
Acta Cybernetica 21 (2014) 529–552.

Mobile Platforms and Multi-Mobile Platform

Development∗

Hassan Charaf, Péter Ekler, Tamás Mészáros, Imre Kelényi,
Bence Kovari, István Albert, Bertalan Forstner, and László Lengyel†

Abstract

Mobile devices and mobile applications have a significant effect on the
present and on the future of the software industry. The diversity of mobile
platforms necessitates the development of the same mobile application for all
major mobile platforms, which requires considerable development effort. Mo-
bile application developers are multiplatform developers, but they prioritize
the platforms, therefore, not all platforms are equally important for them.
Appropriate methods, processes and tools are required to support the de-
velopment in order to achieve better productivity. The main motivation of
our research activity is to provide a method, which increases the develop-
ment productivity and the quality of the applications and also reduces the
time to market. The paper discusses our model-driven results on the field of
multi-mobile platform development.

Keywords: Design Tools and Techniques, Domain-specific architectures, Do-
main engineering, Reusable libraries, Software Engineering Process

1 Introduction

Mobile devices play a significant role in the daily lives of the majority of people
living in a consumer-based society [12] [32]. Many people own one or more mobile
devices, from numerous device distributors, with a variety of special features, ca-
pabilities and application programming frameworks. The diversity of the mobile
platforms requires to develop the same application several times, once for each of
the supported mobile platforms.

∗This work was partially supported by the European Union and the European Social Fund
through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013) organized by
VIKING Zrt. Balatonfred. This work was partially supported by the Hungarian Government,
managed by the National Development Agency, and financed by the Research and Technology
Innovation Fund (grant no.: KMR 12-1-2012-0441).
†Budapest University of Technology and Economics, E-mail: {hassan, peter.ekler,

mesztam, imre.kelenyi, kovari, ialbert, bertalan.forstner, lengyel}@aut.bme.hu

DOI: 10.14232/actacyb.21.4.2014.2

530 Charaf et al.

In 2008 $4.2 billion was spent on mobile applications. In 2013, an estimated
$29.5 billion will be spent [12]. Both the tendency and the magnitude of these
numbers reflect the fact that mobile phones are a strong part of our everyday life.
We always take our mobile phones with us, continuously check our e-mails, social
networks and other websites.

The mobile developer mindshare in 2013 shows that Android is leading with
more than 70% of developers using the platform, followed by iOS at about 55%
[33]. The [33] survey is based on more than 6,000 developers’ mind from over 115
countries. Currently HTML5 is also a mobile development technology, with more
than 50% of the developer population using HTML5 technologies for developing
mobile applications. In case of HTML5, there are different approaches to mobile
development:

• Mobile websites: websites that are designed to be rendered on small screens.
Responsive websites are included into this category.

• Mobile web applications: websites with offline storage and deeper browser
integration.

• Hybrid applications, using native wrapper: in this case HTML code wrapped
in a browser, within a native shell (e.g. PhoneGap [26]).

• Applications using native JavaScript API: platforms exposing software and
hardware services through a JavaScript API (e.g. Firefox OS [9] and Black-
Berry 10).

• HTML5/JavaScript applications converted to native: JavaScript is handled
as a platform independent code and convert it to a native application (e.g.
Appcelerator Platform).

The applications developed with the first two approaches are distributed as web
applications, while others as native applications via the application stores.

The latest research [33] shows that developers’ platform choices depend very
much on the goal they aim to achieve. When it comes to platform selection, contract
developers vote for platforms that will generate more revenue, Chief Information
Officers (CIOs) prefer efficiency and low cost, Chief Marketing Officers (CMOs)
focus on reach, while hobbyists want to experiment with newer platforms [34].

There is no one-size fits all across mobile platforms. iOS is selected more fre-
quently than average by developers who focus on value revenue potential, graphics,
application discovery and user reach. Developers tend to use HTML5 more fre-
quently as their primary platform when they value porting and speed and cost of
development. BlackBerry 10 is used more frequently than average as a primary
platform by developers valuing developer community programs. Windows Phone
is most popular for developers who are already familiar with the .NET Framework
[33].

We can see that the current market is rather colorful. Today’s mobile application
developer is a multi-platform developer. Developers use almost 3 mobile platforms

Mobile Platforms and Multi-Mobile Platform Development 531

concurrently. The surveys do not show a significant difference in the last 3 years,
i.e. the value is always between 2.6 and 3.2. Therefore, the main motivation of
our research activities is to support the developers with appropriate multi-platform
development methods and tools.

Our team has a reasonable experience both on the filed of mobil application
design and development, and on the multi-platform management. In our approach,
multi-platform solutions are driven by model-based solutions and software artifact
generation methods. During the last 12 years we have supported multi-mobile ap-
plication development in different ways with several different methods. We have
worked out common mobile platforms, provided methods to synchronize user inter-
faces of different mobile platforms [20], and applied multi-paradigm modeling tech-
niques in multi-platform mobile development [17]. Furthermore, we have moved
forward a model-based unification of mobile platforms method [18]. Also, we have
introduced the VMTS mobile toolkit [19] that is based on out modeling and model
processing framework (Visual Modeling and Model Transformation System [4] [35]).

In the last two years we have standardized the results of all these activities,
redesigned and rebuilt our multi-platform development method. This paper sum-
marizes the result of our actual activities and introduces the new method we use
in our current multi-platform development software projects.

The rest of this paper is organized as follows. Section 2 discusses the mobile
platforms, concentrating on the market share and platform diversities. Section
3 provides our earlier results on the field of multi-mobile platform development.
Section 4 and 5 introduces the details of the actual results and current multi-mobile
platform development method. The discussed model-driven method supports the
generation of software artifacts from common mobile application models. Section 6
summarizes the related work and compares our solution with other multi-platform
approaches. Finally, conclusions are elaborated.

2 Mobile platforms

The different mobile platforms and the different strategies of the device manufac-
turers continuously modify the market conditions. The manufacturers provide not
only devices but different services as well. End users are served with several custom
solutions and trendy features. The competition of the platforms and the handset
makers led to the current situation.

The mobile device market currently (in 2013) is dominated by Android devices,
from low-end feature-phone replacements to high-end devices. In the first half of
2013, Android had about 75% of all smartphone shipments, while iOS had another
18% leaving very little room for anyone else [13] [33].

Smartphone sales by handset makers show that Samsung is at the top end, and
there are numerous competitors at the long tail of the distribution (Apple, LG,
Nokia, Huawei, BlackBerry, ZTE). The other segment, which is not covered by
the mentioned manufacturers of smartphone makers is currently selling as many
devices as Samsung. These handset makers are made up of hundreds of Android

532 Charaf et al.

handset producers. Taking these into account, it is interesting that Samsung’s main
competitor in terms of market share is not Apple, but these handset makers who
are able to supply the cheapest possible smartphones, customized for every corner
of the developing world [33].

The reason Samsung is still making profits among modular handset makers
is because they have realized that there are no profits to be made in handset
production itself. In other words, hardware is not enough. Instead, value has
migrated upwards in the technology stack (to services) and downwards (to handset
components). Also, it is a fact that Samsung spends more for marketing than
Coca-Cola.

The lead platform is where new applications and features are first rolled out and
which can be the star of the marketing launch. Prioritization also has an impact
on focus, application quality, sales and revenue. The way developers prioritize the
platforms has a direct impact on the overall perception of the platform. If most
developers treat a platform as a second-class citizen, this will reflect negatively on
the application quality and consequently, on developers’ revenue opportunity on
that platform. Developers that prioritize a platform will act as evangelists for that
platform, as they are likely to create high quality, most up-to-date applications
and praise the platform at events or social media. As a consequence, supporting
developers with tools, documentation, frameworks and easy-to-use libraries can
increase the market share of the platform [33].

Actual surveys show that more than 80% of mobile developers are using iOS,
Android or HTML5 (mobile) as their primary target platform. In this world, not all
platforms are equally important to a developer. Platform priorities also depend on
the level of experience. Developers who are fresh to mobile have a much stronger
preference towards Android, with almost twice as many new mobile developers
preferring Android than iOS.

Asking a developer to switch to a different platform is like asking someone to
learn a foreign language. This is a task that takes months. The challenge is not
just about the language (Objective C, Java, C#, HTML or JavaScript) itself. It is
the set of APIs, development environment, publishing process, and the 3rd party
tools ecosystem that supports the platform. Learning a language nowadays is not
very hard, they all look the same (literally), but what a developer has to learn is
the API.

Developer tools are not just nice-to-have. Tools are in the must-have appli-
cation development arsenal of the most sophisticated developers, and also those
making most revenues. Appropriate tools can increase the productivity also the
quality of the products. Tools can support to utilize certain artifacts for several
different mobile platforms. Developer tools can make a platform more attractive
for developers. Also the tool can reduce the time to market for mobile applications.

As a summary we can conclude that today’s developers are multiplatform de-
velopers, but not all platforms are equally important for them. In case of the mul-
tiplatform developers the main decisions are often based on priorities. Appropriate
methods, processes and tools are required to target several platforms, support the
development in order to achieve better productivity and quality.

Mobile Platforms and Multi-Mobile Platform Development 533

3 Multi-mobile platform development - Our ear-
lier results

In embedded software development, reuse is recognized as a key factor for better
productivity at lower costs. In the ideal case, the product family approach makes it
possible to reuse elements in a whole range of related products. The family members
are based on a common architecture and rely heavily on reusable components, thus
allowing the developers to concentrate only on the required variation between the
products. This approach also enables the developers to focus on design instead of
implementation details.

We have realized that from the perspective of mobile software development one
of the greatest challenges is caused by the fragmentation of mobile platforms. Each
mobile platform has different advantages, thus it is hard to find an ultimate platform
for applications. Not only the development tools but the supported languages and
even the application life cycles are different, thus each platform requires developers
with special knowledge related to the specific platform. To make it possible to
support the creation of a common development platform, we have to apply methods
that move a reasonable part of the development to a higher abstraction level.

One of our first solution was the Common Mobile Platform (CMP), which
was a solution applied between 2005 and 2008 to model mobile applications and
generate source code for different mobile platforms. CMP defines a model and
XML language for describing mobile applications and provide a generator mecha-
nism which generates working source code for the following mobile platforms: Sym-
bian 3rd edition, 5th edition [14], Windows Mobile 5-6, Microsoft .NET Compact
Framework (.NET CF) [37] and Java 2 Micro Edition (J2ME) [16]. The solution was
based on the Model-Driven Architecture (MDA) [22]. We differentiated platform-
independent models that described the common behavior of the required application
and platform-specific models generated automatically from platform-independent
models. The source code is also automatically generated from platform-specific
models. The generated code utilized the frameworks prepared to support the area.

Domain-specific models [11] have another remarkable advantage over usual soft-
ware development methods: by using different code generation templates, we can
produce applications for different application platforms. This means that from a
single model set, we can generate our application for all target platforms, including
mobile platforms, web and desktop applications as well, and thus, changes applied
on the models can be immediately implemented on all platforms.

The Simplian Framework. Even tough, Symbian was one of the most pop-
ular mobile platforms, Symbian-based software development was far more difficult
and required more specific skills than the development of desktop applications.
This stemmed not only from the prestandard C++ characteristics, but also from
the absence of easy-to-use integrated development tools.

We can mention, for example, the complicated memory management (for in-
stance cleanup stack and two-phase object construction), the special exception-
handling (leave-mechanism), string- and array handling, or the unique aspects of

534 Charaf et al.

resource-management. Also, developers must strictly take care of these uncommon
circumstances, since ignoring them could lead to bugs that are hard to identify.

We provided a class library that helped the programmer by hiding all the recur-
ring tasks deriving from the mentioned facts. The Simplian Framework provided an
API for constructing the user interface of the application, and other simple means
to bind data to the widgets, or send and receive them through different commu-
nication channels. Simplian also provided tools to generate the C++ code from
a well-defined, platform-independent XML file, which could be constructed by the
modeling tool [1].

The Symbian platform related model processor supported user interface, data
binding and database generation, thus, a database metamodel was also provided
as an input. The model processing solution used the Microsoft CodeDOM technol-
ogy [31] for code generation. The CodeDOM consisted of classes representing the
syntactic elements of the .NET languages, like C# and managed C++.

The .NET Compact Framework.Applying the same method with different
model processors we generated applications from the same models for devices with
.NET Compact Framework. We do not introduce the model processors related to all
aspects of different mobile platforms, but we note that the main difference between
the two transformations (Symbian and .NET CF related transformations) was in
the resource model (user interface model) processing. For the .NET CF platform
certain properties of the user controls are generated based on the attributes of
the resource model. The rewriting rules did not use these attribute values during
the generation for Symbian platform, because the controls were placed strictly one
below other.

The presented approach made possible to use visual languages to define user
interface, database and communication models that described the different aspects
of mobile applications. The solution provided model processors to generate the
platform-specific source code. The solution was realized with domain-specific lan-
guage engineering and graph rewriting-based model transformation.

4 Multi-mobile platform development - Overview
of the actual method

Model-driven software engineering is an actively researched field. The growing size
and complexity of software systems made software modeling technologies essential
in application development. Model-driven development approaches can increase
the development productivity and the quality of the produced software artifacts.

Model-driven development approaches emphasize the use of models at all stages
of system development. In model-based development, models are used to describe
the most artifacts of the system, i.e., interfaces, interactions, and properties of all
the components that comprise the system. These models can be manipulated in a
number of different ways to describe the system, and in certain cases to generate
the complete implementation of the system. In order to capture the semantics that
is as close as possible to the domain of the developed system in an effective manner,

Mobile Platforms and Multi-Mobile Platform Development 535

building a domain-specific modeling language is a suitable choice. Using domain
concepts to modeling systems helps increase productivity, makes systems easier to
maintain and evolves and shortens the development cycle.

Our modeling and model transformation framework is the Visual Modeling and
Transformation System (VMTS) [4] [35]. VMTS is a metamodeling environment
which supports editing models according to their metamodels. Models are formal-
ized as directed, labeled graphs. VMTS uses a simplified class diagram for its root
metamodel (”visual vocabulary”).

Also, VMTS is a model transformation system, which transforms models using
both template-based and graph rewriting techniques. Moreover, the tool facilitates
the verification of the constraints specified in the transformation step during the
model transformation process. VMTS has been developed since 2003.

The VMTS approach uses a graphical notation for control flow (the execution
sequence of the transformation rules): stereotyped UML activity diagram [23].
The control flow language can express a transformation as an ordered sequence of
the transformation rules. Classical graph grammars apply any production that is
feasible. This technique is appropriate for generating and matching languages, but
model-to-model transformations usually need to follow an algorithm that requires
a stricter control over the execution sequence of the steps, with the additional
benefit of making the implementation more efficient. The control flow language
supports the following constructs: sequencing transformation steps, branching with
C# conditions, hierarchical steps, parallel execution of the steps, and iteration.

The architecture of the application generation process is depicted in Figure 1.
The modeling of mobile applications and the processing of these models are per-
formed in a framework. We use mobile, domain-specific languages to define the
required structure and application logic. Platform-specific model processors are ap-
plied to generate the executable artifacts for different target mobile platforms. The
generated code is based upon the previously assembled mobile, platform-specific
frameworks. These frameworks provide energy efficient solutions for mobile appli-
cations. Furthermore, some data processing or computationally intensive tasks are
passed into the cloud to save the battery power of the mobile device.

Mobile, domain-specific languages address the connection points and common-
alities of the most popular mobile platforms. These commonalities are the basis
of further modeling and code generation methods. The main areas, covered by
these domain-specific languages, are the static structure, business logic (dynamic
behavior), database structure and communication protocol. Using these textual
and visual languages, we are able to integrate the use of cloud services into the
business logic.

For each target platform, a separate transformation should be realized since,
at this step, we convert the platform-independent models into platform-specific
executable code. The transformation expects the existence of the aforementioned
frameworks and utilizes their methods. The generated source code is essentially
a list of parameterized activities (commands) that certain functions of the mobile
application should perform. This means that the core realization of the functions
is not generated but utilized from mobile-platform specific frameworks, i.e., the

536 Charaf et al.

Figure 1: Supporting multi-mobile platform development

generated code contains the correct function calls in an adequate order, and with
appropriate parameters. The advantages of this solution are the followings:

• The software designer has easier task. The model processors are simpler. The
model processing is quicker. The generated source code is shorter and easier
to read and understand.

• We use prepared mobile, platform-specific frameworks. These frameworks are
developed by senior engineers of the actual mobile platform.

The current wave of our research activities is focused on the Android [3], iOS
[15] and Windows Phone 8 [10] [29] platforms.

Model processors generate platform-specific source code. Developers integrate
the generated code into the source of a native application. The generated code
is based on well tested libraries created by platform specialists. Therefore, the
generated code does not contain the whole implementation of the features, instead,
it utilizes the services of the library via API calls. In this way the library can be
utilized several times by different generated and hand written source code snippets.
This is because the goal is not to generate all of the code, but (i) to perform the
modifications where it is easier (either in the model world or in the source code),
(ii) automatic synchronization from model to code, which is supported by separated
source files for generated and hand written code (partial classes, inheritance), and
to (iii) speed up the development of the same application for different platforms.

Table 1 summarizes the tasks that are typically required during mobile ap-
plication development. The table highlights which tasks are supported with our
approach and which tasks requires further manual coding. In the current state of

Mobile Platforms and Multi-Mobile Platform Development 537

our solution the network communication and the resource management is already
implemented in the framework while the others are under development.

Table 1: Mobile development tasks.

Task Approach
User interface and screen flow Manual (mockup can be generated)
Custom views Manual
Persistence and data model Generate
Network communication Generate
Resources (localization) Generate
Business logic Generate
Multimedia (e.g.: camera, music) Generate
Location based services and map Generate

The key points and the evaluation of the method. In summary, we still
do not believe that manual coding can be eliminated, because there are complex
functions and platform-specific tasks, which require manual coding. This means
that the gluing code required to integrate the generated source, platform specialties
and the custom logic are manually added. But it is worth to model several parts
of the application and generate the appropriate source code based on it. This
increases the quality and shortens the time to market of the applications. We
are applying the method in both mobile application development and server side
component development. Key points of the approach are the prepared platform-
specific frameworks and libraries. They can be utilized by both generated and
handwritten code, therefore they support rapid development and provide higher
quality.

5 The methods of multi-mobile platform develop-
ment

5.1 Modeling: Defining the Mobile Applications on a Higher
Abstraction Level

Instead of discussing all aspects of mobile platforms that the method supports, we
decided to focus on one area of the covered fields and provide more details about it.
The selected area is the rapid prototyping of REST-based communication channels
(Representational State Transfer) [8] [27]. The methods supporting this area, i.e.
the way how we model some aspects of the mobile platforms and how the model
processors generate the source code, are similar for several different aspects of
mobile platforms as well.

Depending on the expectations of the customer, the mobile application develop-
ers need to develop either only the mobile clients for an existing server application

538 Charaf et al.

or the server applications supporting the clients as well. In the most common
scenario, there is one server-side application, and the mobile clients should be de-
veloped for multiple target platforms concurrently. Therefore, the communication
layer should be developed for each platform. Though, the concrete implementa-
tions of the layers on the different platforms show significant similarity, it is not
possible to reuse the source code between the platforms because of the different
languages and runtime environments. These facts are motivating issues to apply
platform-independent modeling and model processing to support these types of
challenges.

Mobile applications usually apply a REST-based communication channel when
it is about data exchange between the different devices. In REST, the operations
of the server application can be accessed with the help of a properly formatted
HTTP request. The parameters of the request may be encoded either into the
request URL itself, or into the body of the HTTP request. In the latter case, the
formatting of the parameters may be arbitrary, although the two most often applied
serialization mechanisms for the parameter objects are XML and JSON. The server
application responds to such a request with a HTTP response that contains the
response parameters in its body (again, usually as XML or JSON). Even though we
know if the request and response body is formatted as XML or JSON, their concrete
schema may be arbitrary and is not tied to strict rules like in case of SOAP [30].
Consequently, the serialization and deserialization procedures as well as the URL
generators and interpreters should be developed on both the client and the server
sides. Furthermore, in case of the client application, the same development must
be performed in case of each targeted mobile platform as well.

As an initial step, we focus on REST APIs exclusively and automate this error
prone, monotonous coding for the client side. We have elaborated a modeling
language that is able to describe server-side operations, the data types used and
the way of parameter serialization. We have also prepared the generators that
automate the creation of the client-side communication layer based on the models.

There are various forms to represent a modeling language. For practical reasons
and to speed up the initial development we have chosen to realize this language
based on an already existing programming language: C#. The idea is to define the
communication API with the help of C# interfaces and to generate the concrete im-
plementations based on these interface definitions for various platforms. Utilizing
C# as a base language has several benefits over implementing a proprietary mod-
eling language, or using general purpose data description languages like XML or
JSON to describe the data models. First, the syntactic and semantic verification of
the language can be performed using existing C# compilers without any additional
effort. The appropriate usage of the types is forced by the strongly-typed property
of C#. By compiling the interfaces into a .NET assembly, we can easily traverse
and interpret the models by traversing the assembly using reflection. Next, since
the final generated code is using languages similar to C# (C#, Java, Objective
C), the data structures and interface definitions are close to the final implementa-
tion and can be described in a way familiar to the developers. Furthermore, the
VMTS environment handles C# as the textual concrete syntax of the models, and

Mobile Platforms and Multi-Mobile Platform Development 539

in a similar way visual concrete syntax can be also provided for the same model.
Users can decide which concrete syntax (textual or visual) they want to use for the
interface definition.

With the help of interfaces, we can precisely define the methods that can be
called on the server application, and we can also define the possible data types we
can pass to these methods or we can expect from these methods as a result value.
The way how such a method call is performed, how the parameters are serialized
when passing them to the methods and how the result values are deserialized on
a successful call can be customized with the help of .NET attributes. The code
generators processing these custom domain-specific models (interfaces) discover the
attributes attached to the elements of an interface definition and modify the code
generation accordingly.

Now we introduce our approach with an example, where the server has a simple
method that is used to create a new user in the target system. The method expects
one parameter (the name of the user) and returns nothing. The corresponding C#
interface is the following.

[RestApi]

public interface MyService

{

void insertUser(string userName);

}

To indicate that this interface defines the API of a server application we de-
note it with the [RestApi] attribute above the interface. By finding this attribute
the code generator will recognize that this interface should be treated as a REST
API interface, and it should generate the client-side proxy class for that. This
[RESTUrl] attribute specifies which Url to invoke. This way, the generated proxy
will navigate to the insertuser.php page, and pass the username as url parameter
(like insertuser.php?userName=XXXX).

If we would like to use different parameter names instead of the names of the
parameters in the C# interface, we may customize that using the [RestParam]
attribute.

[RestApi]

public interface MyService

{

[RestMethod(Url = "insertuser.php")]

void InsertUser ([RestParam(Name="usr")]string userName);

}

In the example above, though, the name of the parameter is username, it is
mapped to the usr http GET parameter (insertuser.php?usr=XXXX). If we need
to use different HTTP methods, e.g. POST instead of GET to call the server-side
service, we can specify it as the CommandType a parameter of the [RestMethod]
attribute.

540 Charaf et al.

Changing the command type to POST (possible values are GET, POST, PUT,
DELETE) we just instruct the code generator to generate a proxy code that uses
the HTTP POST command to send the request. The passed parameters are still
encoded into the request url, as before. If we would like to pass the parameter inside
the body of the HTTP request as HTTP form parameter instead of the request url
itself, then we can set it up using the Mapping parameter of the [RestParam]
attribute.

[RestApi]

public interface MyService

{

[RestMethod(Url = "insertuser.php",

CommandType = CommandType.POST)]

void InsertUser ([RestParam(Name="usr", Mapping =

RestMethodMappingType.Body)]string userName);

}

The default value for Mapping is RestMethodMappingType.Url. Although, we
can already pass single parameters both in the request URL and in the HTTP body
as form parameters, often the argument should be handled as not a parameter of
the target resource but a locator for the target resource. E.g. consider that the
user we create is assigned to a specific client. But the client is not passed as
a parameter to the insertuser.php page, but the insertuser.php page is located
inside the appropriate client folder like http://..../client1/insertuser.php... . To
map a specific parameter into the resource Url at a specific position, we must set
the Mapping argument for that parameter to RestMethodMappingType.Custom,
indicate the position of this parameter with the $ character.

Since a server method usually has a return value as well, it must be handled
by the generated proxy code. Consider that the InsertUser method returns the
unique id of the newly created user inside the HTTP response as plain text. This
return value can simply be returned by the generated proxy method by setting the
return type of the InsertUser method to string.

[RestApi]

public interface MyService

{

[RestMethod(Url = "$client/insertuser.php", CommandType =

CommandType.POST)]

string InsertUser ([RestParam(Mapping =

RestMethodMappingType.Custom)]string client,

[RestParam(Name="usr",

Mapping = RestMethodMappingType.Body)]string userName);

}

If the service returns a more complex value serialized in XML format, we may
use custom return types as well, and indicate the type of serialization using the
ReturnFormat property of the RestMethod attribute.

Mobile Platforms and Multi-Mobile Platform Development 541

[RestApi]

public interface MyService

{

[RestMethod(Url = "$client/insertuser.php", CommandType =

CommandType.POST, ReturnFormat = FormatType.XML)]

UserInfo InsertUser ([RestParam(Mapping =

RestMethodMappingType.Custom)]string client,

[RestParam(Name="usr", Mapping =

RestMethodMappingType.Body)]string userName);

}

Here we support four options: XML, JSON, Forms and Raw. The Forms option
covers the case when the parameters are formatted as HTTP POST key-value
pairs, while the Raw formatting means transferring the value as it is, without any
formatting.

The type of serialization and the way how parameters are passed is usually the
same for each method within the same service. Thus, to avoid the tedious setup
of the RestParam attribute at each method (if they differ from the default one), it
is also possible to set up the common parameters for the entire service by placing
this attribute above the interface declaration:

[RestApi]

[RestParam(Mapping = RestMethodMappingType.Body, Format =

FormatType.Form)]

public interface MyService

{

[RestMethod(CommandType = CommandType.POST)]

UserInfo InsertUser(string client, string userName);

}

In the example above, both parameters of the InsertUser method are serialized
as form parameters inside the body of the HTTP request. If someone needs different
behavior for specific method parameters, the default settings may be overridden by
a RestAttribute parameter placed in from the related parameters.

Declaration of the custom data types. In most practical cases, the param-
eters expected by the methods or the return values of them are not only primitive
types like string, integer or floating point number, but complex types consisting of
multiple fields.

For this purpose, we have defined another interface-level attribute called Rest-
Dto that is the abbreviation of REST Data Transfer Object. Interfaces marked
by this attribute will be handled by the code generator as simple classes used for
representing and transmitting data. Of course, in addition to the standard data
storing feature of such an object, the code generator may extend it with various
additional features like change notification, equality comparison and so on.

Assume that when creating a new user, we would like to pass also the full
name and the age of the user to be created, and we do not want to use a separate

542 Charaf et al.

method argument for them but handle them as one unit. Then we may wrap these
parameters into a new DTO interface.

[RestDto]

public interface User

{

string UserName { get; set; }

string FullName { get; set; }

int Age { get; set; }

}

A complex type cannot be simply encoded into the request Url, thus, we must
set it up to be serialized inside the body of the HTTP POST request.

Using the default settings, the user parameter would be serialized as converting
its fields into HTTP form parameters. But typically, in the REST communication
rather XML or JSON serialization is applied. The way how complex parameters
should be serialized can be specified with the Format argument of the RESTParam
attribute.

[RestApi]

public interface MyService

{

[RestMethod(Url = "$client/insertuser.php",

CommandType = CommandType.POST)]

string InsertUser ([RestParam(Mapping =

RestMethodMappingType.Custom)]string client,

[RestParam(Mapping = RestMethodMappingType.Body,

Format = RESTFormatType.XML)]User user);

}

Of course, the same data may by serialized as XML in an infinite number of
ways. By default, we assume each member field to be serialized as an XML tag
identified by the name of the tag, while the value of the field is serialized as the
content of the XML tag. If this value is of primitive type, then simply its printed
value, if the value is of a complex type, then the same method is applied recursively.
If we would like to change the way how the XML document is generated and parsed,
we can perform it using the standard .NET XML formatter attributes by attaching
them to the DTO definition.

Often, it is more comfortable to pass parameters to a method call as separate
arguments, however, we would like to serialize them as one connected XML doc-
ument. For example, we would like to use separate username, password and age
arguments for the InsertUser method, but would like to serialize them in the re-
quest body as they would be part of one User class. For this purpose, you may set
the IsCoupled property of the RestParam attribute to true:

[RestMethod(Url = "$client/insertuser.php",

Mobile Platforms and Multi-Mobile Platform Development 543

CommandType = CommandType.POST)]

UserInfo InsertUser([RestParam(Mapping =

RestMethodMappingType.Custom)]string client,

[RestParam(Mapping = UrlMappingType.Body, Format =

FormatType.XML, IsCoupled = true)]User user);

The method signature generated based on this declaration will look like this:

UserInfo InsertUser(string client, string userUserName,

string userPassword, int userAge)

However, the last three parameters will be serialized as one XML document like

<User usr="joe" full="John Doe" age="30"/>

Figure 2 summarizes both the Service interface and the DTO specification at-
tributes.

Figure 2: Service interface and DTO specification attributes

544 Charaf et al.

5.2 Model Processing: Generating the Software Artifacts

Having the features of a network service, including its methods and the applied data
types already defined, the next step is that to generate executable source code which
is able to perform the communication with the server component. There are various
solutions that can be utilized when it is about code generation, we have chosen the
Microsoft T4 (Text Template Transformation Toolkit) [24]. T4 is a mixture of
static texts and procedural code: the static text is simply printed into the output
while the procedural code is executed and it may result in additional texts to be
printed into the output. Recall that, the interface definitions are compiled into a
.NET assembly that can be loaded and traversed using reflection afterwards. The
T4 templates we write also work on the reflected content of the assemblies.

Currently we are targeting two mobile platforms: Windows Phone 8 (C#) and
Android (Java). Therefore, we need to prepare two different T4 templates for the
two platforms. In case of Windows Phone, we expect the data transfer objects be
represented by C# classes, the fields of the DTO entities should be represented
as .NET properties, and the generated classes should also support some kind of
change notification about changes in the properties. A possible implementation of
the template is the following.

[System.Diagnostics.DebuggerStepThroughAttribute()]

[System.CodeDom.Compiler.GeneratedCodeAttribute

("System.Runtime.Serialization", "3.0.0.0")]

[System.Runtime.Serialization.DataContractAttribute

(Name="<#=type.Name#>")]

public partial class <#=type.Name#> :

System.ComponentModel.INotifyPropertyChanged

{

<# foreach (var pi in type.GetProperties()) { #>

private <#= pi.PropertyType.FullName #> <#=pi.Name#>Field;

public <#= pi.PropertyType.FullName #> <#=pi.Name#>

{

get

{

return this.<#=pi.Name#>Field;

}

set

{

<# if (!pi.PropertyType.IsValueType) { #>

if (!object.ReferenceEquals(this.<#=pi.Name#>Field,

value)) <# } else { #>

if (!this.<#=pi.Name#>Field.Equals(value))<# } #>

{

this.<#=pi.Name#>Field = value;

Mobile Platforms and Multi-Mobile Platform Development 545

this.RaisePropertyChanged("<#=pi.Name#>");

}

}

}

<#}#>

public event System.ComponentModel.

PropertyChangedEventHandler PropertyChanged;

protected void RaisePropertyChanged(string propertyName)

{

System.ComponentModel.PropertyChangedEventHandler

propertyChanged = this.PropertyChanged;

if ((PropertyChanged != null))

{

PropertyChanged(this, new

System.ComponentModel.PropertyChangedEventArgs(

propertyName));

}

}

}

The input of the template (type) is the reflected DTO type. The resulting
code will describe a partial class the name of which corresponds to the name of the
interface. Then, the template iterates through all the fields declared in the interface,
generates a private variable and a wrapper property for the variable. When setting
up the value of the property, it checks if the new value is really different from
the previous one, and changes the value of the underlying variable if it is really
different. Then it also calls the RaisePropertyChanged method (passing the name
of the changed property to it as parameter) that fires the PropertyChanged event.

For the Android (Java) implementation we do not need the DTOs to support
any special features thus, here we just generate plain old Java (POJO) classes
collecting private fields with getter and setter methods. The corresponding T4
template is much simpler as well.

<# Type type = this.DTOType; #>

<#= RenderCustomAttributes(type) #>

public class <#=type.Name#> {

<# foreach (var pi in type.GetProperties()) { #>

<#= RenderCustomAttributes(pi) #>

private <#= AHelper.MapType(pi.PropertyType) #> <#=pi.Name#>;

public <#= AHelper.MapType(pi.PropertyType) #>

get<#=pi.Name#>() { return this.<#=pi.Name#>;

546 Charaf et al.

}

public void set<#=pi.Name#>(<#=

AHelper.MapType(pi.PropertyType) #> value) {

this.<#=pi.Name#> = value;

}

<#}#>

}

There is a big difference compared to generating target code for C#, though.
Since the interface was also written in C# and uses the primitive types of the .NET
Base Class Library, and we are traversing the .NET assembly, we must translate
the .NET types to Java types. In case of the C# generator template, we could
simply jump over this step, since we could use the same type names as in the inter-
face definition itself (see PropertyType.FullName in the template). In case of the
code template for Java, we perform this translation using the TTHelper.MapType
method. This is a custom implementation handling some primitive types only, but
can be arbitrarily extended with further types as well.

Proxy generation for the service methods. In general, it is advised to keep
the generators as simple as possible, and outsource all the common implementations
into helper classes or base classes. We followed this principle during realizing the
code templates that generate the service proxy classes.

In case of the .NET implementation, all the communication-specific parts of the
implementation are moved into the RestClient class. Its SendRequest method is
used to perform the serialization and deserialization of the method parameters and
the return value as well as the sending and receiving of the HTTP requests. For
this purpose, the SendRequest method needs to know how the parameters should
be processed during the assembling of the messages. Therefore, we utilize the same
interface-, method- and parameter-level attributes into the generated code as well
and let SendRequest discover these settings via reflection.

In case of the Android implementation, all the communication-specific parts
of the implementation are outsourced into the RESTTask class that is subclassed
from AsyncTask. In case of an Android AsyncTask, the network communication
is performed on an asynchronous thread, and the caller of the thread is notified
about the result via a BroadcastReceiver object. This object can then identify the
called method and interpret the answer for the HTTP request. Therefore, we have
split the implementation of the service proxy into two parts: the one is responsible
for serializing the method parameters and instructing RESTTask to perform the
HTTP request with the appropriate parameters, the other one (RestBroadcastRe-
ceiver) is responsible for receiving the asynchronous HTTP responses and to call
the appropriate method to process the answer.

We use T4 templates to perform the above introduced method. Beside the
discussed Android and Windows Phone platforms related templates the solution
also supports the iOS platform with platform-specific templates.

Mobile Platforms and Multi-Mobile Platform Development 547

5.3 Evaluation of the Solution

In summary, we can say that our objective targets one of the most pressing problems
in the area of mobile software development, originating from the diversity of mobile
platforms. To address this problem, we have provided a modeling language for
mobile applications and developed frameworks for all platforms, which support the
code generated from the models. The result is a method that allows the design of
mobile applications and generates source code for major mobile platforms.

The presented domain-specific language that facilitates the definition of different
aspects of the mobile application can have both textual and visual concrete syntax.

The main strength of the method is that it effectively supports the application
design and development: speeds up the development and increases the code qual-
ity by automatically generating both the client and server side components. The
generated code is not a full, buildable and executable artifact. It requires inte-
gration, i.e. further gluing code between the different mobile application aspects
(user interface, communication, database management, others). This is a conscious
decision behind the method. The objective is to support the repetitively occur-
ring and lengthy coding processes and not to eliminate all aspects of programming.
There are several areas that are easier to define with models and also several as-
pects that is more effective to directly write within the appropriate programming
environment. The method helps to utilize both of these issues.

The method provides a general guidance that other teams can follow. The tool
support still not available in a public form. We are continuously working on the
tooling environment and will make it available for the community.

6 Related Work

This section introduces the most known cross-platform development frameworks
and solutions. We summarize their capabilities and compare their achievements
with our method.

PhoneGap [26] is a mobile development framework enabling developers to build
applications for mobile devices using standards-based web technologies (HTML5,
JavaScript and CSS3) instead of device-specific languages like Java, Objective-
C or C#. The resulting applications are hybrid, meaning that they are neither
truly native, because all layout rendering is done via web views instead of the
platform’s native UI framework, nor purely web-based, because they are not just
web applications. Applications are packaged as applications for distribution and
have access to native device APIs. It is possible to mix native and hybrid code
snippets.

Earlier versions of PhoneGap required a developer making iOS applications to
have an Apple computer, a developer making Windows Phone applications to have
a computer running Windows, and so on. Currently, the PhoneGap Build service
allows a programmer to upload his source code to a cloud compiler that generates
applications for the supported platforms.

548 Charaf et al.

Appcelerator Titanium [2] is a platform that, similarly to PhoneGap, supports
the development of mobile, tablet and desktop applications using web technologies.
The Appcelerator Titanium framework is available since 2008.

Appcelerator Titanium Mobile framework allows web developers to apply ex-
isting skills to create native applications for iPhone and Android. However, in case
of Appcelerator Titanium Mobile, developers should not only be familiar with web
technologies and JavaScript syntax, but they also have to learn the Titanium API,
which is different from familiar web frameworks like jQuery.

All application source code gets deployed to the mobile device where it is in-
terpreted. Being interpreted means that some errors in the source code will not be
caught before the program runs. Program loading takes longer than it does for pro-
grams developed with the native SDKs, as the interpreter and all required libraries
must be loaded before interpreting the source code on the device can begin.

At the end of 2012, there were more than 30,000 applications shipped to the
application stores built with Titanium. Appcelerator also offers cloud-based ser-
vices for packaging, testing and distributing software applications developed on the
Titanium platform.

Xamarin [36] is a company created by the engineers that created Mono [21]
MonoTouch and Mono for Android, which are cross-platform implementations of
the Common Language Infrastructure (CLI) and Common Language Specifications
(Microsoft .NET).

Xamarin.Mobile is a library that exposes a single set of APIs for accessing
common mobile device functionality across iOS, Android, and Windows platforms.
The solution allows to use C# programing language and with the same code support
all the mentioned platforms. Xamarin.Mobile currently abstracts the contacts,
camera, and geo-location APIs across iOS, Android and Windows platforms. In
the future, it will include notifications and accelerometer services.

Firefox OS [9] is a Linux-based open-source operating system for smartphones
and tablet computers. It is being developed by Mozilla, the non-profit organization
best known for the Firefox web browser. Firefox OS is designed to provide a com-
plete community-based alternative system for mobile devices, using open standards
and approaches like HTML5 applications, JavaScript, a robust privilege model,
open web APIs to communicate directly with cellphone hardware and application
marketplace.

As such, it competes with proprietary systems like Apple’s iOS, Google’s An-
droid, and Microsoft’s Windows Phone as well as other upcoming open source
systems under development. Firefox OS was publicly demonstrated in February
2012.

Comparing our approach with PhoneGap, Appcelerator, Xamarin.Mobile and
other multi mobile platform solutions, we can say that the goal is similar but not
exactly the same. Available solutions target to produce the final executable files, i.e.
the applications that are ready to use, that can be downloaded and installed. This
approach is quite comfortable from both the end users and the developers point of
view. But, of course these types of applications are limited to certain functions.
Automatically generated applications can contain only those functions that have

Mobile Platforms and Multi-Mobile Platform Development 549

the appropriate implementation or support in the mobile platform-specific libraries,
in the supporting SDKs or APIs. In contrary, the goal of our solution is to speed
up the development and not to eliminate the native programming. We use software
modeling to design different aspects of the mobile applications and generate some
part of the source code for different mobile platforms. Our approach supports and
often requires further development activities after the source code generation, e.g.,
to integrate the generated source code into the already existing source code, or to
extend the functionalities with platform-specific native code. We still believe that
each software application requires some human contribution on the programming
level. The goal is to cut down the required time to complete the tasks, to effectively
support development efforts, but not to fully eliminate manual programming.

Further difference is that the presented multi-mobile platform solutions are pro-
viding hybrid applications, i.e. the applications are partly web applications and
partly they are based on platform-specific libraries. Our solution produces truly
native applications, therefore usually they are providing better performance, and
usually it is easier to perform their testing and management.

The Vision Mobile Developer Economics study [33] states that it does not make
sense for a startup to do native development for multiple platforms, both in terms
of time and money. We agree, but if we provide the appropriate methods and tools,
like the presented one, then the native development for multiple platforms can be
available for small and medium sized companies as well.

Backend as a service (BaaS) [7] is a model for supporting mobile and web
application developers with common functionalities as services. The services are
provided via the use of custom software development kits (SDKs) and application
programming interfaces (APIs). Providing a consistent way to manage backend
data means that developers do not need to redevelop their own backend for each
of the services that their applications need to access, potentially saving time and
increasing the quality because reusing tested solutions.

Different BaaS solutions offer a slightly different set of backend services [28].
Among the most common services provided are user management, file storage and
sharing, push notifications, integration with social networks, location services, mes-
saging and chat functions, and running business logic. There are several BaaS
providers, for example, Parse [25], cloudbase.io [6] and Buddy [5]. They mostly
differ by the set of services provided, the platforms supported and the pricing,
however, as they are constantly evolving, one can not make a general selection
disregarding the actual development project.

The Parse cloud application platform supports iOS, Android, JavaScript, Win-
dows 8, Windows Phone 8, and OS X platforms. Parse provides scalable backend
solutions, push notifications, social integration, data storage, and custom logic pos-
sibility. cloudbase.io maintains and scales backend infrastructure including push no-
tifications, database management and mobile analytics. Buddy provides the Buddy
Development Platform and the Buddy Analytics Dashboard to support application
development and service providing.

The method provided by this paper is not competing with BaaS solutions, but
it is about to utilize them. Utilization means that some library functionalities are

550 Charaf et al.

realized with different BaaS services.

7 Conclusion

People use their mobile devices every day to access a wide variety of digital content.
We have seen that the diversity of mobile platforms and that of mobile device
capabilities requires providing applications for each different platform. The paper
has provided a technology for developing multi-platform mobile applications. We
have also introduced our model-driven solution for developing mobile applications
for multiple mobile platforms. This approach increases both the efficiency of mobile
application development and the quality of the resulting software artifacts. This
is achieved by providing a mobile, platform-independent, high-abstraction level
environment for mobile application design. We support it with innovative, mobile
domain-specific languages and effective model processing solution.

We work on to support mobile application developers, i.e. we continuously
extend the capabilities of the introduced approach and framework by covering more
areas of mobile applications.

References

[1] Aczél, K. and Charaf, H. Automatic user interface code generation in Sym-
bian, MicroCAD 2005, International Scientific Conference, Hungary, pages
1–5, 2005.

[2] Appcelerator platform homepage, http://www.appcelerator.com

[3] Android webpage, http://www.android.com/

[4] Angyal, L., Asztalos, M., Lengyel, L., Levendovszky, T., Madari, I., Mezei, G.,
Mszros, T., Siroki, L. and Vajk, T., Towards a fast, efficient and customizable
domain-specific modeling framework, In Proceedings of the IASTED Interna-
tional Conference, pages 11–16, Innsbruck, 2009.

[5] Buddy, http://www.buddy.com/

[6] cloudbase.io, http://cloudbase.io/

[7] DZone’s Definitive Guide to Cloud Providers,
http://www.dzone.com/page/comparison-guide-to-cloud-providers-2013

[8] Fielding, R.T. and Taylor, R.N. Principled design of the mod-ern
Web architecture, ACM Trans. Internet Technol. 2(2):115–150, 2002.
DOI=10.1145/514183.514185 http://doi.acm.org/10.1145/514183.514185

[9] Firefox OS, http://www.mozilla.org/en-US/firefox/os/

Mobile Platforms and Multi-Mobile Platform Development 551

[10] Foley, M.J. Microsoft’s Windows Phone 8 finally gets a ’real’ Win-
dows core, http://www.zdnet.com/blog/microsoft/microsofts-windows-phone-
8-finally-gets-a-real-windows-core/12975

[11] Fowler, M., Domain-specific languages, Addison-Wesley Professional, 2010.

[12] Gartner survey 2010, http://www.gartner.com/it/page.jsp?id=1529214

[13] The Gelmato Netsize Guide 2013: M-commerce on the move, 2013.

[14] Harrison, R. Symbian OS C++ for mobile phones: Program-ming with
extended functionality and advanced features, John Wiley & Sons, ISBN
0470856114, 2004.

[15] iOS, http://www.apple.com/ios/

[16] Li, S. and Knudsen, J. Beginning J2ME: From Novice to Professional, Apress,
ISBN 1-59059-479-7, page 480, 2005.

[17] Lengyel L., Levendovszky T. and Charaf H. Applying Multi-Paradigm Model-
ing to Multi-Platform Mobile Development, In Proceedings of the Workshop on
Multi-Paradigm Modeling: Concepts and Tools. Nashville, USA, 2007.09.30-
2007.10.05. pages 9–21.

[18] Lengyel L., Levendovszky T., Mezei G., Forstner B. and Charaf H. Towards a
model-based unification of mobile platforms, In 4th IEEE/ACS International
Conference on Computer Systems and Applications, Sharjah, 2006. IEEE,
pages 866–873.

[19] Levendovszky T. Lengyel L. Mezei G. and Mszros T. Introducing the VMTS
mobile toolkit, 3rd International Symposium on Applications of Graph Trans-
formations with Industrial Relevance, AGTIVE 2007, Kassel, Germany, 2007,
pages 587–592.

[20] Madari I. and Lengyel L. Synchronizing user interfaces of different mobile
platforms, International IEEE Conference Devoted to the 150-Anniversary of
Alexander S Popov: EURO-CON 2009, Saint-Petersburg, Russia, 2009. New
York: IEEE, pages 1852–1859. ISBN: 978-1-4244-3967-6.

[21] Mono Project homepage, http://www.mono-project.com

[22] OMG Model-Driven Architecture (MDA) specication, OMG document
ormsc/01-07-01, http://www.omg.org/

[23] OMG UML specification, version 2.3, OMG document for-mal/2010-05-03,
http://www.uml.org/

[24] Microsoft’s Text Template Transformation Toolkit (T4), Code Gen-
eration and T4 Text Templates, http://msdn.microsoft.com/en-
us/library/vstudio/bb126445.aspx

552 Charaf et al.

[25] Parse, https://parse.com/

[26] PhoneGap homepage, http://phonegap.com/

[27] Richardson, L. and Sam, R. RESTful web service, O’Reilly Media, 2007.

[28] Rowinski, D. The Rise of Mobile Cloud Services: BaaS Startups
Grow Up, http://readwrite.com/2012/04/17/mobile-backend-as-a-service-
ec#awesm= oiUfyQ4lngjNcS

[29] Rubino, D. Overview and review of Windows Phone 8, 2012,
http://www.wpcentral.com/overview-and-review-windows-phone-8

[30] SOAP Version 1.2, http://www.w3.org/TR/soap/

[31] Thai, T. and Lam, H. .NET framework essentials, O’Reilly, 2003.

[32] Vision Mobile: Developer Economics 2013,
http://www.visionmobile.com/devecon.php

[33] Vision Mobile, Developer Economics Q3 2013: State of the Developer Nation,
2013.

[34] Vision Mobile, The European App Economy, 2013, Creating Jobs and driving
growth, 2013.

[35] Visual Modeling and Transformation System, http://www.aut.bme.hu/vmts

[36] Xamarin homepage, http://xamarin.com/

[37] Yao, P. and Durant, D. .NET compact framework program-ming with C#,
Addison-Wesley Professional, 2004.

Received 13th January 2014

