
Acta Cybernetica21 (2014) 383–399.

Service Composition for End-Users

Otto Hylli∗, Samuel Lahtinen∗, Anna Ruokonen∗, and Kari Systä∗

Abstract

RESTful services are becoming a popular technology for providing and consuming
cloud services. The idea of cloud computing is based on on-demand services and
their agile usage. This implies that also personal service compositions and workflows
should be supported. Some approaches for RESTful service compositions have been
proposed. In practice, such compositions typically present mashup applications, which
are composed in an ad-hoc manner. In addition, such approaches and tools are mainly
targeted for programmers rather than end-users. In this paper, a user-driven approach
for reusable RESTful service compositions is presented. Such compositions can be
executed once or they can be configured to be executed repeatedly, for example, to get
newest updates from a service once a week.

Keywords: service composition, REST, web, WADL

1 Introduction

Use of internet-based services is a routine activity for millions of users. However, the
services are often silos and users do not have means to operate and manage their content
across the services. Even average PC users can transfer content between applications, but
nothing similar is possible for the Internet services they use. In this paper we propose an
approach that allows end-users to create compositions for the purpose of combing several
internet services or resources.

In service-oriented approaches dominant in the enterpriseservices, the focus is on the
definition of service interfaces and service behavior. Service-oriented architecture (SOA)
aims at loosely coupled, reusable, and composable servicesprovided for a service con-
sumer. SOA can be implemented by Web services, which is a technology enabling appli-
cation integration. Web services can be used for composing high level composite services
and business processes. Business processes are often realized as a service orchestration
implemented, for example, as WS-BPEL based processes [3]. WS-BPEL is targeted for
composing operation-centric Web services utilizing WSDL and SOAP [20,21]. WS-BPEL
is close to a programming language defining the logic for a service orchestration. Thus, it
is mostly used by IT developers.

∗Department of Pervasive Computing, Tampere University of Technology, E-mail:
{otto.hylli,samuel.lahtinen,anna.ruokonen,kari.systa}@tut.fi

DOI: 10.14232/actacyb.21.3.2014.7



384 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

In cloud-based systems, resources are provided to the user as services via the Internet.
On the other hand, the services are accessible anywhere and through several devices. Com-
pared to basic Internet-based service delivery, cloud addselastic provisioning and release
of computing capabilities. Cloud computing and SOA share similar interests on service
reuse and service composition. Moreover cloud computing emphasizes on-demand ser-
vices, which means that services should be ready for use at any time when needed. This
also applies for service configurations. Thus, service configuration and composition should
be enabled on-line.

Compared to business processes, typical on-demand processes for end-users are per-
sonal, simpler, and their lifetime is shorter than traditional business processes. Thus, on-
demand processes are often characterized as instant service compositions and service con-
figurations. Such processes are typically defined by the end-user instead of the developer
of the cloud services. Due to instant nature of the on-demandprocesses, their usage and
specification should be as simple as possible and require no installation of process devel-
opment and management tools.

An end-user driven approach for WS-BPEL-based business process development has
been proposed in [18]. The approach is targeted for providing a method for easy sketching
of service orchestrations. In the proposed approach, a set of scenarios, given as UML
sequence diagrams, are synthesized into a process description. However, in the context
of cloud computing and on-demand processes, the use of UML modeling and standalone
tools is not a proper solution.

Usually, software services in the cloud are targeted for multiple users and they pro-
vide a programmable interface, most often a Representational State Transfer (REST) API.
REST is a resource-oriented architectural style developedfor distributed environments
such as for Web and HTTP based applications [5]. RESTful services provide an unified
interface (GET, PUT, POST, DELETE) for data manipulation. Thus, composition of such
services often includes combining resources and is characterized as mashup-type of devel-
opment. Some guidelines for mashup development have been proposed (e.g. [14]). Thus
the WB-BPEL-based approach is not applicable for cloud-based services and mashups.
Composing and orchestration of RESTful services is still lacking tool vendor indepen-
dent practices and description languages. Thus, the development is often done more in an
ad-hoc manner.

SaaS applications are often targeted for end-users. They are self-contained and contain
user-interfaces, business rules, and possibly some metadata.

A recent trend is cloud mashups, which combine resources from multiple services
into a single service or application [19]. The provider of these service compositions can
enhance the cloud’s capabilities by offering new functionalities, which make use of existing
cloud services, to clients.

In this paper, a novel approach for developing personal service compositions is pre-
sented. The approach is targeted for the end-user and allowscomposition of RESTful
cloud services. The approach includes tackling the following issues: (1) easy sketching
of service compositions using a simple visual language, (2)a mechanism to export/save
composite descriptions for future usage i.e. reusable composite descriptions, and (3) an
engine for executing the service compositions, once or repeatedly. The implementation
of the approach called Aino service composer is currently under development. The Aino



Service Composition for End-Users 385

service composer includes a web browser based editor, whichcan be used to create sim-
ple on-demand service compositions. An earlier version of the tool description has been
published in [9].

The rest of the paper is organized as follows. In Section 2, wedescribe the overall
approach and related components. In Section 3, two use casesfor end-user driven service
composition are presented. Aino service composer is described in Section 4. In Section 5,
related work and topics are discussed. In Section 6, conclusions and plan for future work
are presented.

2 User-driven approach for service composition

In this paper, an end-user driven approach for defining personal service compositions is
presented. The main goal of the approach is on easy design of service compositions, which
requires minimal technical knowledge. The service composition is created by using GUI
widgets, which are generated based on an imported service description. Widgets present
individual resources and they can be dragged and dropped on the canvas. The user can
draw dataflow pipes to connect the widgets. Incoming and outgoing dataflows are mapped
to REST methods (e.g. outgoing dataflow for GETting a resource presentation).

The implementation of the approach called Aino service composer consists of two
components, designer Ilmarinen and engine Sampo. Ilmarinen is a client side application
for creating and editing compositions and it is run in a web browser. Sampo is a server side
application, which is an engine for running the service compositions. The composition de-
scription is given in XML-based format, called Aino description. As a service description
format, the approach is based on WADL descriptions [22]. It defines the resources, i.e.,
URIs, methods, and parameters. That is, while the Aino description specifies the service
logic, the WADL description describes the service interface.

Sampo also plays a role of a service registry. Once a service is registered in Sampo,
it can be used as a constituent service for future applications. One reason for providing
a centralized registry, instead of letting the user search from the web, is that for RESTful
services there is no agreement on one service description format. In case a third-party
service does not have a compatible WADL description, it can be created afterwards and
registered to Sampo. Thus, the approach allows using services, which do not natively
provide a WADL description, as reusable constituents.

The approach includes the following steps:

(1) query services from the service registry,

(2) select services to be used as a part of the composition,

(3) composition described as a data flow between services, and

(4) send the composition description to the server engine tobe executed.

The main steps are shown in Fig. 1. It also shows the relationsbetween the main
components of the system and descriptions, Aino and WADL, which are used for importing
and exporting data (i.e. service and composition descriptions).



386 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

Figure 1: The main steps of the approach

3 Use cases

The following two use cases illustrate the possibilities offered by service compositions
for regular internet users. They show how after encountering a normally labor intensive
internet based task including multiple services, a user canpretty easily create a service
composition that takes care of the task.

3.1 Use case 1: Photos from Twitter to Flickr selectively

An avid Twitter1 user has been sending many photos taken with his smart phone directly
to Twitter. The user wants a better way to organize and share his photos so he opens an ac-
count in Flickr2 which enables him to save photos to different albums, associate keywords
to them and decide which photos are public. Uploading all hisphotos manually to Flickr
would be tedious for the user. He would have to go through his Twitter time line, download
each photo to his computer and then upload it to Flickr.

To automate the upload process the user wants to create a service composition with
Aino service composer. He opens the composition designer Ilmarinen and chooses that he
wants to get photos. Ilmarinen shows him a list of services from where he can get photos
and he chooses Twitter. From Twitter he chooses that he wantsphotos from one user which
in this case is himself. He also indicates that all photos shouldn’t be fetched, instead he
will select the ones he wants. Then the user tells Ilmarinen that he wants to upload the
photos selected in the previous step. From the services listshown by Ilmarinen he chooses
Flickr as the upload target. Additionally he specifies that he wants to choose for each photo

1www.twitter.com
2www.flickr.com



Service Composition for End-Users 387

whether it is private or public. Lastly, he tells Ilmarinen that he wants to delete photos and
chooses Twitter. He specifies that from Twitter he wants to delete those photos he has
marked as private for Flickr.

When he executes the composition the execution engine Sampofirst asks him to autho-
rize Sampo’s use of his Twitter and Flickr accounts. Authorization will be done by using
OAuth [10] which means that the user authenticates to both services which then give ac-
cess tokens to Sampo. Sampo will store these access tokens for later use if the user wants it
so that next time a service composition using these servicesis run the user doesn’t need to
authenticate to the services. He just has to log in to Sampo. When the actual execution has
started Sampo will first show the user all his photos from Twitter and asks him to choose
those he wants. After that Sampo shows the user his previously chosen photos and asks
which of them he wants to be private in Flickr. After the execution has finished Sampo
shows the user a execution results summary which tells that the execution was a success
and shows how many photos were processed in each step.

3.2 Use case 2: Affordable reading

An enthusiastic book reader uses the Goodreads3 service to support her hobby. Goodreads
is an online community for readers where users can search forbooks, rate and review
them. Users can also categorize books in their profile by adding them to different shelves.
One of these shelves is to-read where the user has been addinginteresting books, which
she has found through Goodreads’ recommendation system. She wants to buy some new
reading from her to-read shelf but due to her current poor economic situation she wants it
to be as cheap as possible. Searching for each book’s price from her favorite online book
retailer Amazon4 and then comparing the prices manually would be time consuming so
she decides to create a service composition to make the process quicker.

The user opens the service composition designer Ilmarinen and chooses that she wants
information about books. Ilmarinen gives the user a list of services that deal with books.
The user chooses Goodreads and indicates that she wants the content of a particular user’s,
in this case hers, particular shelf. Ilmarinen asks the userto input the name of the user
and the name of the shelf which in this case are the user’s Goodreads user name and to-
read. Next the user tells Ilmarinen that she wants online shopping services. From the
service list she chooses amazon.com. She specifies that she wants product information
about the books from the previous step. Lastly she tells Ilmarinen that she wants the results
in ascending order by price. When this composition is run theresult is a table containing
book information from Amazon including the price and a link to the Amazon product page
where the book can be bought.

4 Implementation

The prototype implementation of the Aino service composer consists of two main compo-
nents: Designer Ilmarinen and engine Sampo. Sampo executesthe service compositions,

3www.goodreads.com
4www.amazon.com



388 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

Figure 2: High level architecture of the Aino service composer

stores the service descriptions and offers Ilmarinen access to the information. The sepa-
ration of the two main componets allows their more independent development. Figure 2
illustrates the high-level architecture of the Aino service composer. The user uses browser-
based Ilmarinen to create service compositions. A service composition is a service. Its
interface is defined as a WADL document and its execution instructions are defined with
the Aino composition description language. Both XML documents are stored in Sampo.
The user interacts with engine component Sampo which is usedto execute the composi-
tions. The execution and possible user interaction relatedto the execution is again done in
a browser based UI.

4.1 Service description

All the constituent services, as well as the service composition, are described with WADL
documents. WADL description defines the service, provided methods and their parameters,
as well as data types. The data types can also be defined as separate XML schema files.
An example of a simple service description is shown below. Ithas a partial definition of
Twitter’s get user timeline method which returns a specifiednumber of tweets from the
given user.

<?xml version="1.0" encoding="UTF-8"?>

<application>

<grammars></grammars>

<resources base="https://api.twitter.com/1.1">

<resource path="statuses/user_timeline.json">

<method href="getTimeline"/>

</resource>

</resources>

<method name="GET" id="getTimeline">

<request>

<param name="screen_name" style="query" type="xsd:string" />

<param name="count" style="query" type="xsd:integer" />

</request>

<response>

<representation mediaType="application/json" />

</response>



Service Composition for End-Users 389

</method>

</application>

4.2 Engine Sampo

Engine Sampo is used in two ways, as a service registry and as an engine to execute the
service compositions. Services can be added in the service registry as WADL descriptions.
It provides the basic functionality for registration of theservices, i.e. API for adding,
removing, and searching the services. When a new WADL is added to Sampo the part of
the categorization of the service and the resources can be done automatically based on the
WADL and an expert user, who understands rest services and WADL, can complete the
information and extend the suggested categorizations.

The given metadata is used to offer Ilmarinen lists of the services. For instance, the user
can ask to get a list of services related to pictures. Thanks to the metadata Ilmarinen only
needs to process WADLs of the services user adds to her composition instead of processing
every WADL.

The other part of Sampo provides a REST interface for adding and executing Aino
descriptions. The service composition execution uses Ainoand the corresponding WADL
descriptions for getting the required information on the services and their API. The engine
uses this information to invoke correct API calls to the services and combine the tasks to
create the complete composite service.

Sampo contains a user interface for handling the compositions. The user can parame-
terize the composition and define time intervals of execution. In case of a recurring task the
service page can be used to start and stop the compositions and change their time intervals.
For instance, one could define a service composition that is launched weekly.

Sampo implements simple basic services, for example, for displaying images and news
feeds. These are available as components in Ilmarinen and can be added to a service
composition in similar fashion as external services.

Sampo is implemented as a Java based web application with theSpring framework5.
Sampo’s implementation is ongoing work. Features that require work include making
Sampo work with a creater number of data types and implementing metadata editing for
services.

4.3 Designer Ilmarinen

Ilmarinen is a client side application, which provides a graphical interface for creating the
service compositions. The user is provided a simple visual environment for defining the
service composition. The composition is done partially in aguided manner. A screenshot
of an early prototype version of the tool is shown in Figure 3.The user can choose the
services e.g. Twitter, BBC Program guide, Weather) she wants based on the service cat-
egory (e.g. Social media, file storage, picture, program guides). For the services the user
can define the interaction and the resources related to the interaction.

In the service composition key elements are the services anddata flow between them.
After adding a service one can see the input and output possibilities offered by it. These

5http://projects.spring.io/spring-framework/



390 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

inputs and outputs are parameterized and services are connected to each other using them.
When the user has finished, Ilmarinen generates the Aino description. This is exported
to Sampo engine for execution. The composition is stored in Sampo and can be accessed
directly using a corresponding link. That allows the users to access and execute the com-
positions directly without using Ilmarinen. This also enables sharing service compositions
among different users.

Figure 3: Screenshot of Prototype of Ilmarinen

4.4 Composite description language Aino

Descriptions written in Aino language define the services and resources involved in the
composition and the dataflow. A dataflow from one service to another means by getting
resource presentation from one service with GET methods andusing it as an input to an-
other service using PUT, POST, or GET methods. Services can provide three types of
resources: resource out (for GETting a representation), resource in (for PUTting or POST-
ing), and resource in/out (for PUTting or POSTing and GETting). For data manipulation,
control nodes, such as merge and select nodes, are used.

The dataflow can be modeled as an acyclic graph structure, which consists of resources,
control nodes, and dataflow connections between them. Control nodes are used for manip-
ulating resource representations, e.g. transforming or filtering data.

In addition to resource, control nodes and dataflow connections, the dataflow includes
definition of method calls that are executed when the composition is run. These method
calls to the services are presented as GET, PUT, POST, and DELETE elements in the
XML description. In addition, the composite service can receive method calls from other
compositions using this as a service or from user agent initiation. These are presented as
onPUT, onGET, onPOST, and onDELETE elements. Corresponding request and response
message types (including data types) are described in the services’ WADL documents.



Service Composition for End-Users 391

These activities corresponding to REST operations are the same, which are used in BPEL
for REST [16] proposal.

Figure 4: Aino language structure

To enable importing and exporting of compositions, Aino descriptions are transformed
in XML format. The structure of Aino language is given in Figure 4. It is explained
in detail using an example Aino description given below. Thegiven description presents
an example of sending links from Twitter tweets to Instapaper6. Instapaper is a service
where users can add links to articles they found from the web that they want to read later.
Resources part defines two resources, Twitter’s user timeline and instapaper’s add, which
participate in the composition. User timeline returns the desired bumber of tweets from
the specified user. Its WADL was an example in section 4.1. Instapaper’s add resource
adds the link in the url parameter to the account whose username and password are in the
respective parameters.

The example composition consists of a receive message and two message invocations.
Execution starts when the client invokes GET method on the composite resource (onGET
element). Execution continues with a sequence of two invocations. First the composite
service invokes GET method on Twitter and second it invokes POST method on Instapaper.

<?xml version="1.0" encoding="UTF-8"?>

<description name="tweetlinks2instapaper" >

<doc>Send links from the 10 most recent tweets from the specified user to Instapaper.</doc>

<services>

<service name = "twitter" id="52d" />

<service name = "instapaper" id="52f" />

</services>

6www.instapaper.com



392 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

<resources>

<resource uri="https://api.twitter.com/1.1/statuses/user_timeline.json"

resource_id ="r1" service_id = "52d" />

<resource uri="https://www.instapaper.com/api/add" resource_id ="r2" service_id = "52f" />

</resources>

<variables>

<variable name="twitterparams" type="variableset" >

<variable name="screen_name" type="string" open = "true" />

<variable name="count" type="integer" value="10" />

</variable>

<variable name="links" type="linklist" />

<variable name="instapaperparams" type="variableset" >

<variable name="username" type="string" value = "john.smith@gmail.com" />

<variable name="password" type="string" value="password123" />

<variable name="urls" type="variablereference" value="links" />

</variable>

</variables>

<dataflow>

<onGET>

<request></request>

<response>links</response>

<resource_id>r_comp</resource_id>

<sequence>

<GET>

<request>twitterparams</request>

<response>links</response>

<resource_id>r1</resource_id>

</GET>

<POST>

<request>instapaperparams</request>

<response></response>

<resource_id>r2</resource_id>

</POST>

</sequence>

</onGET>

</dataflow>

</description>

Variables are used for storing and manipulating message values. For example, the
given code listing defines three variables, which correspond to input and output message
types of the used GET and POST methods. The variablestwitterparams andinstapaper-
params are of the typevariableset which means that they contain multiple variables. These
variables contain the parameters for the requests to the services. This is indicated in the
Aino description by putting them into the request elements of the service call. The member
variables of these setsscreen_name, count, username andpassword correspond directly to
parameters defined in services’ WADLs. So for example Twitter’s user timeline method
has a parameter namedscreen_name. The variable links contains a list of links. Links
from the Twitter method call’s response are saved to this variable. How this information
is extracted from the response is explained in section 4.5. The links variable is also the
response of the composition which means that it will be shownto the user. The variable
is also one of the request parameters for Instapaper becauseof the variable reference in
the instapaperparams. Because Instapaper’s api doesn’t support sending multiple links in
one request, the execution engine has to make multiple post requests but this detail doesn’t
matter to the Aino description.

screen_name is initialized, when the user fills in the required input data, when she



Service Composition for End-Users 393

decides to run the composition (see Figure 5). A control interface is used for specifying
process instance specific information, such as initial value of process variables and repeti-
tion information, which is not part of Aino description.

Figure 5: A Control User Interface for the service Compositions

4.5 Data processing

One challenge in combining different internet services into compositions are the different
ways the services represent the same data. Many services deal with the same kind of
data, e.g. photos or status updates. However, these services represent this data in different
ways. One uses XML in representing its resources while another uses JSON. Even if
both services in a composition use the same format the schemawould very probably be
different. Below is an example of how Twitter and Facebook represent a status update.
Both service’s status update contains the name of the poster, time of the posting and the
actual content of the status. They have different names for these attributes and they also
have a different time format for the posting time. In addition, each service has additional
service specific information about the status update which is not shown here.

Facebook:

{

"id":"201192066592832",

"from":{

"name":"Otto Hylli",

"id":"10883825396030"

},

"message":"Hello, world.",

"updated_time":"2012-05-15T20:35:25+0000",

}

Twitter:

{

"text": "Hello, world",

"id": 377326766385573888,



394 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

"user": {

"id": 918830997,

"name": "Otto Hylli"

},

"created_at": "Mon Aug 16 17:45:23 +0000 2013"

}

Our solution for this problem is to define a set of generic datatypes that internet ser-
vices provide and consume. These types include among othersstatus update, photo, link,
location and product. For each data type we define a group of attributes that this kind of
data generally has. For instance, a status update has the name of the poster, the content of
the status update, and the time of the posting. For a service that returns representations that
correspond to a certain data type the representation needs to be mapped to the data type.
For example, in Twitter’s and Facebook’s cases mapping information tells how to build a
status object from the JSON. For instance, Where in JSON the posting time of the update
is and what the format of the time information is. This means that we need mechanisms to
locate the interesting data from a structured document.

For locating the desired information from the representation we use XPath [23] for
XML representations and JsonPath [6] for JSON. XPath is a language for addressing spe-
cific parts of a XML document. It is based on XPath expressionswhich select the specified
nodes from the XML. JsonPath is a similar system for JSON. XPath and JsonPath based
data processing information can be added by an expert user directly to a service’s WADL
or to the service’s metadatain the service registry. In bothcases the metadata will contain
the required formatting information such as the time formatused. For instance, Twitter’s
time format can be represented with this pattern string: E MMM d H:m:s Z y. The pattern
format used is from the standard Java class used in the implementation to parse dates.

In the WADL XPath or JsonPath information is located inside the representation ele-
ment of a resource’s method’s response. The information itself is contained in the param
elements. The parameter’s name is a keyword that tells what kind of information it con-
tains, e.g. the author of a status update. The path attributeof the parameter contains the
XPath or JSONPath expression itself. The example below shows the representation ele-
ments for Twitter’s and Facebook’s methods that return a list of status updates. A more
refined description of the generic data types and service metadata that uses them will be
published in [8].

Twitter:

<representation mediaType="application/json">

<param name="status_text" type="xsd:string" path="$[*].text" />

<param name="status_creator" type="xsd:string" path="$[*].user.name" />

<param name="status_posted" type="xsd:string" path="$[*].created_at" />

</representation>

Facebook:

<representation mediaType="application/json">

<param name="status_text" type="xsd:string" path="$[*].message" />

<param name="status_creator" type="xsd:string" path="$[*].from.name" />

<param name="status_posted" type="xsd:string" path="$[*].updated_time" />

</representation>



Service Composition for End-Users 395

5 Related work

The idea of cloud computing is based on on-demand services, which are provided as SaaS
applications. In the cloud, traditional business process management tools are already avail-
able as SaaS. However, they are targeted for design and management of structured business
processes. Requirements for on-demand processes differ from traditional BPM. The ideal
solution is to provide an easy and instant mechanism to support execution of personal and
dynamic processes, which utilize existing SaaS applications available on the cloud.

5.1 Tools for mashup development

Ad-hoc processes are often expected to live only for a short time. The lack of documenta-
tion and proper design might make them single-use only. Thus, they may not be reusable
and flexible, but they always need to be recomposed.

JOpera [15] is an Eclipse-based tool build for composing SOAP/WSDL and RESTful
Web services. For software developers it provides many useful features such as process
modeling, debugging and execution. For composing RESTful services JOpera uses BPEL
for REST [16]. BPEL for REST is an extension to WS-BPEL to support compositions
of RESTful Web services. The approach does not rely on usage of WSDL or other ser-
vice descriptions. Resources are defined in the BPEL for RESTdescription as a resource
construct, which defines the resource URI and supported operations.

In [13], Marino et al. present HTML5-based prototype tool support for mashup de-
velopment. They present a visual language for service composition. However, the paper
is missing details on the user interface and tool usage. Also, details on the composition
description are not given.

In [1], Agheeet al. discuss different types of mashups enabled by HTML5. A case
example includes a location sensitive mobile mashup. The mashup runs natively in a mo-
bile device and uses the GPS sensor build-in the device. In addition, it uses external Web
APIs. Location data is sent to a server, which executes API calls to external services.
This enables sharing the application between several uses.Mobile mashups enable use of
real-time data gathered from the sensors in a mobile phone, e.g. real-time navigation.

Bottaroet al. present a simple visual language for composing location-based services
[4]. The user uses a repository of web widgets. Widgets are dragged and dropped to build
UI for the application. The application logic is defined by drawing connections between
data widgets.

In [7], Grönvallet al. present ongoing work on user-centric service composition.GUI
elements are prototypes of service invocations, which can be chained to compose data
flows among services. They present a lightweight tool support for composing simple dy-
namic workflows, such as for combining SMS, email, and calendar services. Instead of
modeling complicated workflows, the emphasis is on the user experience.

In EzWeb project [11, 12], a service-oriented platform for end-user mashup develop-
ment has been built. The idea is to provide gadgets (e.g. Twitter, Flickr) the user could
add to her "application page" creating a set of different applications and web services.
The user can also define dataflow between the gadgets by connecting "events" the gadgets
could give, e.g., an image url could be connected to another image displayer gadget that is



396 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

able to show the picture. All these gadgets are implemented for EzWeb environment. That
is, implementation of their user interface, the way of communicating with servers, their
events and event slots, are specific for the EzWeb environment. In our approach, the aim
is to provide means to compose existing services together and execute these compositions.
Thus, our target is to support composition of any third partyservices by introducing their
service descriptions to our system.

5.2 Describing service compositions

Some approaches for modeling and describing RESTful service compositions have been
proposed. Guidelines for UML modeling of RESTful service compositions is presented
in [17] by Raufet al. The static resource structure is modeled using class diagrams. The
behavioral specification of the composite service is given using state chart diagrams.

In [24,25], Zhaoet al. discuss formal describing of RESTful services and resources as
well as RESTful composite services. Their main interests ison supporting automatic ser-
vice compositions. For service compositions they present alogic-based synthesis approach
utilizing linear-logic and pii-calculus.

In [2], Alarconet al. state that many of the recent service composition approaches rely
on operation-based models and neglect hypermedia characteristics of REST. As a solution
for composing RESTful services, they present a hypermedia-driven approach realized by
using resource linking language (ReLL) for service description. The approach aims to
support machine-clients by enabling automatic retrievingof resources from a web site.
For describing the composite resources PetriNets are used.As an example of a composite
resource, a social network application was presented.

6 Conclusions

Cloud computing is based on on-demand services, which should be available as needed.
Similarly, it should also enable on-demand service compositions. In this paper, an end-
user driven approach for personal service composition has been presented. The proposed
tool support i.e. Aino service composer includes a composition designer running in a
web browser and a server-side engine for storing and executing service compositions. The
designer is designed for the end-users and it is used for creating personal service compo-
sitions. It focuses on end-user concepts and aims to hide complicated and unnecessary
information, e.g. service descriptions, which are handledby the engine. Instead of han-
dling data types, the user is allowed to use concepts such as apicture or a photo gallery.
The presented use cases concentrate on combining social media services into a composite
service. Also, the user is allowed to define repeatable executions for checking updates
from the services.

To characterize the approach, it is designed for cloud environment providing a browser-
based tool for building service compositions. It is based onWADL descriptions, which are
also used for generating GUI widgets for the end-user. In addition, it enables defining
RESTful workflows as a composite service.



Service Composition for End-Users 397

Our future work includes finalizing the implementation and conducting case studies on
applying the approach utilizing the developed tool support. Our future plans also include
experimenting the tool usage with novice users.

References

[1] Aghaee, S. and Pautasso, C. Mashup development with HTML5. In Proceedings
of the 3rd and 4th International Workshop on Web APIs and Services Mashups,
Mashups ’09/’10, pages 10:1–10:8, New York, NY, USA, 2010. ACM.

[2] Alarcon, R., Wilde, E., and Bellido, J. Hypermedia-driven RESTful service com-
position. InProceedings of the 2010 international conference on Service-oriented
computing, ICSOC’10, pages 111–120, Berlin, Heidelberg, 2011. Springer-Verlag.

[3] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F,
Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S.
Business Process Execution Language for Web Services Version 1.1, May 2003.
http://www.ibm.com/developerworks/.

[4] Bottaro, A., Marino, E., Milicchio, F., Paoluzzi, A., Rosina, M., and Spini, F. Visual
programming of location-based services. InProceedings of the 2011 international
conference on Human interface and the management of information - Volume Part I,
HI’11, pages 3–12, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] Fielding, R.T.REST: Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[6] Goessner, S. Jsonpath - xpath for json. http://goessner.net/articles/JsonPath/.

[7] Grönvall, E., Ingstrup, M., Pløger, M., and Rasmussen, M. Rest based service compo-
sition: Exemplified in a care network scenario. In Costagliola, G., Ko, A.J., Cypher,
A., Nichols, J., Scaffidi, C., Kelleher, C., and Myers, B.A., editors,VL/HCC, pages
251–252. IEEE, 2011.

[8] Hylli, O., Lahtinen, S., Ruokonen, A., and Systä, K. Resource description for end-
user driven service compositions. Submitted to 2nd International Workshop on Per-
sonalized Web Tasking (PWT 2014), 2014.

[9] Hylli, O., Lahtinen, S., Ruokonen, A., and Systä, K. Service composition for
end-users. In13th Symposium on Programming Languages and Software Tools
(SPLST’13), page pp.15, 2013.

[10] Internet Engineering Task Force (IETF), http://tools.ietf.org/html/rfc6749.The OAuth
2.0 Authorization Framework, 2012.

[11] Lizcano, D., Soriano, J., Reyes, M., and Hierro, J.J. EzWeb/FAST: Reporting on a
successful mashup-based solution for developing and deploying composite applica-
tions in the "upcoming ubiquitous SOA". InMobile Ubiquitous Computing, Systems,



398 Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

Services and Technologies, 2008. UBICOMM ’08. The Second International Confer-
ence on, pages 488–495, 2008.

[12] Lizcano, D., Soriano, J., Reyes, M., and Hierro, J.J. EzWeb/FAST: reporting on
a successful mashup-based solution for developing and deploying composite appli-
cations in the upcoming web of services. InProceedings of the 10th International
Conference on Information Integration and Web-based Applications & Services, ii-
WAS ’08, pages 15–24, New York, NY, USA, 2008. ACM.

[13] Marino, E., Spini, F., Minuti, F., Rosina, M., Bottaro,A., and Paoluzzi, A. HTML5
visual composition of rest-like web services. In4th IEEE International Conference
on Software Engineering and Service Science (ICSESS 2013), 2013. To appear.

[14] Mikkonen, T. and Salminen, A. Towards a reference architecture for mashups. In
Proceedings of the 2011th Confederated international conference on On the move
to meaningful internet systems, OTM’11, pages 647–656, Berlin, Heidelberg, 2011.
Springer-Verlag.

[15] Pautasso, C. Composing RESTful services with JOpera. In International Conference
on Software Composition 2009, volume 5634, pages 142–159, Zurich, Switzerland,
July 2009. Springer.

[16] Pautasso, C. RESTful web service composition with BPELfor REST. Data Knowl.
Eng., 68(9):851–866, September 2009.

[17] Rauf, I., Ruokonen, A., Systä, T., and Porres, I. Modeling a composite RESTful web
service with UML. InProceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ECSA ’10, pages 253–260, New York, NY, USA,
2010. ACM.

[18] Ruokonen, A., Pajunen, L., and Systä, T. Scenario-driven approach for business
process modeling.Web Services, IEEE International Conference on, 0:123–130,
2009.

[19] Singhal, M., Chandrasekhar, S., Ge, T., Sandhu, R., Krishnan, R., Ahn, G-J., and
Bertino, E. Collaboration in multicloud computing environments: Framework and
security issues.Computer, 46(2):76–84, 2013.

[20] W3C, http://www.w3.org/TR/wsdl.Web Services Description Language (WSDL) 1.1,
2001.

[21] W3C, http://www.w3.org/. Simple Object Access Protocol (SOAP) 1.2, 2007. Last
visited December 2011.

[22] W3C, http://www.w3.org/Submission/wadl/. Web Application Description Language
(WADL), 2009.

[23] W3C, http://www.w3.org/. XML Path Language (XPath) 2.0 (Second Edition), 2010.



Service Composition for End-Users 399

[24] Zhao, H. and Doshi, P. Towards automated RESTful web service composition. In
Web Services, 2009. ICWS 2009. IEEE International Conference on, pages 189–196,
July.

[25] Zhao, X., Liu, E., Clapworthy, G.J., Ye, N., and Lu, Y. RESTful web service com-
position: Extracting a process model from linear logic theorem proving. InNext
Generation Web Services Practices (NWeSP), 2011 7th International Conference on,
pages 398–403, Oct.


