Nb, Ta, Ti, REE(Y), Zr, Sn, Th, U OXIDES FROM GRADISTEA DE MUNTE RARE **ELEMENT MINERALS OCCURRENCE, SEBES MTS., ROMANIA**

HIRTOPANU, P.¹*, ANDERSEN, J.C.², FAIRHURST, R.J.², LUDUSAN, N.³ & JAKAB, Gy.⁴ ¹ University of Bucharest, Romania; ² University of Exeter, Camborne School of Mine, UK; ³ 1 Decembrie 1918 University, Alba Iulia, Romania; ⁴ I.G. Mineral, Gheorgheni, Romania; * E-mail: paulinahirtopanu@hotmail.com

The Gradistea de Munte (GM) rare element minerals occurrence is situated in the north of the Sebes Mts., Southern Carpathians, in the upper course of the Orastie River. Geologically-structurally the GM area consists of the amphibolite facies rocks of the Upper Proterozoic Sebes-Lotru Series of the Getic Crystalline. The most important host rock of the mineralization is a quartzmicrocline-albite gneiss/"granite". Sometimes the rocks being formed only from microcline, albite, some phlogopite/biotite and accessory rare minerals, quartz is missing. Cyrtolite/zircon and magnetite are always present as ore/mineral components of the rock. The rare earth element mineralization is represented by carbonates, oxides, silicates and phosphates, in veinletes and nests of mm to cm size grains. The REE oxides in GM belong to 7 groups: pyrochlore, fergusonite, columbite, "ilmeno-struverite", baddelevite, cassiterite and thorianite-uraninite. 1. Pyrochlore group has 3 subgroups. A. Pyrochlore subgroup with the major B-site cations (Nb + Ta) > Ti and Nb > Ta, comprises pyrochlore, yttropyrochlore-(Y), uranpyrochlore, plumbopyrochlore and thoriopyrochlore, defined by the cations residing in A-site. The GM pyrochlore has (Ca, Fe, U, Th) > 20% in A-site, $Nb_2O_5 \approx 50\%$ and Ta_2O_5 \approx 2–10%. Yttropyrochlore-(Y) contains beside dominant Y \approx 15–20 wt% Y₂O₃) in A site some oxides of Ce, Nd, Dy, Gd, Yb≈(10 wt%). The Nb₂O₅ content varies between 40-50 and Ta₂O₅ between 1-2 wt%. It always contains some UO2 and ThO2, thus metamictisation being very common. In addition, yttropyrochlore-(Y) has some SiO₂ content, common in metamictic and late stage hydrated pyrochlores. Yttropyrochlore-(Y) is the best widespread term of pyrochlore. Plumbopyrochlore has (Pb,Ca,U) > 20% in A site, $Nb_2O_5 = 46.5$ and $Ta_2O_5 = 18.5$ wt%. Uranpyroclore has UO₂ dominance in A site (= 13–25%) with some $Ln_2O_3 \approx 4$, Ca + $Ba \approx 10$, $Y_2O_3 = 1.5-6$ and $ThO_2 = 2$ wt%. Its Nb₂O₅ content varies between 30-50 and Ta₂O₅ between 10-15 wt%. It is omnipresent as few mm to cm size grains in all types of rocks/ores from GM. In transmitted light it is light red, yellow orange, red. It contains some ZrO₂ (≈ 2 wt%), being associated with cyrtolite. Like yttropyrochlore, it has high SiO₂ content (7-10 wt%). The GM thoriopyrochlore is Th dominant with some Y, and Fe in A site. The ThO₂ content is very high, around 40 % wt. It contains OH and clorin (0.6 wt) in Y site. It is associated with thorite and thorogummite. **B**. **Microlite subgroup** $(Ta_B \ge Nb_B, Nb + Ta > 2Ti)$ comprise the **uranmicrolite**, with Nb₂O₅ \approx 30, Ta₂O₅ \approx 48.5, $UO_2 \approx 14.6$ wt%, thormicrolite with $Nb_2O_5 \approx 19$, $Ta_2O_5 \approx 25$, $ThO_2 \approx 48$ wt%, and yttromicrolite with

 $Nb_2O_5 \approx 22$, $Ta_2O_3 \approx 25$ wt%, having U, Th, respectively Y in A site > 20%. C. Betafite subgroup, B = $2Ti_B \ge (Nb + Ta)_B$, in GM is represented by the occurrence of betafite (U > 20% in A site) and yttrobetafite-(Y) (Y > 20% in A site). The last one occurs as big grains of up to 1 cm. The chemical composition of yttrobetafite-(Y) varies: $TiO_2 = 27-30$, $Y_2O_3 = 15-22$, $Nb_2O_5 = 22-27$, $Ta_2O_5 = 7-19$, $ThO_2 = 5-10$, $UO_2 = 4-10$ 6 wt%. Some yttrobetafite-(Y) grains have a very Tarich composition: $Ta_2O_5 = 31.2$, $Y_2O_3 = 28.8$, $TiO_2 =$ 36.0 wt% and they do not contain Nb₂O₅. Compositional zoning was visible from yttrobetafite-(Y) inside to Ta-yttrobetafite-(Y) outside in a grain. 2. The fergusonite group contains the fergusonite-(Y) with $Nb_2O_5 = 45-58$, $Y_2O_3 = 25-35$, $Yb_2O_3 + Gd_2O_3 + Gd_2O_3$ $Dy_2O_3 \approx 4.5$ wt% and very little Ta₂O₅, with maximum 5 wt% UO₂ and ThO₂ content. The grains of fergusonite-(Y) are zoned with formanite-(Y), which has Y_2O_3 = 34.6, Ta_2O_5 = 48.2 wt% and little CaO, FeO and ThO₂. Another grain has $Y_2O_3 = 36.15$, $Ta_2O_3 = 45.72$, $Ce_2O_3 = 5.17$ and CaO = 4.43 wt% composition. The same grain could be built up from many phases, corresponding to yttropyrochlore-(Y), yttromicrolite-(Y), formanite-(Y) showing the Ta increase. 3. Ferrocolum**bite** has: FeO = 16.2, MnO = 3.03, Nb₂O₅ = 72.8, Ta₂O₅ = 4.2, TiO_2 = 3.5 wt% and manganocolumbite has $Nb_2O_5 = 76.28$, MnO = 10.93, FeO = 0.44, $TiO_2 =$ 0.8 wt%. Some grains have high UO₂ content of up to 8.4 wt%. The composition of some grains are $(Y_2O_3 +$ FeO + MnO > 20 wt%, high Nb₂O₅ (> 65 wt%) some Ta_2O_5 and no TiO_2 which could belong to yttrocolum**bite. 4**. "Ilmenorutile" has: $TiO_2 = 49.5-52.5$, $Nb_2O_5 =$ 21.8-26.5, $Ta_2O_5 = 7.7-13.31$, FeO = 9.4-12.03 wt%, showing a solid solution with "struverite". 5. **Baddeleyite** appears to be one of the oldest minerals, older than cyrtolite and its presence indicates that the first mineralized solutions were subsaturated in silica. Its composition shows only ZrO_2 with some ThO_2 and very little HfO₂. 6. Cassiterite appears as big cm grains in hydrothermal veinlets and has little U, Th and Fe in its composition. 7. Uraninite and thorianite, usually form solid solutions with the composition $UO_2 = 49.1$, ThO₂ = 48.0 wt%. Separately, uraninite has composition: $UO_2 \approx 96.6$ wt% with little ThO₂, Y_2O_3 , PbO, FeO, and thorianite has $ThO_2 = 96.3$, PbO = 3.27, FeO = 0.23, $SiO_2 = 0.16$ wt%. Generally, the content of Nb + Ta in all rare minerals is higher than that of Y + REE, and the Y content is much higher than Ce. Also, the Th content is much higher than U. The zirconium has the highest content.

Joint 5th Mineral Sciences in the Carpathians Conference and 3rd Central-European Mineralogical Conference 20-21 April, 2012, University of Miskolc, Miskolc, Hungary