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Abstract. In this article we consider nonlinear differential equations with ψ-exponential
and ψ-ordinary dichotomous linear part in a Banach space. By the help of the fixed
point principle of Banach sufficient conditions are found for the existence of ψ-bounded
solutions of these equations on R and R+.
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1 Introduction

The problem of ψ-boundedness and ψ-stability of the solutions of differential equations in fi-
nite dimensional Euclidean spaces has been studied by many auhtors, as e.g. Akinyele [1],
Constantin [6]. In these papers, the function ψ is a scalar continuous function (and increasing,
differentiable and bounded in [1], nondecreasing and such that ψ(t) ≥ 1 on R+ in [6]). In
Diamandescu [8–15] and Boi [2–4] ψ is a nonnegative continuous diagonal matrix function.

Inspired by the famous monographs of Coppel [5], Daleckii and Krein [7] and Massera and
Schaeffer [17], where the important notion of exponential and ordinary dichotomy is consid-
ered in detail, Diamandescu [8–12] and Boi [2–4] introduced and studied the ψ-dichotomy for
linear differential equations in finite dimensional Euclidean space.

In our paper [16] we introduced the concept of ψ-dichotomy for arbitrary Banach spaces,
where ψ is an arbitrary bounded invertible linear operator.

In this paper nonlinear perturbed differential equations with ψ-dichotomous linear part are
considered in an arbitrary Banach space. We will show that some properties of these equations
will be influenced by the corresponding ψ-dichotomous homogeneous linear equation. Suffi-
cient conditions for the existence of ψ-bounded solutions of this equations on R and R+ in case
of ψ-exponential or ψ-ordinary dichotomy are found.
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2 Preliminaries

Let X be an arbitrary Banach space with norm | · | and identity I. Let LB(X) be the space
of all linear bounded operators acting in X with the norm ‖ · ‖. By J we shall denote R or
R+ = [0, ∞).

We consider the nonlinear differential equation

dx
dt

= A(t)x + F(t, x), (2.1)

the corresponding linear homogenous equation

dx
dt

= A(t)x (2.2)

and the appropriate inhomogeneous equation

dx
dt

= A(t)x + f (t), (2.3)

where A(·) : J → LB(X), f (·) : J → X are strongly measurable and Bochner integrable on the
finite subintervals of J and F(·, ·) : J × X → X is a continuous function with respect to t.

By a solution of equation (2.1) (or (2.2) or (2.3)) we will understand a continuous function
x(t) that is differentiable (in the sence that it is representable in the form x(t) =

∫ t
a y(τ)dτ of a

Bochner integral of a strongly measurable function y) and satisfies (2.1) (or (2.2) or (2.3)) almost
everywhere.

By V(t) we will denote the Cauchy operator of (2.2).
Let RL(X) be the subspace of all invertible operators in LB(X) and ψ(·) : J → RL(X) be

continuous for any t ∈ J operator-function.

Definition 2.1 ( [16]). A function u(·) : J → X is said to be ψ-bounded on J if ψ(t)u(t) is
bounded on J.

Let Cψ(X) denote the Banach space of all ψ-bounded and continuous functions with values
in X with the norm

||| f |||Cψ
= sup

t∈J
|ψ(t) f (t)|.

Definition 2.2 ( [16]). The equation (2.2) is said to have a ψ-exponential dichotomy on J if there
exist a pair of mutually complementary projections P1 and P2 = I − P1 and positive constants
N1, N2, ν1, ν2 such that

||ψ(t)V(t)P1V−1(s)ψ−1(s)|| ≤ N1e−ν1(t−s) (s ≤ t; s, t ∈ J) (2.4)

||ψ(t)V(t)P2V−1(s)ψ−1(s)|| ≤ N2e−ν2(s−t) (t ≤ s; s, t ∈ J) (2.5)

The equation (2.2) is said to have a ψ-ordinary dichotomy on J if (2.4) and (2.5) hold with
ν1 = ν2 = 0.

Remark 2.3. For ψ(t) = I for all t ∈ J we obtain the notion of exponential and ordinary
dichotomy in [5, 7, 17].
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Let us introduce the principal Green function of (2.3) with the projections P1 and P2 from
the definition for ψ-exponential dichotomy

G(t, s) =

{
V(t)P1V−1(s) (t > s; t, s ∈ J)

−V(t)P2V−1(s) (t < s; t, s ∈ J).
(2.6)

Clearly G is continuous except at t = s where it has a jump discontinuity.

Definition 2.4. Let r > 0 be an arbitrary number. We say that the conditions (H) are fulfilled if
there exist positive functions m(t), k(t) such that

H1. |ψ(t)F(t, x)| ≤ m(t) (|ψ(t)x| ≤ r, t ∈ J)

H2. |ψ(t)(F(t, x1)− F(t, x2))| ≤ k(t)|ψ(t)(x1 − x2)| (|ψ(t)x1|, |ψ(t)x2| ≤ r, t ∈ J)

Definition 2.5. The nonnegative function m(t) is said to be integrally bounded on J if the fol-
lowing inequality holds:

B(m(t)) = sup
t∈J

∫ t+1

t
m(s)ds < ∞.

Definition 2.6. We say that the function F(t, x) belongs to the class EDψ(a1, a2, r) if the con-
ditions (H) are fulfilled, the functions m(t), k(t) are integrally bounded on J and B(m(t)) ≤
a1, B(k(t)) ≤ a2.

For each integrable on J function m(t) we introduce the notation

L(m(t)) =
∫

J
m(s)ds.

Definition 2.7. We say that the function F(t, x) belongs to the class Dψ(a1, a2, r) if the conditions
(H) are fulfilled, the functions m(t), k(t) are integrable on J and L(m(t)) ≤ a1, L(k(t)) ≤ a2.

3 Main results

Theorem 3.1. Let the following conditions be fulfilled:
1. The linear part of (2.1) has ψ-exponential dichotomy on R with projections P1 and P2.
2. The function F(t, x) belongs to the class EDψ(a1, a2, r).
Then for an arbitrary r > 0 for sufficient small values of a1, a2 the equation (2.1) has a unique

solution x(t), which is defined for t ∈ R and for which |ψ(t)x(t)| ≤ r (t ∈ R).

Proof. Let J = R. We consider in the space Cψ(X) the operator Q : Cψ(X)→ Cψ(X) defined by
the formula

Qx(t) =
∫

J
G(t, τ)F(τ, x(τ))dτ (3.1)

where G is defined by (2.6).
Let x(t) be a solution of equation (2.1) that remains for t ∈ J in the ball

Sψ,r = {x : |||x|||Cψ
≤ r}.
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Then the function F(t, x(t)) is ψ-bounded on J and it follows (see [16, Theorem 3.6]) that such
solution satisfies the integral equation

x(t) = Qx(t). (3.2)

The converse is also true: a solution of the integral equation (3.2) which remains for t ∈ J in the
ball Sψ,r satisfies the differential equation (2.1) for t ∈ J.

Now we shall show that the ball Sψ,r is invariant with respect to Q and the operator Q is
contracting.

First we shall prove that the operator Q maps the ball Sψ,r into itself. Indeed we have

|ψ(t)Qx(t)| ≤
∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣ .

We have

|ψ(t)Qx(t)| ≤
∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣
≤
∫

J
‖ψ(t)G(t, τ)ψ−1(τ)‖ |ψ(τ)F(τ, x(τ))|dτ

=
∫

t≤τ
‖ψ(t)G(t, τ)ψ−1(τ)‖ |ψ(τ)F(τ, x(τ))|dτ

+
∫

t≥τ
‖ψ(t)G(t, τ)ψ−1(τ)‖ |ψ(τ)F(τ, x(τ))|dτ

≤ N2

∫
t≤τ

e−ν2(τ−t)m(τ)dτ + N1

∫
t≥τ

e−ν1(t−τ)m(τ)dτ

≤ N2

∫
s≥0

e−ν2sm(t + s)ds + N1

∫
s≤0

eν1sm(t + s)ds

≤ N2a1

∞

∑
k=0

e−ν2k + N1a1

∞

∑
k=0

e−ν1k =
N2a1

1− e−ν2
+

N1a1

1− e−ν1
.

Hence by a1 ≤ r
(

N2
1−e−ν2 +

N1
1−e−ν1

)−1
we obtain∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣ ≤ r.

Thus the operator Q maps the ball Sψ,r into itself.
Now we shall prove that the operator Q is a contraction in the ball Sψ,r. Let x1, x2 ∈ Sψ,r.

We obtain

|ψ(t)Qx1(t)− ψ(t)Qx2(t)| ≤
∣∣∣∣ψ(t) ∫J

G(t, τ)(F(τ, x1(τ))− F(τ, x2(τ))dτ

∣∣∣∣
≤
∫

J

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ |ψ(τ)(F(τ, x1(τ))− F(τ, x2(τ))| dτ

≤
∫

J

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ k(τ)|ψ(τ)(x1(τ))− x2(τ))|dτ

≤
∫

J

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ k(τ)dτ sup

τ∈J
|ψ(τ)(x1(τ))− x2(τ))|

≤
(

N2a2

1− e−ν2
+

N1a2

1− e−ν1

)
sup
τ∈J
|ψ(τ)(x1(τ))− x2(τ))|.
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Hence

|||Qx1 −Qx2|||Cψ
≤
(

N2a2

1− e−ν2
+

N1a2

1− e−ν1

)
|||x1 − x2|||Cψ

.

Thus by a2 <
(

N2
1−e−ν2 +

N1
1−e−ν1

)−1
the operator Q is a contraction in the ball Sψ,r.

From Banach’s fixed point principle the existence of a unique fixed point of the operator Q
follows.

Corollary 3.2. If the conditions of Theorem 3.1 are fulfilled and if, moreover, F(t, 0) = 0 (t ∈ R) then
x = 0 is a unique solution of (2.1) in Cψ(X).

Proof. Let F(t, 0) = 0 (t ∈ R). Then from H2 it follows

|ψ(t)F(t, x(t))| ≤ k(t)|ψ(t)x(t)| (t ∈ R).

Thus every solution x(t) except x(t) ≡ 0 (t ∈ R) will leave any ball Sψ,r1 (r1 < r) by t → ∞ or
t→ −∞.

Theorem 3.3. Let the following conditions be fulfilled:
1. The linear part of (2.1) has ψ-ordinary dichotomy on R with projections P1 and P2.
2. The function F(t, x) belongs to the class Dψ(a1, a2, r).
Then for each r > 0 for sufficient small values of a1, a2 the equation (2.1) has a unique solution x(t),

which is defined for t ∈ R and for which |ψ(t)x(t)| ≤ r (t ∈ R).

Proof. Let J = R. In the proof of Theorem 3.1 it was mentioned that each solution x(t) of
equation (2.1) that remains for t ∈ J in the ball Sψ,r satisfies the integral equation

x(t) =
∫

J
G(t, τ)F(τ, x(τ))dτ

and vice versa.
We consider again in the space Cψ(X) the operator Q : Cψ(X)→ Cψ(X) defined in (3.1).
For |ψ(t)Qx(t)| we obtain the following estimate:

|ψ(t)Qx(t)| ≤
∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣ .

With a1 ≤ r max{N1, N2} we have

|ψ(t)Qx(t)| ≤
∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣
≤
∫

J

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ |ψ(τ)F(τ, x(τ))|dτ

=
∫

t≤τ

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ |ψ(τ)F(τ, x(τ))|dτ

+
∫

t≥τ

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ |ψ(τ)F(τ, x(τ))|dτ

≤ N2

∫
t≤τ

m(τ)dτ + N1

∫
t≥τ

m(τ)dτ

≤ max{N1, N2}
∫

J
m(τ)dτ ≤ max{N1, N2}a1 ≤ r.

Thus the operator Q maps the ball Sψ,r into itself.
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Now we shall prove that the operator Q is a contraction in the ball Sψ,r. Let x1, x2 ∈ Sψ,r.
We obtain

|ψ(t)Qx1(t)− ψ(t)Qx2(t)| ≤
∣∣∣∣ψ(t) ∫J

G(t, τ)(F(τ, x1(τ))− F(τ, x2(τ))dτ

∣∣∣∣
≤
∫

J

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ |ψ(τ)(F(τ, x1(τ))− F(τ, x2(τ))|dτ

≤
∫

J

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ k(τ)|ψ(τ)(x1(τ))− x2(τ))|dτ

≤
∫

J

∥∥∥ψ(t)G(t, τ)ψ−1(τ)
∥∥∥ k(τ)dτ sup

τ∈J
|ψ(τ)(x1(τ))− x2(τ))|

≤ (max{N1, N2}a2) sup
τ∈J
|ψ(τ)(x1(τ))− x2(τ))|.

Hence
|||Qx1 −Qx2|||Cψ

≤ (a2 max{N1, N2}) |||x1 − x2|||Cψ
.

Thus by a2 < (max{N1, N2})−1 the operator Q is a contraction in the ball Sψ,r.
From Banach’s fixed point principle the existence of a unique fixed point of the operator Q

follows.

Theorem 3.4. Let the following conditions be fulfilled:
1. The linear part of (2.1) has ψ-exponential dichotomy on R+ with projections P1 and P2.
2. The function F(t, x) belongs to the class EDψ(a1, a2, r).
Then for any r > 0 by sufficient small a1, a2 there exists ρ < r such that the equation (2.1) has

for each ξ ∈ X1 = P1X with |ψ(0)ξ| ≤ ρ a unique solution x(t) on R+ for which P1x(0) = ξ and
|ψ(t)x(t)| ≤ r (t ∈ R+).

Proof. Let J = R+ and x(t) be a solution of equation (2.1) that remains for t ∈ J in the ball
Sψ,r = {x : |||x|||Cψ

≤ r}. From the results obtained in [16, Theorem 3.6 and Remark 3.8] it
follows that such x(t) satisfies the integral equation

x(t) = V(t)ξ +
∫

J
G(t, τ)F(τ, x(τ))dτ (3.3)

where ξ = P1x(0). The converse is also true: a solution of the integral equation (3.3) satisfies
the differential equation (2.1) for t ∈ J.

Let ξ ∈ X1 and |ψ(0)ξ| ≤ ρ < r. We consider in the space Cψ(X) the operator Q : Cψ(X)→
Cψ(X) defined by the formula

Qx(t) = V(t)ξ +
∫

J
G(t, τ)F(τ, x(τ))dτ (3.4)

First we shall prove, that the operator Q maps the ball Sψ,r into itself. Indeed we have

|ψ(t)Qx(t)| ≤ |ψ(t)V(t)ξ|+
∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣ .

For the first addend with ρ ≤ r
2N1

we obtain

|ψ(t)V(t)ξ| ≤ N1e−ν1t|ψ(0)ξ| ≤ N1e−ν1tρ ≤ r
2

.
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Using the same technique and notations as in the proof of Theorem 3.1 we obtain for the second
addend the estimate ∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣ ≤ N2a1

1− e−ν2
+

N1a1

1− e−ν1
.

Hence by a1 ≤ r
2

(
N2

1−e−ν2 +
N1

1−e−ν1

)−1
we obtain∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣ ≤ r
2

.

Thus the operator Q maps the ball Sψ,r into itself.
Now we shall prove that the operator Q is a contraction in the ball Sψ,r. Let x1, x2 ∈ Sψ,r.

We obtain as in the proof of Theorem 3.1 the estimate

|||Qx1 −Qx2|||Cψ
≤
(

N2a2

1− e−ν2
+

N1a2

1− e−ν1

)
|||x1 − x2|||Cψ

By a2 <
(

N2
1−e−ν2 +

N1
1−e−ν1

)−1
the operator Q is a contraction in the ball Sψ,r.

From Banach’s fixed point principle the existence of a unique fixed point of the operator Q
follows.

Theorem 3.5. Let the following conditions be fulfilled:
1. The linear part of (2.1) has ψ-ordinary dichotomy on R+ with projections P1 and P2.
2. The function F(t, x) belongs to the class Dψ(a1, a2, r).
Then for any r > 0 by sufficiently small a1, a2 there exists ρ < r such that the equation (2.1) has

for each ξ ∈ X1 = P1X with |ψ(0)ξ| ≤ ρ a unique solution x(t) on R+ for which P1x(0) = ξ and
|ψ(t)x(t)| ≤ r (t ∈ R+).

Proof. Let J = R+, ξ ∈ X1 and |ψ(0)ξ| ≤ ρ < r. We consider again in the space Cψ(X) the
operator Q : Cψ(X)→ Cψ(X) defined by the formula (3.4).

First we shall prove, that the operator Q maps the ball Sψ,r into itself. We have

|ψ(t)Qx(t)| ≤ |ψ(t)V(t)ξ|+
∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣ .

For the first addend with ρ ≤ r
2N1

we obtain

|ψ(t)V(t)ξ| ≤ N1|ψ(0)ξ| ≤ N1ρ ≤ r
2

.

For the second addend with a1 ≤ r
2 max{N1,N2} as in the proof of Theorem 3.3 we have∣∣∣∣ψ(t) ∫J

G(t, τ)F(τ, x(τ))dτ

∣∣∣∣ ≤ max{N1, N2}a1 ≤
r
2

.

Thus the operator Q maps the ball Sψ,r into itself.
Let x1, x2 ∈ Sψ,r. As in the proof of Theorem 3.3 we obtain the estimate

|||Qx1 −Qx2|||Cψ
≤ (a2 max{N1, N2}) |||x1 − x2|||Cψ

.

Hence by a2 < (max{N1, N2})−1 the operator Q is a contraction in the ball Sψ,r.
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From the fixed point principle of Banach it follows the existence of a unique fixed point of
the operator Q.

In the proof of Theorem 3.4 it was already mentioned that every solution of the differential
equation (2.1) which lies in the ball Sψ,r fulfil the equality

x(t) = Qx(t)

and vice versa.

Corollary 3.6. Let the conditions of Theorem 3.5 hold and let x1(t) and x2(t) be two solutions whose
initial values fulfil P1x1(0) = ξ and P1x2(0) = η. Let N = max{N1, N2}.

Then for Na2 < 1 the following estimate holds

|ψ(t)(x1(t)− x2(t))| ≤
N

1− Na2
|ψ(0)(ξ − η)| (t ∈ R+).

Proof. Applying the presentation (3.3) for the solutions x1 and x2 we obtain

x1(t)− x2(t) = V(t)(ξ − η) +
∫ ∞

0
G(t, τ)(F(τ, x1(τ))− F(τ, x2(τ)))dτ.

From here and the conditions of Theorem 3.5 for u(t) = ψ(t)(x1(t)− x2(t)) we obtain

|u(t)| ≤ N|ψ(0)(ξ − η)|+ N
∫ ∞

0
k(τ)u(τ)dτ.

Let us consider the equation

u(t) = α + N
∫ ∞

0
k(τ)u(τ)dτ, (3.5)

where α = N|ψ(0)(ξ − η)|. Let us introduce the functional Φ : C → R+, where C is the space
of all bounded functions on R+ with values in R+ by the formula

(Φu)(t) = N
∫ ∞

0
k(τ)u(τ)dτ.

For the norm of Φ we obtain the estimate

‖Φ‖ ≤ N
∫ ∞

0
k(τ)dτ ≤ Na2.

For sufficiently small a2 we have ‖Φ‖ ≤ 1.
Let IC be the identity of the space C. Then the equation (IC − Φ)u = α has a bounded

solution u(t), i.e. there exists a constant c = supt∈R+
|u(t)| < ∞. We shall estimate the constant

c from equation (3.5):

c ≤ α + Nc
∫ ∞

0
k(τ)dτ ≤ α + Nca2,

i.e.
c ≤ α

1− Na2
.

Finally we obtain

|ψ(t)(x1(t)− x2(t))| ≤
N|ψ(0)(ξ − η)|

1− Na2
.
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