a multiplicative property of the expressions given in the last theorem. 
Conversely of course some of the earlier theorems (e. g. Theorem 10) can in 
turn be derived from Theorem 15 — 17. 
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