
Acta Cybernetica 21 (2013) 5–20.

Low Level Conditional Move Optimization∗

Artyom Antyipin†, Attila Góbi†, and Tamás Kozsik†

Abstract

The high level optimizations are becoming more and more sophisticated,
the importance of low level optimizations should not be underestimated. Due
to the changes in the inner architecture of modern processors, some optimiza-
tion techniques may become more or less effective. Existing techniques need,
from time to time, to be reconsidered, and new techniques, targeting these
modern architectures, may emerge.

Due to the growing instruction pipeline of modern processors, recovering
after branch mis-predictions is becoming more expensive, and so avoiding
that is becoming more critical. In this paper we introduce a novel approach
to branch elimination using conditional move operations, namely the CMOVcc
instruction group. The inappropriate use of these instructions may result
in sensible performance regression, but in many cases they outperform the
sequence of a conditional jump and an unconditional move instruction.

Our goal is to analyze the usage of CMOVcc in different contexts on modern
processors, and based on these results, propose a technique to automatically
decide whether the conditional move or the sequence of a conditional jump
and an unconditional move should be performed in a given situation.

Keywords: assembly, low level optimization, compilers

1 Introduction
Low level optimization has always been an important part of code generation. Sen-
sible performance improvements can be achieved simply by reordering instructions
or using an alternative, but equivalent, instruction sequence. Modern compilers
support numerous optimization techniques applied to the generated code. Up-
coming microprocessors are usually designed to run existing code faster without
any adaptation. To achieve this, instruction processing is split into several stages,
forming the so-called instruction pipeline. Each stage of the pipeline depends on
the output of its predecessor, hence the processor starts to process the instruction
several clock cycles prior to the actual execution. In order to keep the processor

∗Supported by the European Union and co-financed by the European Social Fund (grant agree-
ment no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).

†Dept. Programming Languages and Compilers, Eötvös Loránd University, Budapest, Hun-
gary, E-mail: {artyom,gobi,kto}@elte.hu

DOI: 10.14232/actacyb.21.1.2013.2

6 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

running, it is essential to keep the pipeline full. However, if the code being processed
contains conditional branches, the processor has to choose one execution path. If
there is a mis-prediction, the processor abandons the fetched instructions, which
leads to several lost cycles, while the first instruction of the mis-predicted branch
reaches the execution stage. During these cycles the executing engine is likely to
be idle which, beside wasting time, also increases power leakage of the processor.
The power gating technique has been proposed to address this issue but has not
yet been adopted by any modern microprocessor [11].

Although modern processors use sophisticated branch prediction algorithms,
prediction is practically impossible when the branch condition depends on random
data. This makes Worst-Case Execution Time (WCET) estimation of the code
containing such branches very hard, as the exact value of mis-prediction penalty
does not depend solely on the pipeline length [10]. Therefore, a decrease in the
number of conditional branches in the code may results in improvements in WCET
estimations, and in making better use of the instruction pipeline. These ideas
motivated us to look for possible approaches to branch elimination.

The paper is organized as follows. The next section gives an overview of the
examined processor architectures and the instructions related to our approach. In
Section 3, a first optimization attempt is detailed. The idea is to replace two
possibly mis-predicted conditional jumps with a single, but unpredictable indirect
jump. This method and its impact on the execution time is detailed there. Section 4
introduces the better approach of ours – total branch elimination in code generated
for if/else constructions by manipulating operations performed within branches.
Section 5 discusses related work. Finally, Section 6 concludes with pointing out
future directions of work.

2 Preliminaries

The rest of the paper assumes that the reader has working knowledge on how
processors work. Hence, in this section a short introduction is presented to the
examined architectures (Section 2.1), the relevant (i.e. conditional) instructions
(Section 2.2), with the conditional move detailed (Section 2.3). Section 2.4 demon-
strates a trivial optimization, which can also be found in a recent version of the
GNU Compiler Collection and the clang compiler.

2.1 Processor architecture overview

The microprocessor architecture overview provided in this section is rather sim-
plified. Its intention is to provide enough information to understand motivation
behind our attempts, while keeping information not related to this paper uncov-
ered. Complete technical documentation is available publicly at the websites of the
corresponding vendors [12, 3].

Low Level Conditional Move Optimization 7

Pre-decode

Instr Queue
Decoders

Branch Predictor

Load
Buffers

Store
Buffers

Reorder
Buffers Allocate/Rename/Retire

In-order

Out-of-order

Scheduler

Port 0 Port 1 Port 5 Port 2 Port 3

StAddr

Load

StAddr

Load

256K L2 Cache (Unified)
32K L1 Data Cache

Line Fill Buffers
48 bytes/cycle

Port 4

STD

Memory Control

256-FP Blend

256-FP Bool

256-FP Shuf

JMP

ALU

256-FP Add

V-Shuffle

V-Add

ALU

ALU

V-Mul

V-Shuffle

Fdiv

256-FP Mul

256-FP Blend

32K L1 Instruction Cache

1.5K µOP Cache

Figure 1: Intel microarchitecture with code name Sandy Bridge: Pipeline Func-
tionality from [12]

2.1.1 Intel Sandy Bridge

Figure 1 depicts the pipeline and the major components of a processor core that is
based on the Intel microarchitecture with code name Sandy Bridge. The pipeline
consists of the following parts:

• In-order issue front-end, which includes

– the branch prediction unit,

– the instruction cache (L1i or ICache),

– the instruction pre-decoder (4 units capable of micro and macro fusion),

– the decoded ICache and

– the micro-op queue, which decouples the front end and the out-of-order
engine.

• Out-of-order execution engine which comprises of

8 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

– the renamer,

– the scheduler and

– the execution core.

Branch mis-predictions affect both the front-end (directly) and the execution
engine (indirectly). According to the technical manual [12] “mis-predicted branches
can disrupt streams of µops, or cause the execution engine to waste execution
resources on executing streams of µops in the non-architected code path”, i.e. the
micro-op queue of the front-end is emptied, and either instructions from the mis-
predicted execution path are decoded, or, if these instructions were already decoded
and cached within the decoded ICache, the queue is re-filled using the cached micro-
ops. In both cases the execution engine is suspended until the first micro-op is
queued.

2.1.2 AMD K10 and K12

The structure of the AMD Family 10h and 12h (also called K10 and K12 respec-
tively) based microprocessors is similar in many ways to that of Sandy Bridge
described above. Instruction processing is split into several phases:

• The Branch Prediction Unit decides which instructions are to be fetched from
the L1 instruction cache.

• Instructions are fetched and decoded into macro-ops by the Fetch-Decode
Unit.

• The macro-ops then are passed to the ICU (i.e. Instruction Control Unit)
which is responsible for

– macro-op dispatch,

– macro-op retirement,

– register and flag dependency resolution and renaming,

– execution resource management,

– interrupts and exceptions and

– branch mis-prediction handling.

• Macro-ops are dispatched either to Integer Unit or Floating-Point Unit. Both
of them consist of a scheduler and an execution unit. The execution unit in
both cases contains three execution pipes capable of executing instructions of
the appropriate type.

No mechanism of branch mis-prediction handling is described by the documen-
tations [3], but the mis-prediction penalty is said to be at least 10 cycles.

The functionality of the AMD Family 10h and 12h microprocessors seems to be
less complex than that of the microprocessors based on the Intel architecture with

Low Level Conditional Move Optimization 9

code name Sandy Bridge. As a consequence, the use of the code generation methods
introduced in this paper produces less sensible, but still measurable, impact on the
execution time on AMD Family 10h and 12h microprocessors.

2.2 Conditional instructions overview

Before introducing conditional instructions, the corresponding functionality of mi-
croprocessors based on the x86 architecture must be clarified. Among other reg-
isters, the x86 architecture includes the probably most frequently used special-
purpose register – the so-called FLAGS register. (The name FLAGS refers to the
16-bit register of the basic x86 architecture. The 32-bit and 64-bit extensions of
the architecture also affect this register. The 32-bit and 64-bit extensions of the
FLAGS register are called EFLAGS and RFLAGS, respectively). FLAGS represents the
state of the processor. Its bits are called flags, and each of them has a different
purpose. Generally, these flags can be split into two separate groups – the ones rep-
resenting the state of the processor after executing a particular instruction (called
status flags), and the ones that can be modified in order to change the state of the
microprocessor. Whether the operation described by a conditional instruction is
performed, depends on the state of the status flags, as explained below.

In assembly language, conditional instructions are usually written in the form
OPCODEcc, where OPCODE is a conditional instruction itself, and cc (called condi-
tion code) is one of the predefined conditions over the state of the status flags. If
the actual state of the status flags satisfies this predefined condition, the operation
described by the conditional instruction is performed, otherwise no action is taken.
As a consequence, in order to take advantage of using a particular conditional in-
struction, the status flags should be adjusted prior the execution of the instruction.
Modification of the status flags is possible in the following ways.

• Some of the flags (CF,DF,IF) can be adjusted explicitly with an appropriate
instruction.

• The value of the lower byte of FLAGS can be transferred into AH, modified,
and transferred back to FLAGS.

• The whole value of FLAGS, EFLAGS or RFLAGS (depending on the current pro-
cessor mode) can be transferred into stack, adjusted, and then transferred
back.

• Status flags are also adjusted implicitly, when a particular instruction is ex-
ecuted. Generally, most of the arithmetic, logic and bit shifting instructions
implicitly adjust these flags. Furthermore, the x86 architecture provides two
special instructions – TEST and CMP – which perform the same operation as
AND and SUB, respectively, but their result is not stored, but only flags are
adjusted. This latter facility is used to explicitly compare values.

10 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

2.3 Conditional move instruction

The CMOVcc instruction was introduced in the P6 processor family (Intel Pentium
II) and usually described using the syntax below. It should be noted that in this
paper the AT&T assembly syntax is used. See [9] for details about differences
between the AT&T and the Intel syntax.

CMOVcc source, destination

Here, source can be either a general-purpose register or an in-memory vari-
able; destination is a general-purpose register, and cc is the condition code (see
Section 2.2). The operation performed by CMOVcc is detailed below.

temp← source
IF condition TRUE
THEN
destination← temp;

FI;

The operation can be split into three sub-operations – namely loading the value
of the source operand, evaluation of the condition, and storing the loaded value
into the destination operand. Note that the load sub-operation is performed un-
conditionally, i.e. even if the condition is not satisfied. As a consequence, if an
in-memory variable is used as a source operand, it is loaded to cache – which is
likely to be unnecessary if the condition is not satisfied and the variable is not
used by other instructions. Furthermore, is this case the address of the variable
must be valid (i.e. point to memory accessible by the program) or else processor
exception will be raised, even if no move operation is to be performed. So CMOVcc
with an in-memory variable would rather be used only when the variable is also
used by other unconditional instructions. This restriction makes CMOVcc useless for
optimization in several cases, as loading the variable into a register and using that
register instead always results in better performance. Despite this, in our research
we investigated ways to achieve better performance by using CMOVcc instructions
with both registers and in-memory variables as the first operand.

2.4 A trivial case

Consider the C code fragment 1. It contains a single conditional branch that
depends on a single condition, and has a single assignment operation within its
body. Without any optimization, this code may be compiled to the assembly code
shown in code fragment 2. Two variables are compared using the CMP instruction
(2), which adjusts the status flags as if y was subtracted from x. If x was less
than y, i.e. arithmetic borrow has been generated out of the most significant bit
position, then the CF flag was set, otherwise the CF flag was reset. If CF was not set,
the conditional should be skipped (3), i.e. the conditional jump to the end of the
body of the branch (5) should be performed. If CF was set (i.e. x was less than y),

Low Level Conditional Move Optimization 11

Code fragment 1 Trivial case (C/C++)

1 unsigned int x, y;
2 if (x < y)
3 {
4 x = y;
5 }

Code fragment 2 Trivial case (conditional jump + unconditional move)

1 # assume x = %rcx, y = %rdx
2 cmpq $rdx, %rcx
3 jnc 1f
4 movq %rdx, %rcx
5 1:

the jump operation is not performed, and line (4), namely the body of the branch,
is executed.

The code, produced by a compiler without optimization, provides the expected
functionality, but the conditional jump has a good chance of causing branch mis-
prediction, and of wasting 14 cycles1 each time the code is executed. Due to
macro-fusion and out-of-order execution, the net execution time of the instructions
in the code above is either 1, 2 or 3 cycles, depending on the position of the code
in memory and the preceding instructions. However, together with the branch
mis-prediction penalty, the execution of the code is expected to take 15-18 cycles.

Note that with random input the prediction is likely to fail. Fortunately, the
code fragment 1 can be easily optimized using an if-conversion [17]. With a minimal
effort, the code generator notices that a CMOVcc instruction can be used, as the
expected functionality matches perfectly the definition of CMOVcc, as described in
section 2.3. In this case the code generator can generate the code shown in code
fragment 3: the comparison operation is kept unchanged, and the sequence of the
conditional jump and the unconditional move is replaced with a single conditional
instruction. This code has exactly the same functionality, and has no branches – i.e.
no branch mis-prediction can ever happen. As a consequence, the execution of this
code will take constantly 2 cycles. Using this single optimization in algorithms with
constructions similar to the one shown in code fragment 1 can dramatically increase
performance of the generated code. A good example is the maximum algorithm:
improvements of using this optimization are shown in figure 2.

This case is trivial to optimize, because the used high-level construct perfectly

1There is no official information about the mis-prediction penalty, but different Internet
sources [2, 4] agree on the same value of at least 14 cycles on microprocessors with Sandy Bridge
architecture. On processors with AMD K10 and K12 architecture this penalty is defined to be at
least 10 cycles [3].

12 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

Code fragment 3 Trivial case (conditional move)

1 # assume x = %rcx, y = %rdx
2 cmpq $rdx, %rcx
3 cmovb %rdx, %rcx

5000

15000

25000

35000

50000 100000

ex
ec
ut
io
n
ti
m
e
(n
s)

n

gcc -O2 (CMOVcc)

+ + + + + + + + + + + + + + + + + + +

+
gcc -O0 (Jcc+MOV)

× ×
× ×

× ×
×
× ×

× ×
×
× ×

×
×
× ×

××

Figure 2: Maximum algorithm

fits the definition of CMOVcc. Popular compilers, like gcc [18] and clang [16], already
support this optimization. It is worth mentioning that, probably because of prob-
lems discussed in Section 2.3, all optimizations involving the use of CMOVcc were
disabled by default in older version of gcc. Newer versions (such as those above
4.5) of gcc have this optimization enabled – it is hard to tell exactly which versions,
since no official announcement about this have ever been made.

In all tests included in this paper, the performance of our solutions was compared
to the performance of the code generated by gcc with optimization enabled (-O2).
Furthermore, we experienced no significant differences between code generated by
gcc and clang for our test cases, and thus we assumed that the code generated by
clang performs similarly to the one generated by gcc

3 Our first attempt
Consider the C++ function in code fragment 4. This function is given a pointer to
some data, the length of the data and some threshold number x. It returns a tuple,
containing the sum of the data items which are less than, greater than or equal
to x, respectively. When the function is called, the body of the loop is executed

Low Level Conditional Move Optimization 13

length times. When generating code for the body of the loop, popular compilers do
recognize that a single compare operation is sufficient in this case, thus assembly
code similar to code fragment 5 is generated. This code contains two conditional
jump instructions, and if neither is taken, the third branch is executed. The main
problem here is that the result of the comparison depends on potentially random
data, and thus branch prediction is hardly possible in this case. As a consequence,
this code contains two possibly mis-predicted jumps, which can be very costly,
especially when executed within the loop.

Code fragment 4 Conditional sum (C++)

1 std::tuple<int, int, int> sum(int *ptr, int length, int x)
2 {
3 int eq = 0, lt = 0, gt = 0;
4 while (int i = 0; i < length; ++i)
5 {
6 if (ptr[i] < x)
7 lt += ptr[i];
8 else if (ptr[i] > x)
9 gt += ptr[i];

10 else
11 eq += ptr[i];
12 }
13 return std::make_tuple(lt, eq, gt);
14 }

Code fragment 5 Three-way branch, generated code

1 # assume %rdi = i, %rsi = ptr, %ecx = x
2 # %r8d = eq, %r9d = lt, %r10d = gt
3 movl (%rsi,%rdi,4), %edx
4 cmpl %ecx, %edx
5 jg do_gt
6 je do_eq
7 do_lt:
8 addl %edx, %r9d
9 jmp done

10 do_gt:
11 addl %edx, %r10d
12 jmp done
13 do_eq:
14 addl %edx, %r8d
15 done:

14 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

The main problem of the code generated for the body of the loop is the presence
of two possibly mis-predicted conditional jumps. So our first intention was to
decrease the number of the conditional jumps. Our main idea can be described
as follows. Instead of performing a conditional jump, the pointer to the branch
that should be taken is calculated using conditional move operations, and then an
unconditional jump to this pointer is taken. This gives us the code shown in code
fragment 6.

Code fragment 6 Three-way branch, single jump

1 # assume %rdi = i, %rsi = ptr, %ecx = x
2 # %r8d = eq, %r9d = lt, %r10d = gt
3 movl (%rsi,%rdi,4), %edx
4 leaq do_gt(%rip), %r11
5 leaq do_eq(%rip), %r12
6 leaq do_lt(%rip), %r13
7 cmpl %ecx, %edx
8 cmovg %r11, %r13
9 cmove %r12, %r13

10 jmp *%r13
11 do_lt:
12 addl %edx, %r9d
13 jmp done
14 do_gt:
15 addl %edx, %r10d
16 jmp done
17 do_eq:
18 addl %edx, %r8d
19 done:

Unfortunately, the branch prediction unit of the examined processors cannot
predict the single jump (in line 10), and hence this code constantly suffers from
a single branch mis-prediction penalty. As a consequence, execution time of this
code, opposed to the code shown in code fragment 5, depends neither on the input
data nor on the inner state of the branch prediction unit.

After performing a series of tests, we came to the conclusion that the execution
time of the code created using this method either equals to, or differs insignificantly
from, the execution time of the code generated by gcc. As our attempt to minimize
the number of branches did not lead to significant performance improvement, our
goal changed to complete branch elimination, which led us to the approach we are
to introduce.

Low Level Conditional Move Optimization 15

4 Our approach
As we mentioned before, the main problem with the code generated by gcc for the
function shown in code fragment 4 is the presence of two conditional jumps, and our
goal is to completely eliminate branching, so that branch mis-prediction can never
happen. Our idea is to rearrange the code in the following way. All the branches are
executed unconditionally, and all the parameters used in the branches are assigned
conditionally, i.e. depending on the condition, either set to the original value or to
some neutral value determined by the operation (see code fragment 7). The new
code provides the same functionality, and does not contain a single branch. It is
worth to note that although this code performs poorly in the cases where branches
can be predicted (e.g. if the function discussed in this section is used on sorted
data), the execution time is halved in the general case.

Code fragment 7 Three-way branch, our approach

1 # assume %rdi = i, %rsi = ptr, %ecx = x
2 # %r8d = eq, %r9d = lt, %r10d = gt
3 xorl %r11d, %r11d
4 xorl %r12d, %r12d
5 xorl %r13d, %r13d
6 movl (%rsi,%rdi,4), %edx
7 cmpl %ecx, %edx
8 cmove %edx, %r11d
9 cmovl %edx, %r12d

10 cmovg %edx, %r13d
11 addl %r11d, %r8d
12 addl %r12d, %r9d
13 addl %r13d, %r10d

In general, any if/else if/else construction that satisfies the restrictions
listed below will perform better, if optimised according to our approach.

• All the conditions must use the result of a single assembly comparison opera-
tion, or at least two conditions must use the result of an assembly comparison
operation.

• Overall cycles needed to execute all the operations of all the branches must
be less than the overall possible branch mis-prediction penalty.

• All the operations of all the branches must have neutral values.

Note that our approach sets no restrictions on the exact number of parameters
of the operations within the branches. Although the number of general-purpose
registers is restricted, in-memory variables can also be used, as the penalty of
the memory access is insignificant when compared to the penalty of a single mis-
prediction.

16 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1e+06

0 50000 100000 150000 200000 250000

ex
ec
ut
io
n
ti
m
e
(µ
s)

input size

gcc -O2

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
++

our approach

× × × × × × × × × × × × × × × ×

×

Figure 3: Execution time of the function specified in code fragment 4

Figure 3 shows results on the execution time of 1000 iterations of the code
optimized by our approach and the one generated by gcc. The results are measured
on an Intel Core i7-2620M processor, and a vector filled with pseudo-random data
was used as an input. Table 1 contains further results on measuring the execution
time of the function, including also the sorted input case, and the results taken on
an AMD K10 processor as well.

For the measurements sorted and random input vectors of different sizes were
used. Input sizes range through the rows of Table 1, while measurements on sorted
and random input are depicted on the left and on the right, respectively. For every
input size, experiments were carried out with gcc and with our hand-optimized
code (“cmovcc”). The columns tagged “ratio” displays the execution time of our
optimized code divided by the execution time of the one generated by gcc.

For each case the execution time was measured 12 times. In each experiment
the first measurement was systematically larger than the others (probably because
of cashing effects), therefore it was dropped. The remaining 11 measurements were
averaged, and the variance was calculated. The variances were usually less than
1%, and never exceeded 5%, and thus they can hardly be observed on Figure 3.
Assuming that the results are linear to the size of the input, we fitted a line on
the measured data using the least squares method. In the case of input containing
random data, the ratio in the slope of the lines are 2.619± 0.008. This allows us to
conclude that our optimization yields 2.6 asymptotic speedup for the general case.

Our measurements are in accordance with the analysis presented in Section 2.4
on page 10. One can easily see that the code generated by gcc – i.e. the code
using conditional jumps – performs very well when executed on sorted data (due
to successful branch prediction) but shows dramatic performance decrease when

Low Level Conditional Move Optimization 17

Table 1: Execution time of 1000 iterations (µs)
i7-2620M (based on microarchitecture code name Sandy Brigde)

Input size
Sorted input Random input

gcc cmovcc ratio gcc cmovcc ratio
20480 12557 28969 230.70% 65543 28509 56.50%
69632 43238 99127 229.26% 250939 98447 60.77%
118784 72571 169463 233.51% 428812 164987 61.52%
167936 115746 239143 206.61% 614162 237441 61.34%
217088 160287 309680 193.20% 795009 307895 61.27%
249856 193510 356918 184.44% 918140 353916 61.45%

Phenom II X4 945 (AMD K10)

Input size
Sorted input Random input

gcc cmovcc ratio gcc cmovcc ratio
20480 27420 32067 116.95% 79913 32073 59.87%
69632 93890 109755 116.90% 270162 109155 59.60%
118784 167020 193562 115.89% 461258 187265 59.40%
167936 226755 275454 121.48% 660903 273295 58.65%
217088 282321 357646 126.68% 853350 358102 58.04%
249856 323537 414665 128.17% 984064 414703 57.86%

random data is supplied. In contrast, the code created with our approach using
CMOVcc shows no significant difference between the cases with sorted input and
random input.

On random input the code optimized with CMOVcc was more than twice as
fast as the one generated by gcc, both on the Intel and the AMD machines. On
sorted input, gcc code performed twice as good as ours on Intel, and about 20%
better on AMD.

5 Related work

To our best knowledge, all researches related to the usage of CMOVcc target only
microprocessors with architecture different from x86, namely IA32, IA64 and Al-
pha [6, 19, 14, 17] and thus the technical documentations [3, 12, 13] provided by
the vendors of the particular microprocessors remain the main source for the opti-
mization techniques.

A study has been made in [5] on well-known optimization techniques including
the one discussed in Section 2.4, but only the techniques already implemented and
used by the particular compilers were considered. Furthermore, CMOVcc was used
to optimize a HMMer search algorithm [15], and to mitigate timing-based side-

18 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

channel attacks by eliminating control flow dependencies [8]. In both papers the
instruction was used within very specific cases, and no optimization technique has
been proposed.

Another source of possible optimization techniques is the documentation of the
popular compilers, but they are usually based on the mentioned technical docu-
mentations provided by the vendors of the microprocessors. Furthermore, in many
cases implementation differs from the documentation as it contains modifications
based on the feedbacks and proposals of the end-users.

6 Conclusions and Future work
In this paper we have studied branch elimination techniques based on replacing
conditional jumps with conditional move operations. We have discussed the meth-
ods of branch number reduction and total branch elimination in code generated for
the higher-level if/else constructions. The former one has proved to achieve only
insignificant impact on the execution time of the produced code. The code created
by using the latter method never suffers branch mis-prediction penalty, and hence
outperforms the code generated by the popular compilers in the general case. Still,
because of the increased complexity of the code, it performs poorly in some special
cases, i.e. when no branch mis-prediction is caused by the compiler-generated code.

Although performance is not improved in the case of sorted input, the execution
time of the code no longer depends on branch predictions. This has positive impact
on WCET analysis, and makes its estimation more straightforward. This property
can be extremely important in real-time systems [7].

In the future we will define the exact set of cases when our method could be used.
Afterwards we plan to integrate our method into the popular compilers (e.g. gcc
and clang/llvm) by providing appropriate plug-ins. This can serve as a convenient
test-bed, and can speed up further research in this area.

References
[1] Зубков, С.В. Ассемблер для DOS, Windows и UNIX. Для программистов.

ДМК Пресс, 2004.

[2] 7-Zip LZMA Benchmark, Intel Sandy Brigde. http://www.7-cpu.com/cpu/
SandyBridge.html.

[3] Advanced Micro Devices, Inc. Software Optimization Guide for AMD Family
10h and 12h Processors, February 2011. Publication Number: 40546.

[4] Anandtech - the bulldozer aftermath: Delving even deeper. http://www.
anandtech.com/show/5057/the-bulldozer-aftermath-delving-even-deeper/2.

[5] Bik, A.J.C., Kreitzer, D.L., and Tian, X. A case study on compiler opti-
mizations for the Intel® Core TM 2 Duo Processor. International Journal of
Parallel Programming, 36(6):571–591, 2008.

Low Level Conditional Move Optimization 19

[6] Chuang, W. and Calder, B. Predicate prediction for efficient out-of-order
execution. In Proceedings of the 17th Annual International Conference on
Supercomputing, pages 183–192. ACM, 2003.

[7] Colin, A. and Puaut, I. Worst case execution time analysis for a processor
with branch prediction. Real-Time Systems, 18(2):249–274, 2000.

[8] Coppens, B., Verbauwhede, I., De Bosschere, K., and De Sutter, B. Practical
mitigations for timing-based side-channel attacks on modern x86 processors.
In 30th IEEE Symposium on Security and Privacy, pages 45–60. IEEE, 2009.

[9] Dean Elsner, Jay Fenlason & friends. Using the GNU Assembler for the
family. http://www.cs.utah.edu/dept/old/texinfo/as/as.html#SEC150,
March 1993.

[10] Eyerman, S., Smith, J.E., and Eeckhout, L. Characterizing the branch mispre-
diction penalty. In IEEE International Symposium on Performance Analysis
of Systems and Software, pages 48–58. IEEE, 2006.

[11] Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., and
Bose, P. Microarchitectural techniques for power gating of execution units.
In Proceedings of the 2004 international symposium on Low power electronics
and design, pages 32–37. ACM, 2004.

[12] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference
Manual, June 2011. Order Number: 248966-025.

[13] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, March 2012. Order Number: 325462-042US.

[14] Klauser, A., Austin, T., Grunwald, D., and Calder, B. Dynamic hammock
predication for non-predicated instruction set architectures. In International
Conference on Parallel Architectures and Compilation Techniques, Proceed-
ings, pages 278–285. IEEE, 1998.

[15] Landman, J., Ray, J., and Walters, JP. Accelerating HMMer searches on
Opteron processors with minimally invasive recoding. In 20th International
Conference on Advanced Information Networking and Applications, volume 2.
IEEE, 2006.

[16] Lattner, C. LLVM and Clang: Next generation compiler technology. In The
BSD Conference, 2008.

[17] Mahlke, S.A., Hank, R.E., McCormick, J.E., August, D.I., and Hwu, W.M.W.
A comparison of full and partial predicated execution support for ILP proces-
sors. In Proceedings of 22nd Annual International Symposium on Computer
Architecture, pages 138–149. IEEE, 1995.

[18] Mitchell, Mark and Samuel, Alexander. Gcc 3.0 state of the source. In 4th
Annual Linux Showcase and Conference, 2000.

20 Artyom Antyipin, Attila Góbi, and Tamás Kozsik

[19] Wang, P.H., Wang, H., Kling, R.M., Ramakrishnan, K., and Shen, J.P. Reg-
ister renaming and scheduling for dynamic execution of predicated code. In
The Seventh International Symposium on High-Performance Computer Archi-
tecture, pages 15–25. IEEE, 2001.

