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Spectrum Skeletonization: A New Method for

Acoustic Signal Feature Extraction

Tibor Dobján∗ and Gábor Németh†

Abstract

Vibration Analysis Tests (VAT) and Acoustic Emission tests (AE) are
used in several industrial applications. Many of them perform analysis in
the frequency domain. Peaks in the power density spectrum hold relevant
information about acoustic events. In this paper we propose a novel method
for feature extraction of vibration samples by analyzing the shape of their
auto power spectrum density function. The approach uses skeletonization
techniques in order to find the hierarchical structure of the spectral peaks.
The proposed method can be applied as a preprocessing step for spectrum
analysis of vibration signals.

Keywords: spectrum analysis, skeletonization, spectrum segmentation, fea-
ture extraction

1 Introduction

Acoustic events play an important role in several fields of industries [10, 25, 27, 30,
32]. Nowadays, vibration analysis tests are one of the applied methods for non-
destructive testing. Vibration analysis tests are used to diagnose rotating machines
[31] and for detection of hit and leakage [8]. With acoustic emission burst analysis
we can draw conclusions about existing cracks and crack propagation [26].

These methods investigate acoustic samples by extracting some features of the
vibration signal. There are three major methods for vibration signal feature ex-
traction:

1. In time domain some statistical parameters (e.g., root mean square, mean,
variance, skewness, kurtosis) can be computed [17, 27]. There are also time
synchronous average signal (TSA) based methods, filter based methods, and
stochastic methods [8, 28].
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2. Frequency domain analysis is used to investigate the frequency components of
periodic signal samples [17,32,36]. Applications of frequency-domain analysis
use Fast Fourier Transformation (FFT) [14].

3. Time-frequency domain analysis can be used for non-periodic and non-sta-
tionary signal samples, like bursts [17, 36]. Applications of time-frequency
domain analysis use continuous wavelet transforms (CWT) [23].

In this paper we propose a novel method for feature extraction from the auto
power spectrum density (APSD) function. Our approach produces an automatic
partitioning of a given APSD function along the frequency axis, where each range
contains a dominant frequency component. Our method ensures that the bounds
of frequency ranges, referred to as separators in the following, are defined within
the local minima of the APSD function: by this way no relevant peak in the power
spectrum density is split to disjunct frequency ranges. The peaks of the APSD
function are detected by the skeletonization method [12, 29]. Skeleton is a shape
descriptor that summarizes the general form of objects. Since skeletons provide
also structural properties of the power spectrum, each separator can be located
between two skeletal branches.

The rest of this paper is organized as follows: Section 2 gives a short description
about our used data. Section 3 details how to determine the relevant frequency
ranges of the APSD function. Section 4 contains discussion about some possible
improvements and connecting problems of our basic methods. The main conclusions
of this document are summarized in Section 5.

2 Collection of recorded signals

Two datasets of acoustic events are examined in this paper. First, we have collected
some acoustic emission event from Gleeble-measurements, however, the count of
recorded signals was not large enough for a reliable evaluation, hence we also created
a dataset of noises from knocks. Each event was registered manually.

2.1 Gleeble-measurements

In the Gleeble-laboratory of College of Dunaújváros we carried out a measurement
by Gleeble 3800 thermo-mechanical physical simulator, which is able to preform
tensile tests and hot deformation on steel specimens.

In the test we put a standard tensile test specimen into the jaws of Gleeble
(see Figure 1). We placed two acoustic emission sensors at the end of the specimen
behind the jaws. The specimen was then heated according to the heating profile (see
Figure 2). It was heated up at 10 ◦C/s to 900 ◦C, and then held at temperature
for 120 seconds. The specimen was subsequently controlled cool at 10 ◦C/s to
approximately 400 ◦C and free cooled the rest of the way to room temperature.

During the test, we listened to acoustic emission events in the 1MHz frequency
range (Fs = 2MHz). The measurement systems stored the whole time-series during
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Figure 1: Drawing of a test specimen to be put into the jaws of Gleeble

Figure 2: Thermal profile of the test specimen

the test. We found that there is an artificial periodicity in the most of events (see
Figure 3(a)).

We found real acoustic events in the beginning of the cooling period (see Figure
3(b)). These acoustic events come from the observed physical phenomenon that
can be used in the industrial applications. Unfortunately, we have only a few
recorded signals of the artificial periodic noise. To show that our method produces
different spectrum segmentation for different source of noises, we created a database
of acoustic events.
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(a)

(b)

Figure 3: Time series of artificial periodic noise (a). Acoustic events on the cooling
period (b). Signal segments marked by squares are periodic artificial, while the
segments marked by ellipses are real acoustic events.

2.2 Knocking noises

The acoustic events were recorded by a general headset microphone to a single
channel WAV file with 44100Hz sampling frequency (Fs = 44100Hz). As for gath-
ering well-identified short time acoustic signal, we have dropped 6 objects having
different shapes and materials into a china and a plastic dishes: toothpick (wood),
match (wood), staple (metal), safety pin (metal), screw (metal), and nail (metal).
Knocking these objects in the dishes indicates 12 strict classes of noises, but as for
considering the material of objects, there are four classes taken into the account.
Each of the 12 types of noises contains 100 recorded signals.

The recorded signals have various lengths, hence we had to cut the investigated
signals for the same size (i.e., 1024 samples (see Figure 4)). These parts are cutted
out around the first location where the signals reach their maximum amplitudes
(see Figure 4). One may think that there is no difference between recorded sig-
nals, however there were various distances between the dish and the microphone,
moreover the dropping height of the objects also differed during the recording.

3 Feature extraction from vibration signals

In this section, we will explain our proposed method for feature extraction.

Let x(n) be a vibration signal containing n sampled data and the ith value of
x(n) is denoted by xi (i = 1, . . . , n).

Let us denote fmax the maximal frequency that is Fs

2
, and let ∆f the frequency

resolution, where ∆f =
fmax

n

2

. Furthermore, we denote the set of investigated

frequencies by F = {∆f, 2∆f, . . . , fmax}.
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256 768

1024

vibration signal of knocking safety-pin in china

256 768

1024

vibration signal of knocking match in plastic dish

Figure 4: A various vibration signals using 1024 samples. The sampled data begins
1/4n before and ends 3/4n after location of the maximum peak amplitude (where
n is the number of samples).

To compute the frequency spectrum we use Fast Fourier Transform (FFT). The
APSD function of vibration signal x(n) is computed by Equations (1) and (2) [14].

apsd = log

(

1

n
|FFT (x(n))|

)

(1)

APSD(f) = min(apsd) + apsd(i),

f = ∆f · i, (i = 1, . . . , n)
(2)

We use only the positive half of the APSD function. Figure 5 shows an example
for an APSD function.

Next, the APSD function of signal x(n) is mapped into a quadratic binary image
IAPSD :

IAPSD(u, v) =











1 if v ≤

⌊

n

2

APSD(u ·∆f)

max
i∈F

(APSD(i))

⌋

0 otherwise

(3)

In IAPSD the background is white and black points represent the quantized
values below the APSD function.
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Figure 5: APSD function of a vibration signal

After we created the APSD function image IAPSD, the dominant peaks and
frequency ranges have to be determined. First we extract the centerline of the
APSD function image by a topology preserving skeletonization algorithm [12, 29].
Here we used a thinning algorithm [3, 6, 12, 13, 18, 19, 20] to extract the centerline,
since it is the most efficient skeletonization technique for digital pictures. Skeletal
branches are growing into dominant peaks of function. Furthermore, the centerline
indicates the hierarchical structure of peaks as well.

As a next step, the lowest connected skeletal curve segments (i.e., that are
depicted with thick gray curve in Figure 6(b)) are removed. This curve segment
is characterized as the set of skeletal points having the maximum y coordinate
in each column in image IAPSD (if the (0, 0) point of IAPSD is its upper-left cor-
ner, and y coordinates increasing vertically down). This provides that the skeletal
branches growing into the peaks of APSD function will be disconnected at their
roots. Removal of the lowest curve segments disconnects only the skeletal branches
into isolated skeletal trees, but does not affect the hierarchy of the side branches
in the trees (see Figure 6(b) and (c)). The width of a tree can be determined by
measuring the horizontal distance between the endpoints of the most left and most
right branch of the tree. It is not hard to see that, the ranges (i.e., the widths) of
the skeletal trees indicate disjunct intervals in the whole frequency range, however
the union of these disjunct intervals does not form to whole frequency range. Our
aim is to partition the whole frequency range into intervals by separators such that
the union of the intervals matches the length of the whole range, with no peaks
split by any of the separators.
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(a) Spectrum image

(b) Spectrum skeleton (centerline)

(c) Spectrum skeletal trees

Figure 6: Spectrum is mapped to a binary image (a), centerline (b), and the skeletal
trees (c) of the spectrum. Note that in (b) the lower skeletal branches (that ensures
the connectedness) of the skeleton is removed. Hence only the skeletal trees are
left.
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Let T (1) and T (2) two adjacent skeletal trees. Furthermore, let us denote the
most left and most right upper endpoint of tree T by Tl and Tr, respectively. We
propose that, the separator line between T (1) and T (2) is chosen at the frequency,
where the APSD function reaches its minimum between T (1)r and T (2)l (see Figure
7). Our method is sketched in Algorithm 1.

Figure 7: A part of the spectrum image is enlarged (left), and the location between
the skeletal trees (right). The separator is drawn where the APSD function reaches
its minimum between skeletal trees T (1) and T (2).

Algorithm 1 Partition the APSD function to dominant frequency ranges

Func PartitionAPSD(APSD(F))

1: Map the APSD(F) function to the image I. Getting a binary picture about
the APSD function

2: Extracting centerlines of image I.
3: for i = 1 to n/2 do Split centerlines into skeletal trees.
4: Delete (i.e., change it to white) the skeletal points with maximum y coordi-

nate in column i.
5: end for

6: Let c be the count of skeletal tree. Labeling is used.
7: Let the trees are labeled from 1 to c from left to right (i.e., the left most tree

has Label 1, and the right most tree has Label c).
8: for i = 1 to c− 1 do Finding separators between two trees.
9: Find sepi ∈ [T (i)r, T (i + 1)l], where APSD([T (i)r, T (i + 1)l]) reaches its

global minimum.
10: end for

11: return {sep1, . . . , sepc−1}
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In the case of spectrum skeletons, the challenge is to match the appropriate
branches to each other. In acoustic vibration signals, numerous of extra peaks
may appear in the spectrum because of various acoustic noises. Thinning algo-
rithms may produce many skeletal branches that are grown from the extremities
of boundary points. Several points in a spectrum-image may fulfill the applied
geometric constraints of the thinning algorithm, which means each peak may be
represented by a skeletal side branch. The count and the position of the endpoints
is strongly dependent on the variance of the spectrum. Hence, instead of the end-
points we focus of usage of skeletal components and the hierarchic structure of
skeletal trees, which indicate the dominant spectrum segments.

In spectrum segmentation, conventional methods partition the frequency range
equidistantly (see Figure 8(a)) [11,33]. Equidistant segmentation does not consider
the shape of the spectrum which means that some peaks of the spectrum may be
split during the segmentation. According to our concept, dominant peaks hold
relevant information about the source of the event.

In our approach, where the frequency ranges are partitioned dynamically (see
Figure 8(b)), each relevant peak is represented by a skeletal tree. The width of a
frequency range is determined by the difference of local minima around the given
skeletal tree. The APSD functions of recorded signals are always differ from each
other because of the background noise of the signal. Hence there is no guarantee
that skeletons will indicate the same number of branches and the same number
of frequency domain partitions for each APSD function from the class of similar
acoustic events. One may think that this noise produce several trees and small
frequency ranges. Each noisy peak is represented by a skeletal side branch, but
this does not dominant affect to the tree widths. With the help the dynamic
partitioning can be described a given APSD function.

4 Further works

The proposed method holds some new ideas that point to a new way of spectrum
segmentation. These could be a component of a complex acoustic event recognition
system. The quality of event registration is important since it is the input of the
segmentation algorithm. It may influence the results of feature extraction. Using
skeletal structures we could represent the APSD spectra by graphs. We assume
that graph (or sub-graph) isomorphism also can be applied in identification. For
identification and clustering of acoustic events we use machine learning methods.
What follows is an explanation of their planned use.

4.1 Auto event registration

Our feature extraction method is based on Fourier transformation. The Fourier
transformation is not suitable for analysis transient acoustic events because it is
suitable only for stationary time series. To get the best approximation, we should
select the beginning and the end time of the event correctly, with following rules:
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0 5000 10000 15000 20000 22050 Hz

(a) Spectrum is partitioned into ranges of same size

0 5000 10000 15000 20000 22050 Hz

(b) Spectum is partitioned dinamically

Figure 8: Regular (equidistant) partition of the frequency range (a). Dynamic
partitioning using skeletal trees (b). Frequency axis can be computed by product
the position of the separator by ∆f .
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• The selected piece of time series should contain only the event, with the least
background noise. (There is always background noise during the event.)

• It should contain the entirety of the event

There are more solutions on the literature for this problem like Auto regression
– Akaike Information Criterion (AR-AIC) [21] or Sequential Probability Ratio Test
(SPRT) [8]. The frequently used approaches are the threshold-based algorithms.

4.2 Using graph theory

Since skeletonization methods produce reduced structures which represent the dom-
inant peaks in the APSD functions, they are able to build a graphic structure. In
future work we would like to build graphs from skeletal branches, and sub-graph
isomorphism may help us to find out differences in structure. Since the area below
the APSD function does not contain any cavity, this area can be represented by
a tree graph derived from centerlines. This concept leads to comparison of graph
(or sub-graph) structures for identification. We can assume that similar acous-
tic events have similar skeletal structures that can be identified by corresponding
graph branches. Graph correspondences constructed by centerlines gave a solution
for several applications [1, 7, 15, 24, 35].

4.3 Machine learning

In order to recognize the source of the signal, some machine learning algorithms are
applied. Machine learning classifies signals based on some features (e.g., maximum
amplitude, variance of the signal, or partial RMS rates) [4,5,9,22]. Machine learning
is composed of two phases: in the learning phase, a set of sample data is assigned by
class labels and their considered features are extracted; while in the second phase
some unclassified data must be assigned to a class only based on their features. We
investigated of usage the following classifiers in the future work: Linear classifiers
determine a hyperplane in the feature space that separates data into two classes
correctly. Support vector machines (SVM) [2, 16, 34] are kernel based classifiers
that allow non-linear class borders for better accuracy. K-means classifiers are
capable of distinguish more than two classes as well. Both of the linear and SVM
classifiers are binary classifiers (i.e., they separate data into two disjunct sets),
however there exists some extension of them to distinguish more than two classes.
One of the concepts is one-against-all, while the other one is the one-against-one
comparison [34].

5 Conclusion and open questions

In this paper we presented a novel method for spectrum segmentation based on
skeletons. The proposed algorithm can be applied as a preprocessing step in spec-
trum description and analysis.
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The APSD function computed from acoustic vibration signals are
mapped to a binary image, where the background is represented by white pixels,
and the area below the APSD function is formed by black pixels. The centerline
of the APSD function image is extracted by a topology preserving thinning algo-
rithm. The dominant peaks in the APSD function image are represented by skeletal
branches which hold some structural information about the set of local maxima of
APSD function. The extracted centerline is used for spectrum segmentation. Re-
moval of the lowest segments of centerline splits the “skeleton” into skeletal trees.
These skeletal trees indicate the main frequency components in the APSD function,
however their union does not form the whole frequency range. Hence, we found the
border of the frequency ranges in the minimum of function value in the frequency
intervals between two skeletal trees. This fulfills our requirement to the effect that
no peak in the spectrum is split into disjunct frequency segments. According to our
concept, peaks in the APSD function hold relevant information about the origin of
the acoustic signal.

We are working on some open questions in our further works:

• Thinning methods work on binary images, and quantization the APDS values
yield some distortions in our data. Voronoi skeleton [12, 29] works with the
original values, hence it can be a more appropriate solution for segmentation
based on skeletons.

• In pattern recognition and shape analysis skeletons are converted to graphs,
then it can be used for the formal description of the shape. In the further
works we are focusing to the graph representation to describe similarity of
APSD functions.

The proposed feature extraction by skeletons opens a new window for vibration
signal processing and spectrum segmentation.
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