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Abstract. This paper presents a nontrivial application of the omitted ray fixed point
theorem. Existence of solutions arguments to nonlinear boundary value problems uti-
lizing the Krasnoselskii fixed point theorem, Leggett–Williams fixed point theorem and
their functional generalizations are characterized by mapping portions of an inward
boundary inward and portions of an outward boundary outward. In this application
we demonstrate a technique that avoids requiring any portion of the inward boundary
being mapped inward using the omitted ray fixed point theorem.
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1 Introduction

To prove the existence of solutions to nonlinear differential equations with specified boundary
conditions, researchers often reformulate the problem using an integral operator, say T, the
fixed points of which are solutions to the original boundary value problem. Using the Kras-
noselskii [8] fixed point theorem to show the existence of at least one solution to a boundary
value problem requires the inward boundary of a conical region to be mapped inward by
some mapping β, that is,

β(Tx) < β(x) for all β(x) = b.

Similarly, applications of the Leggett–Williams fixed point theorem [10] and their functional
generalizations [2, 3, 5] require

β(Tx) < β(x) for all β(x) = b with α(x) ≥ a,

again requiring portions of the inward boundary to be mapped inward. The recent omitted
ray fixed point theorem [4] provides flexibility by not requiring the inward boundary to be
mapped inward, but instead requiring

γ(Tx− x0) < γ(x− x0) + γ(Tx− x) for all β(x) = b with α(x) ≥ a
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for a certain kind of functional mapping γ.
Other work in this area include [6], which provides new criteria for the existence of non-

trivial fixed points on cones assuming some monotonicity of the operator on a suitable conical
shell, and [7], which provides new sufficient conditions for the existence of multiple fixed
points for a map between ordered Banach spaces.

Our main result below illustrates one successful approach to applying the omitted ray fixed
point theorem to guarantee the existence of at least one solution to a second-order nonlinear
right-focal boundary value problem. We end the paper with an example where no portion of
the inward boundary is mapped inward, thus highlighting the relaxed conditions and potent
applicability of the omitted ray technique.

2 Preliminaries

In this section we will state the definitions that are used in the remainder of the paper.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called a
cone if for all x ∈ P and λ ≥ 0, λx ∈ P, and if x,−x ∈ P then x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y− x ∈ P.

Definition 2.2. An operator is called completely continuous if it is continuous and maps bounded
sets into precompact sets.

Definition 2.3. A map α is said to be a nonnegative continuous concave functional on a cone P of
a real Banach space E if α : P→ [0, ∞) is continuous and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative continuous convex
functional on a cone P of a real Banach space E if β : P→ [0, ∞) is continuous and

β(tx + (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P and t ∈ [0, 1]. We say the map γ is a continuous sub-homogeneous functional on a
real Banach space E if γ : E→ R is continuous and

γ(tx) ≤ tγ(x) for all x ∈ E, t ∈ [0, 1] and γ(0) = 0.

Similarly we say the map ρ is a continuous super-homogeneous functional on a real Banach space
E if ρ : E→ R is continuous and

ρ(tx) ≥ tρ(x) for all x ∈ E, t ∈ [0, 1] and ρ(0) = 0.

Let ψ and δ be nonnegative continuous functionals on P; then, for positive real numbers a
and b, we define the following sets:

P(ψ, b) = {x ∈ P : ψ(x) < b}

and
P(δ, ψ, b, a) = P(δ, b)− P(ψ, a) = {x ∈ P : a < ψ(x) and δ(x) < b}.

The following theorem is the omitted ray fixed point theorem [4], which utilizes a func-
tional version of Altman’s condition [1] applying the techniques found in the Leggett–Williams
fixed point theorem [10] and generalizations of the Leggett–Williams fixed point theorem
[2, 3, 5].



Omitted ray application 3

Theorem 2.4. Suppose P is a cone in a real Banach space E, α and κ are nonnegative continuous
concave functionals on P, β and θ are nonnegative continuous convex functionals on P, γ and δ are
continuous sub-homogeneous functionals on E, ρ and ψ are continuous super-homogeneous functionals
on E, and T : P → P is a completely continuous operator. Furthermore, suppose that there exist
nonnegative numbers a, b, c and d and x0, x1 ∈ P such that

(A1) x0 ∈ {x ∈ P : a ≤ α(x) and β(x) < b};

(A2) if x ∈ P with β(x) = b and α(x) ≥ a, then γ(Tx− x0) < γ(x− x0) + γ(Tx− x);

(A3) if x ∈ P with β(x) = b and α(Tx) < a, then δ(Tx− x0) < δ(x− x0) + δ(Tx− x);

(A4) x1 ∈ {x ∈ P : c < κ(x) and θ(x) ≤ d} and P(κ, c) 6= ∅;

(A5) if x ∈ P with κ(x) = c and θ(x) ≤ d, then ρ(Tx− x1) > ρ(x− x1) + ρ(Tx− x);

(A6) if x ∈ P with κ(x) = c and θ(Tx) > d, then ψ(Tx− x1) > ψ(x− x1) + ψ(Tx− x).

If

(H1) P(κ, c) ( P(β, b), then T has a fixed point x ∈ P(β, κ, b, c),

whereas, if

(H2) P(β, b) ( P(κ, c), then T has a fixed point x ∈ P(κ, β, c, b).

3 Application

In this section we illustrate a nontrivial technique for verifying the existence of a positive
solution for a right-focal boundary value problem using the omitted ray fixed point theorem
that does not require any portion of the inward boundary to be mapped inward.

To proceed, consider the second-order nonlinear right-focal boundary value problem

x′′(t) + f (x(t)) = 0, t ∈ (0, 1), (3.1)

x(0) = 0 = x′(1), (3.2)

where f : R→ [0, ∞) is continuous. If x is a fixed point of the operator T defined by

Tx(t) :=
∫ 1

0
G(t, s) f (x(s)) ds,

where
G(t, s) = min{t, s}, (t, s) ∈ [0, 1]× [0, 1]

is the Green’s function for the operator L defined by

Lx(t) := −x′′,

with right-focal boundary conditions

x(0) = 0 = x′(1),
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then it is well known that x is a solution of the boundary value problem (3.1), (3.2). Through-
out this section of the paper we will use the following facts, namely that G(t, s) is nonnegative
and for each fixed s ∈ [0, 1], the Green’s function is nondecreasing in t.

Define the cone P ⊂ E = C[0, 1], where E is equipped with the supremum norm, by

P := {x ∈ E : x is nonnegative, nondecreasing, concave, and x(0) = 0} .

Thus if x ∈ P and ν ∈ (0, 1), then by the concavity of x we have x(ν) ≥ νx(1) since

x(ν)− x(0)
ν− 0

≥ x(1)− x(0)
1− 0

.

In the following application we demonstrate how to use the maximum of the sum of
functions principle and the minimum of the sum of functions principle to verify the inequalties
that characterize the omitted ray fixed point theorem (Theorem 2.4). That is, one can show
that

max
t∈I

(Tx− x0) < max
t∈I

(x− x0) + max
t∈I

(Tx− x)

by showing that two of the three maximums are achieved at different points – so for example,
the inequality would be verified if

max
t∈I

(x− x0) = (x− x0)(t0) and max
t∈I

(Tx− x) = (Tx− x)(t1)

with t0 6= t1, (x − x0)(t0) 6= (x − x0)(t1) and (Tx − x)(t1) 6= (Tx − x)(t0). Note that in this
application we verify the existence of a solution to the boundary value problem (3.1), (3.2)
with the property that

b < x∗
(

1
2

)
< c. (3.3)

It is important to note that in the proof of the omitted ray fixed point theorem one proves that
the index of P(β, b) is one and the index of P(κ, c) is zero, so in the following application we
can also say that there is a solution x∗∗ with

β(x∗∗) = x∗∗
(

1
2

)
< b.

It is also worthy of note that there are other fixed point theorems that could be utilized to
show the existence of a fixed point using conditions (a) and (b), in particular, by applying
Theorem 2.13 of Lan [9] any function that satisfies conditions (a) and (b) below has a solution
x∗∗∗ with

‖x∗∗∗‖ < 13b
8

.

However, Lan’s results would not yield a solution with the property

b < x∗∗
(

1
2

)
< c

using conditions (c) and (d) below since to apply Theorem 2.10 from [9] one needs f (z) ≥ 4c
for all z ∈ [c, 2c]. In short, the result below yields at least two positive solutions to (3.1), (3.2)
however it is the techniques used to verify a solution x∗ such that (3.3) holds, which is the
focus of the application.
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Theorem 3.1. If b is a positive real number, c > 2b and f : [0, ∞) → [0, ∞) is a continuous function
such that

(a) 2b < f (x) < 5b
2 for 0 ≤ x ≤ b,

(b) 7b
3 ≤ f (x) < 11b

4 for b ≤ x ≤ 13b
8 ,

(c) 7b
3 ≤ f (x) < 5b for 13b

8 ≤ x ≤ 2b, and

(d) 15c
4 < f (x) for c ≤ x ≤ 2c,

then the focal problem (3.1), (3.2) has at least one positive solution x∗ such that

b < x∗
(

1
2

)
< c.

Proof. For x ∈ P, if t ∈ (0, 1), then by the properties of the Green’s function and the non-
negativity of f we have

(Tx)′′(t) = − f (x(t)) ≤ 0, (Tx)′(t) =
∫ 1

0
f (x(s)) ds ≥ 0, and Tx(0) = 0 = (Tx)′(1).

Therefore we have that T : P → P. By the Arzelà–Ascoli theorem it is a standard exercise to
show that T is a completely continuous operator using the properties of G and f .

For x ∈ P let

β(x) = κ(x) = x
(

1
2

)
, α(x) = x(1), and θ(x) = x

(
1
4

)
and for z ∈ E let

γ(z) = max{|z(1/2)|, |z(1)|} and ρ(z) = min{z(1/4), z(1/2)}. (3.4)

Furthermore, let a = 5b
4 and d = 5c

8 .
Clearly P(κ, c) is a bounded subset of the cone P, since if x ∈ P(κ, c), then by the concavity

of x,

c > x
(

1
2

)
≥ x(1)

2
=
‖x‖

2

hence ‖x‖ < 2c. Also, if x ∈ P(β, b), then

c > b ≥ β(x) = κ(x)

and hence κ(x) < c, that is,
P(β, b) ⊂ P(κ, c).

Let x0 and x1 be defined by

x0(s) =
5bs
4

and x1(s) =
5cs
2

.

Consequently we have that

x0 ∈
{

x ∈ P : a =
5b
4
≤ α(x) and β(x) < b

}
,
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thus verifying (A1) of Theorem 2.4, and that

x1 ∈ {x ∈ P : c < κ(x) and θ(x) ≤ d} ,

thus verifying (A4) of Theorem 2.4, after noting that x2(s) = (b + c)s ∈ P(κ, c) so P(κ, c) 6= ∅.
Also since x2 ∈ P(κ, c)− P(β, b) we have that

P(β, b) ( P(κ, c).

Claim 1: If x ∈ P with β(x) = b, then

γ(Tx− x0) = Tx
(

1
2

)
− x0

(
1
2

)
, (3.5)

where γ is given in (3.4).
To prove Claim 1, let x ∈ P with β(x) = b. By the definition of β and the concavity of x,

x(1/2) = b and x(1) ≤ 2b. (3.6)

Then

Tx (1)− Tx
(

1
2

)
=
∫ 1

1
2

(Tx)′(t) dt =
∫ 1

1
2

∫ 1

t
f (x(s)) ds dt

<
∫ 1

1
2

5b(1− t) dt =
5b
8

= x0(1)− x0

(
1
2

)
,

using conditions (b) and (c) on f from the statement of the theorem, so

Tx (1)− x0(1) < Tx
(

1
2

)
− x0

(
1
2

)
. (3.7)

Moreover,

Tx
(

1
2

)
=
∫ 1

2

0
s f (x(s)) ds +

∫ 1

1
2

f (x(s))
2

ds >
∫ 1

2

0
2bs ds +

∫ 1

1
2

7b
6

ds =
b
4
+

7b
12

=
5b
6

yields

Tx
(

1
2

)
− x0

(
1
2

)
>

5b
24

.

Since

Tx (1) =
∫ 1

0
s f (x(s)) ds >

∫ 1
2

0
2bs ds +

∫ 1

1
2

7bs
3

ds =
b
4
+

7b
8

=
9b
8

implies

Tx (1)− x0 (1) >
9b
8
− 5b

4
=
−b
8

, (3.8)

from (3.7) and (3.8) we have

|Tx(1/2)− x0(1/2)| > |Tx(1)− x0(1)|.

It follows that (3.5) holds and Claim 1 is established.
Claim 2: γ(Tx− x0) < γ(x− x0) + γ(Tx− x) for all x ∈ P with β(x) = b and α(x) ≥ a.
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Let x ∈ P with β(x) = b and α(x) ≥ a = 5b
4 . By Claim 1 we know that (3.5) holds, and we

have (3.6) as well. Now, either 2b ≥ x (1) > 13b
8 or 13b

8 ≥ x (1) ≥ 5b
4 = a.

Case 1: Suppose 2b ≥ x (1) > 13b
8 . Then

x (1)− x0 (1) >
13b
8
− 5b

4
=

3b
8

= x
(

1
2

)
− x0

(
1
2

)
.

Hence γ(x− x0) = x (1)− x0 (1), so

γ(Tx− x0) = Tx
(

1
2

)
− x0

(
1
2

)
= Tx

(
1
2

)
− x

(
1
2

)
+ x

(
1
2

)
− x0

(
1
2

)
< Tx

(
1
2

)
− x

(
1
2

)
+ x (1)− x0 (1) ≤ γ(Tx− x) + γ(x− x0).

Case 2: Suppose 13b
8 ≥ x (1) ≥ 5b

4 = a. Then

Tx
(

1
2

)
− x0

(
1
2

)
=
∫ 1

0
G(1/2, s) f (x(s)) ds− 5b

8

=
∫ 1

2

0
s f (x(s)) ds +

∫ 1

1
2

f (x(s))
2

ds− 5b
8

<
∫ 1

2

0

5bs
2

ds +
∫ 1

1
2

11b
8

ds− 5b
8

=
5b
16

+
11b
16
− 5b

8
=

3b
8

= x
(

1
2

)
− x0

(
1
2

)
,

and thus

γ(Tx− x0) = Tx
(

1
2

)
− x0

(
1
2

)
< x

(
1
2

)
− x0

(
1
2

)
= γ(x− x0)

≤ γ(Tx− x) + γ(x− x0).

Therefore, in either case we have that

γ(Tx− x0) < γ(Tx− x) + γ(x− x0),

which verifies condition (A2) of Theorem 2.4.
Claim 3: γ(Tx− x0) < γ(x− x0) + γ(Tx− x) for all x ∈ P with β(x) = b and α(Tx) < a.
We have

Tx (1)− Tx
(

1
2

)
=
∫ 1

1
2

(Tx)′(t) dt =
∫ 1

1
2

∫ 1

t
f (x(s)) ds dt ≥

∫ 1

1
2

(
7b
3

)
(1− t) dt =

7b
24

.

Since Tx(1) = α(Tx) < a = 5b
4 , we have

b >
23b
24

=
5b
4
− 7b

24
> Tx

(
1
2

)
,

and hence
3b
8

>
23b
24
− 5b

8
> Tx

(
1
2

)
− x0

(
1
2

)
.
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As a result, using (3.5) we have

γ(Tx− x0) = Tx
(

1
2

)
− x0

(
1
2

)
< x

(
1
2

)
− x0

(
1
2

)
= γ(x− x0) ≤ γ(Tx− x) + γ(x− x0),

hence we have shown that

γ(Tx− x0) < γ(Tx− x) + γ(x− x0).

This verifies condition (A3) of Theorem 2.4 with δ = γ.
Claim 4: ρ(Tx− x1) > ρ(x− x1) + ρ(Tx− x) for x ∈ P with κ(x) = c.
Let x ∈ P with κ(x) = c. Then x

( 1
2

)
= c, hence c

2 ≤ x
( 1

4

)
≤ c and we have that

x
(

1
2

)
− x1

(
1
2

)
=
−c
4

< x
(

1
4

)
− x1

(
1
4

)
therefore ρ(x− x1) = x

( 1
2

)
− x1

( 1
2

)
.

We also have

Tx
(

1
2

)
− Tx

(
1
4

)
=
∫ 1

2

1
4

(
s− 1

4

)
f (x(s)) ds +

∫ 1

1
2

(
1
4

)
f (x(s)) ds

> 2b
(

1
32

)
+

15c
32

=
c
2
≥ x

(
1
2

)
− x

(
1
4

)
,

thus Tx
( 1

2

)
− x

( 1
2

)
> Tx

( 1
4

)
− x

( 1
4

)
hence ρ(Tx− x) = Tx

( 1
4

)
− x

( 1
4

)
.

Therefore, if ρ(Tx− x1) = Tx
( 1

2

)
− x1

( 1
2

)
then

ρ(Tx− x1) = Tx
(

1
2

)
− x1

(
1
2

)
= Tx

(
1
2

)
− x

(
1
2

)
+ x

(
1
2

)
− x1

(
1
2

)
> Tx

(
1
4

)
− x

(
1
4

)
+ x

(
1
2

)
− x1

(
1
2

)
= ρ(Tx− x) + ρ(x− x1),

and if ρ(Tx− x1) = Tx
( 1

4

)
− x1

( 1
4

)
then

ρ(Tx− x1) = Tx
(

1
4

)
− x1

(
1
4

)
= Tx

(
1
4

)
− x

(
1
4

)
+ x

(
1
4

)
− x1

(
1
4

)
> Tx

(
1
4

)
− x

(
1
4

)
+ x

(
1
2

)
− x1

(
1
2

)
≥ ρ(Tx− x) + ρ(x− x1).

Hence, ρ(Tx− x1) > ρ(x− x1) + ρ(Tx− x).
Therefore, the conditions of Theorem 2.4 are satisfied and the operator T has at least one

fixed point x∗ with
x∗ ∈ P (κ, β, c, b) .
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Remark 3.2. Note that there are z ∈ ∂P(β, b) with α(z) ≥ a such that β(Tz) > β(z), which
illustrates that this is an example that could not have been done using standard Krasnoselskii
or Leggett–Williams techniques. This is indicative of the rich opportunities opening up now
to find new techniques to verify the existence of solutions to boundary value problems by
applying the omitted ray fixed point theorem.
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