
TISCIA 38, 3-9

TEMPORAL PATTERN ANALYSIS – A NEW ALGORITHM FOR
DETECTING PATCH SIZE IN PLANT POPULATIONS

Á. Méri and L. Körmöczi

Méri, Á. and Körmöczi, L. (2010): Temporal Pattern Analysis – a new algorithm for detecting
patch size in plant populations. — Tiscia 38, 3-9.

Abstract. Pattern analysis is one of the most important evaluation methods of population structure
and of community assembly rules. Several algorithms have been developed to detect the deviation
of spatial arrangement of organisms from random. These algorithms reveal in general the pattern
intensity that is estimated by the average size of aggregation patches. It is often important to detect
the number and actual size of patches and distinguish from the random appearance of individuals.
We used the framework of python programming language to develop a new algorithm for
computing patch size and position along transects. We used a long term data set originating from a
dry sand grassland to test the program. The algorithm was designed to process very large data sets,
and compute temporal variation of patch size distribution.

Key words: spatial pattern, PYTHON, time series, model

Á. Méri, L. Körmöczi, Department of Ecology, University of Szeged, H-6726 Szeged Közép fasor
52., Hungary

Introduction

Pattern — according to the Oxford English

Dictionary — is a regular or discernible form or
order in which a series of things occur. We talk
about spatial patterns in ecology, if the distribution
of the living organisms deviates from random, most
frequently in the direction of aggregation. It means
that the individuals form groups in space, and this
pattern can be examined also in time. The
importance of patterns manifests very well in
variable fields of ecology. The 'patchiness' of
individual species distributions contributes to the
community organization and therefore it is of central
importance in ecology (Anderson and Neuhauser
2002). To understand the natural processes and
structures we need to define the scales at which the
pattern occurs (Fortin and Dale 2005) and is the
result of the local processes of population interaction
and dispersal (Murrel et al. 2001). Scale appears in
spatial structure, if the non-randomness exhibits a
certain periodicity (Dale 1991). These examinations
have crucial importance in applied use as well. In the
investigation of endangered species or in the
examination of the structures of habitats we use
different kinds of pattern analysis. The information

gained by these methods can be valuable in itself,
however it can refer to some kind of background
factors as well (Fortin and Dale 2005).

The aim of this study was to find an adequate
method for analysing our data set about
psammophile grassland populations. It was expected
to find temporal changes in the spatial pattern of the
certain plant populations.

Materials and methods

The database, sampling methods

The data, used for the analyses and testing derive

from sandy grassland in Bugac, belonging to the area
of Kiskunsági National Park. A transect with 55
meters length and 1 meter width was established
(Körmöczi and Balogh 1990), and the monitoring
was carried out three times per year (Körmöczi et al
2009). Seasonal data can be compared in the
consecutive years, because the field work took place
approximately on the same dates every year. In a line
of adjacent quadrats, the presence/absence data (0 or
1 values) of the plant populations were recorded. The
size of the quadrats was 25×25 centimeters, which is
a widely used size in the case of dry grasslands. It

 3

means that a grid of 220×4 cells represents each
plant population in each monitoring date. The
database can be considered as one dimensional data,
because the transect is much longer than wide. The
four rows of the grid were treated as four individual
series and the mean of the values was counted at the
analyses.

Quadrat variance methods

There are many ways of analysing one

dimensional spatial data. One group of the widely
used methods is based on variance analysis of the
adjacent blocks of quadrats (Hill 1973). The
sampling method must always be carried out with a
contiguous grid of quadrats, where presence/absence
data of species are recorded (Dale et al. 2002).
Considering the properties of our database, in the
following we will examine the methods only of the
aspect of binary data.

All of the quadrat variance analyses apply the
moving split window technique. The essence of this
method can be summarized in the following main
points (Körmöczi 2005). One dimensional data set is
adequate for this technique. In the first step we select
the first two adjacent cells, as the two halves of the
window (1). Then we record the difference of the
values in the cells (2). The next step is moving the
window one cell further and calculating the
difference. These steps are iterated through the
whole transect (3). Reaching the end of the data
series we calculate the variance (4). Then we jump
back to the first cell, and increase the size of the
window (5). Then the steps 1-4 are repeated with this
new window size. We can increase the size of the
window until the halves reach the half size of the
transect.

The result is a variance data for each window
size. Plotting these data against block size, we get
the variance graphs of the data set. The peaks
represent the scale of the pattern. However these
methods are unable to distinguish patches and gaps
(Guo and Kelly 2004), some of them can separate a
smaller and a larger phase (Dale 1999). After
analysing artificial and simulated data sets as well,
we recognized that this latter feature of the methods
is reflected only by the analysis of simulated
periodical data. Although there are many detailed
description about the quadrat variance methods, the
literature of this topic is nearly not exhausted.
Further investigations may explore additional
features of these methods. For examining them, we
transformed the mathematical formulas into
executable programs in python programming
language.

TemPA

Based on our experiences with quadrat variance

methods our aim was to create a new algorithm for
one dimensional pattern analysis. However we used
a transformed version of moving window technique,
and the mathematical background is much easier,
this method is similar to the quadrat variance
analyses.

TemPA (temporal pattern analysis) is a precise
patch size determining algorithm. We can get
information about the size and position of each
patch. The result is the simplified picture of the
transect, containing all the necessary information
about the bigger patches, but in a reduced form. It
means that the computer records only the minimal
information determining the patches. So one patch
can be determined with actually two values, the
position of the first cell and the extent of the patch.
This data coding is widely used in raster based
geographical information systems and called run-
length coding. Simplifying the information about the
data set provides an easier treatment in the
followings.

The procedure performed on the data may seem
rather difficult, but the gained information is as
much as available in the smallest possible extent. We
transformed the moving window technique by
changing the order of switching and enlargement.
First the position of window is set, then the window
is increased with one cell in each step. After using all
the possible block sizes beginning with the first cell,
we shift the position one cell further, and repeat the
entire process. We used an undivided window, thus
the first block size in each position could be only one
cell large. For practical reason the starting window
size was three cells. Detection of a plant in a single
cell can not be considered as a patch, thus there is no
meaning of investigating under three cells extent.
The maximum window size is equal to the total size
of the transect.

Identification of patches is carried out with a
system of variable conditions. These are simple
mathematical relations, determining the acceptable
number of absences in the currently examined block.
The following traits of a potential patch are
considered:

the whole extent of the patch – the actual size of

the window
the first and the last cell of the patch – mus be 1
one cell before and after the patch – must be 0
the beginning and the end of the patch (3-4 cells)

– sum of presences must be over or equal to 3

4 TISCIA 38

the area surrounding the patch (3-4 cells) – sum
of presences must be under or equal to 2

For each of these intervals we set a mathematical

relation. For instance the first and the last cell of the
patch must be 1, or the presences in the surrounding
area must be under or equal to 2. The predetermined
limits are freely alterable, so are the sizes of the
investigated intervals. This alterable structure makes
the method flexible, thus we can optimize the
parameters to our data set.

At each step of the analysis the computer counts
the number of presences in the investigated interval.
If the value is out of the threshold value, the process
stops, and the analysis of the next potential patch
starts. If all the values are within the predetermined
limits, the investigated area is considered as a patch,
and the requisite information are recorded.

The criteria are previously given by the user and
can be optimized for the currently analysed data set.
When monitoring rare species with small spatial
extent, we are searching for small patches of plants,
or individuals. Decreasing the minimum detected
patch size to one cell will refine the scale. Common
species require investigations on a larger scale. The
settings of criteria 4-5 determine the required density
in the boundary zone between a patch and a gap.
With these options we can set, how clear the border
should be. Ignorance of the smaller patches is often
useful, avoiding the processing of unnecessary
amount of information. During the tests we used an
average setting, which is appropriate for a large scale
of aggregation types.

Results

The validation of the results is carried out

visually. The comparison of the original data and the
model, created by the computer is required. Bar
charts are proper for this aim (Fig. 1). The diagram
represents the original view of the transect and the
simplified model, built up from the data recorded by
TemPA. The representation is very much distorted,
thus the entire transect can be plotted onto one single
picture. One small column represents one quadrat.

The analysed database contained data about 112
plant species in 24 monitoring dates. Twenty five of
these plant species were represented on every
occasion, so detailed investigations were performed
in the case of these species. Some of them were
highly abundant, others were rarely occurring. The
optimization of the criteria system was performed
based on these results. Working with the final
settings the analysis of the 25 plants was carried out.

Fig1. The distribution of Achillea asplenifolia on the 25th of July
2005. The rows marked with A represent the real distribution, and
the ones marked with B are the interpretation of the model built up
by the computer. One column on the bar chart represents one
quadrat.

After controlling the effectiveness of TemPA

with the bar charts representing the distribution of
each species, the temporal analyses were performed.
This means a single line plot for each species,
represented on Fig. 2. The lines follow the temporal
trends very sensitively due to the punctual patch size
detection. Whether counting the average patch size,
or using the maximum patch size for the description
of the distribution, depends on the user's demand.
During the analyses we used the maximum patch
size, and counted the mean of the 4 rows of data
tables.

In the case of species with very big changes in
seasonal distribution, we can represent the seasonal
data with 3 different lines (Fig. 3).

Fig 2. The temporal changes of the patch size of Cynodon
dactylon. Each monitoring date got a number, simplifying the
visualization. Patch size means in this case the size of the biggest
patch.

TISCIA 38 5

6 TISCIA 38

Fig 3. The annual changes of the patch size in the case of
Cynodon dactylon. The same values are presented then in Fig 2.
Here the seasonal data are plotted separately.

Discussion

Several kinds of methods, analysing one

dimensional spatial data are currently available (Dale
2005). The literature, investigating the properties of
these methods is comprehensive (Dale 2005, Hill
1973, Goodall 1974, Guo and Kelly 2004,
Rosenberg 2001). However there are still
undeveloped parts of the methodology of detecting
spatial pattern. Our aim was the development of a
concrete patch size detecting algorithm. One of the
most important factors was the automation of the
analysis, permitting of the processing of large
amounts of data.

The algorithm, used in TemPA is a flexible
application, written in python programming
language. The properties of the patch size detection
are highly modifiable, thus the user can easily form
the method to the adequate criteria. The system of
conditions provides the possibility of optimization
for the user's needs. Without a graphical interface the
method and the printed results are freely adjustable.
Getting punctual information, we can perform a
detailed investigation about the transect not only in

space, but in time as well. The available information
include the number and the size of the patches and
the positioning of each.

Acknowledgement

This project was supported by the Hungary-

Romania Cross-Border Co-operation Programme
2007-2013 (HURO/0801/194)

References

Anderson, K. and Neuhauser, C. (2002): Patterns in spatial

simulations—are they real? — Ecological Modelling, 155,
19-30

Dale, M. R. T. and Blundon, D. J. (1991): Quadrat covariance
analysis and the scales of interspecific association during
primary succession – Journal of Vegetation Science 2: 103-
112

Dale, M. R. T., Dixon, Ph., Fortin, M.-J., Legendre, P., Myers, D.
E. and Rosenberg, M. S. (2002): Conceptual and
mathematical relationships among methods for spatial
analysis. — Ecography 25: 558-577

Fortin, M.-J. and Dale, M. R. T. (2005): Spatial Analysis, A guide
for ecologists. — Cambridge University Press, New York

Goodall, D. W. (1974): A new method for the analysis of spatial
pattern by the random pairing of quadrats. — Vegetatio 29:
135-146

Guo, Q. and Kelly, M. (2004): Interpretation of scale in paired
quadrat variance methods. — Journal of Vegetation Science
15: 763-770

Hill, M. O. (1973): Diversity and Evenness: A Unifying Notation
and Its Consequences. — Ecology 45: 427-432

Körmöczi L. (2005): On the sensitivity and significance test for
vegetation boundary detection – Community Ecology 6(1):
75-81

Körmöczi, L. and Balogh, A. (1990): The analysis of pattern
change in a Hungarian sandy grassland. — In: Krahulec, F.,
Agnew, A. D. Q., Agnew, S. and Willems, J. H. (eds):
Spatial processes in plant communities. pp. 49-58.

Körmöczi, L., Margóczi, K. and Zalatnai, M. (2009): Kiskunsági
homoki gyep hosszú távú állományszerkezet-változása. —
In: Gallé, L. (ed.): Entomológia: kutatás, szemléletformálás,
ismeretterjesztés. Szeged, 2009. pp. 91-106.

Murrell, D.J., Purves, D.W. and Law, R. (2001): Uniting pattern
and process in plant ecology. — TREE 16, 529-530

Rosenberg, M. S. (2001): PASSAGE. Pattern Analysis, Spatial
Statistics, and Geographic Exegesis. Version 1.0 — Beta
documentation. Department of Biology, Arizona State
University, Tempe, AZ.

Appendix
Source code of TemPA:

import cPickle
import pylab as plab
import numpy as np
from pylab import *

f1=open("data.dat", "r")
f2=open("dates.dat", "r")
f3=open("names.dat", "r")
adat=cPickle.load(f1)
dates=cPickle.load(f2)
names=cPickle.load(f3)
adatarray=np.array(adat)

year=8
year=year-1
plant=0
print dates.get(year)
print names.get(plant)

for k in range(0,4):
 a=adat[year][plant][k]
 n=220
 s=[]
 h=[]
 p=[]
 l=[]
 w=[]
 de=0
 woo=[]
 for i in range(0,n-3): #position
 q=0
 for r in range(2,n-i+1): #window size
 v=[]
 x1=[]
 x2=[]
 x3=[]
 x4=[]
 t=0
 q=0
 g=[]
 no=0
 nu=0
 el=1
 veg=0
 for j in range(i,i+r):
 v.append(a[j])
 t=(sum(v))
 if (t>=0.85): #terms
 el=a[i]
 veg=a[i+r-1]
 if (i+r==n-1):
 no=0

TISCIA 38 7

 nu=0
 if (i+r<=n-2): #cell before/after the patch
 nu=a[i+r]
 if (i>=1):
 no=a[i-1]
 if r<10:
 x1=[4]
 x2=[4]
 x3=[0]
 x4=[0]
 if r>=10:
 for y1 in range(i+r-3,i+r): #last 4 cels
 x1.append(a[y1])
 for y2 in range(i,i+3): #first 4 cels
 x2.append(a[y2])
 if (i+r<=n-4):
 for y3 in range(i+r,i+r+3): #4 cels after the patch
 x3.append(a[y3])
 if (i>=4):
 for y4 in range(i-4,i-1): #4 cels before the patch
 x4.append(a[y4])
 if (i+r>n-4) and (i+r<n-1): #end of patch
 for y3 in range(i+r,n):
 x3.append(a[y3])
 if (i<4) and (i>1): #beginning of patch
 for y4 in range(0,i+1):
 x4.append(a[y4])
 if (i+r>=n-1):
 x3=[0]
 if (i<=1):
 x4=[0]
 if ((sum(x1))>=2) and ((sum(x2))>=1)and ((sum(x3))<=1) and
((sum(x4))<=1)and (el==1) and (veg==1):
 q=t
 if (t>=(0.87*r)):
 g.append(q)
 g.insert(1,r)
 g.insert(2,i)
 g.insert(3,i+r-1)
 h.append(g)

 for c in h:
 p.append(c[2])
 for e in range(len(p)):
 if (p[e]>(p[e-1]+4)) or (e==(len(p)-1)):
 b=de
 de= p.index(p[e])
 w= h[b:de]
 s=[]
 l=[]
 we=[]
 fe=[]
 ba=0
 femax=0
 for f in w:

8 TISCIA 38

TISCIA 38 9

 s.append(f[0])
 if (s!=[]):
 ba=max(s)
 for z in range(len(s)):
 if (s[z]==ba):
 we.append(w[z])
 for ii in we:
 fe.append(ii[1])
 if (fe!=0):
 femax=min(fe)
 for y in range(len(fe)):
 if (fe[y]==femax):
 print we[y]

