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1 Introduction

The purpose of this work is to study the existence of positive solutions for the fourth order
elliptic equations:

∆2u−
(

a + b
∫

RN
|∇u|2 dx

)
∆u + cu = f (u) (1.1)

where N > 4, ∆2 is the biharmonic operator, and ∇u denotes the spatial gradient of u, and
a, b, c are positive constants. Usually, the proof is based on either variational approach or
topological methods. For example, in [7, 8, 13], T. F. Ma, F. Wang et al. applied the varia-
tional methods to study the existence and multiplicity of solutions for a nonlocal fourth order
equation of Kirchhoff type:u′′′′ −M

( ∫ 1
0 |u

′|2 dx
)

u′′ = h(x) f (x, u),

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0,

and {
∆2u−M

( ∫
Ω |∇u|2 dx

)
∆u = f (x, u), in Ω,

u = ∆u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, M : R→ R is continuous, and satisfies
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(H) For some m0 > 0, M(t) > m0, ∀ t > 0. In addition, there exist m′ > m0 and t0 > 0, such
that M(t) = m′, ∀ t > t0.

In [10], by using the fixed point theorems in cones of ordered Banach spaces, T. F. Ma studied
the existence of positive solutions for

u′′′′ −M
(∫ 1

0
|u′|2 dx

)
u′′ = h(x) f (x, u, u′).

In [9, 11] also fourth order problems with nonlinear boundary conditions are studied. In this
case the Kirchhoff function is possibly degenerate and multiplies lower order terms rather
than the leading fourth order term. More recently, in [14], F. Wang et al. studied the existence
of nontrivial solutions for the fourth order elliptic equations:{

∆2u− λ
(
a + b

∫
Ω |∇u|2 dx

)
∆u = f (x, u), in Ω,

u = 0, ∆u = 0, on ∂Ω,

where λ is a positive parameter, a, b are positive constants, Ω ⊂ RN is a bounded smooth
domain, f : Ω× R → R is locally Lipschitz continuous. The authors show that there exists a
λ∗ such that the fourth order elliptic equation has nontrival solutions for 0 < λ < λ∗ by using
the mountain pass techniques and the truncation method.

In addition, the problem treated here presents the Kirchhoff function multiplying a lower
order term, while in general it multiplies the leading (fourth order) operator. Some results
related to problems involving Kirchhoff functions in front of lower order terms are obtained
in [2, 3]. Some other Kirchhoff problems are also been studied. For example, in [1, 5, 6, 15], the
authors studied the existence of positive solutions of second order non-degenerate Kirchhoff-
type problems; in [4], F. Colasuonno and P. Pucci studied a higher order elliptic Kirchhoff
equation, under Dirichlet boundary conditions. The novelty there is to take the Kirchhoff
function possibly zero at zero, that is to cover also the degenerate case.

The object of this paper is to study the existence of a positive solution to the fourth order
elliptic equation (1.1) of Kirchhoff type on RN by using variational methods. In particular, we
use a cut-off functional to obtain bounded (PS)-sequences. The main result can be described
as follows.

Theorem 1.1. Assume that the following conditions hold:

(H1) f : R+ → R+ is continuous, f (t) ≡ 0, if t ≤ 0 and satisfies

f (t) ≤ C(1 + tp) ∀ t ∈ R+,

where 1 < p < N+4
N−4 if N > 4;

(H1) limt→0
f (t)

t = 0;

(H1) limt→+∞
f (t)

t = +∞.

Then there exists b∗ > 0 such that problem (1.1) has at least one positive solution for 0 ≤ b < b∗.
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2 Preliminaries

In this section, we show examples how theorems, definitions, lists and formulae should be
formatted.

Let H = {u ∈ H2(RN) : u(x) is radial}, where H2(RN) is the usual Sobolev space. We
equip H with the inner product

(u, v) =
∫

RN
(∆u∆v + a∇u∇v + cuv) dx,

and the deduced norm

‖u‖2 =
∫

RN
|∆u|2dx + a

∫
RN
|∇u|2 + cu2 dx.

For the Kirchhoff problem (1.1), the associated function is defined on H as follows

J(u) =
1
2
‖u‖2 +

b
4

(∫
RN
|∇u|2 dx

)2

−
∫

RN
F(u) dx

where F(t) =
∫ t

0 f (s) ds. By (H1), we know that J is well defined, and is C1. To overcome
the difficulty of finding bounded Palais–Smale sequences for the associate functional J, we
modify the functional J as follows

JT
λ (u) =

1
2
‖u‖2 +

b
4

ψ

(
‖u‖2

T2

)(∫
RN
|∇u|2 dx

)2

− λ
∫

RN
F(u) dx (2.1)

where T > 0, the cut-off functional ψ(t) is defined by
ψ(t) = 1, t ∈ [0, 1],

0 ≤ ψ(t) ≤ 1, t ∈ (1, 2),

ψ(t) = 0, t ∈ [2,+∞),

‖ψ′(t)‖∞ ≤ 2.

The following lemma is important to our arguments.

Lemma 2.1 ([12]). Let (X, ‖ · ‖) be a Banach space and I ⊂ R+ an interval. Consider the family of
C1 functionals on X

Jλ = A(u)− λB(u), λ ∈ I,

with B nonnegative and either A(u)→ ∞ or B(u)→ ∞ as ‖u‖ → ∞ and such that Jλ(0) = 0.
For any λ ∈ I, we set

Γλ = {γ ∈ C([0, 1], X) : γ(0) = 0, Jλ(γ(1)) < 0}.

If for every λ ∈ I, the set Γλ is nonempty and

cλ = inf
γ∈Γλ

max
t∈[0,1]

Jλ(γ(t)) > 0,

then for almost every λ ∈ I there is a sequence {un} ⊂ X such that

(i) {un} is bounded;
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(ii) Jλ(un)→ cλ;

(iii) J′λ(un)→ 0 in the dual X−1 of X.

Throughout this paper, let

A(u) =
1
2
‖u‖2 +

b
4

ψ

(
‖u‖2

T2

)(∫
RN
|∇u|2 dx

)2

, B(u) =
∫

RN
F(u)dx.

Now, we show that JT
λ satisfies the conditions of Lemma 2.1.

Lemma 2.2. Γλ 6= ∅ for all λ ∈ I = [δ, 1], where δ ∈ (0, 1) is a positive constant.

Proof. We choose φ ∈ C∞
0 (RN) satisfying the following conditions:

φ ≥ 0,

‖φ‖ = 1,

supp φ ⊂ B(0, R) for some R > 0.

By (H3), we have that for any C1 > 0 with δC1
∫

B(0,R) φ2 dx > 1
2 , there exists C2 > 0 such that

F(t) ≥ C1t2 − C2, t ∈ R+.

Then for t2 > 2T2, we have

JT
λ (tφ) =

1
2
‖tφ‖2 +

b
4

ψ

(
‖tφ‖2

T2

)(∫
RN
|∇(tφ)|2 dx

)2

− λ
∫

RN
F(tφ) dx

=
1
2
‖tφ‖2 − λ

∫
RN

F(tφ) dx

≤ 1
2

t2 − λ
∫

RN
C1t2φ2 dx + C3

≤ 1
2

t2 − λC1t2
∫

B(0,R)
φ2 dx + C3

≤ 1
2

t2 − δC1t2
∫

B(0,R)
φ2 dx + C3.

If t is sufficiently large, we have JT
λ (tφ) < 0. The proof is completed.

Lemma 2.3. There exists a constant c > 0 such that cλ ≥ c > 0 for any λ ∈ I.

Proof. By (H1) and (H2), we see that for any ε > 0, there exists a constant Cε > 0 such that for
all t ∈ R+, one has

F(t) ≤ 1
2

εt2 + Cεtp+1.

Furthermore, combining with the Sobolev inequality, we have

JT
λ (u) =

1
2
‖u‖2 +

b
4

ψ

(
‖u‖2

T2

)(∫
RN
|∇u)|2 dx

)2

− λ
∫

RN
F(u) dx

≥ 1
2
‖u‖2 − ε

2

∫
RN
|u|2 dx− Cε

∫
RN
|u|p+1 dx

≥
(

1
2
− ε

2

)
‖u‖2 − Cε

∫
RN
|u|p+1 dx.
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Then for ε sufficiently small, there exists ρ > 0 such that JT
λ (u) > 0 for any λ ∈ I, u ∈ H

with 0 < ‖u‖ ≤ ρ. In particular, for ‖u‖ = ρ, we have JT
λ (u) ≥ c > 0. Fix λ ∈ I and γ ∈ Γλ. By

the definition of Γλ, ‖γ(1)‖ > ρ. By continuity, there exists tγ ∈ (0, 1) such that ‖γ(tγ)‖ = ρ.
Therefore, for any λ ∈ I, we have

cλ ≥ inf
γ∈Γλ

JT
λ (γ(tγ)) ≥ c > 0.

Lemma 2.4. For any λ ∈ I and 8bT2 ≤ 1, each bounded (PS)-sequence of the functional JT
λ admits a

convergent subsequence.

Proof. Let λ ∈ I and {un} be a bounded (PS)-sequence of JT
λ , namely

{un} is bounded,

{JT
λ (un)} is bounded,

(JT
λ )
′(un)→ 0 in H′.

Up to a subsequence, there exists u ∈ H such that
un ⇀ u in H,

un → u in Lp+1(RN),

un → u a.e. in RN .

By the definition of JT
λ , we get(

(JT
λ )
′(un), un − u

)
=

[
1 +

b
2T2 ψ′

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2
]
(un, un − u)

+ bψ

(
‖un‖2

T2

) ∫
RN
|∇un|2 dx

∫
RN
∇un · ∇(un − u) dx

− λ
∫

RN
f (un)(un − u) dx.

Furthermore, from
∣∣∣ψ′ ( ‖u‖2

T2

) ( ∫
RN |∇u|2 dx

)2
∣∣∣ ≤ 8T4, 8bT2 ≤ 1, we easily obtain[

1 +
b

2T2 ψ′
(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2
]
(un − u, un − u)

=
(
(JT

λ )
′(un), un − u

)
−
[

1 +
b

2T2 ψ′
(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2
]
(u, un − u)

− bψ

(
‖un‖2

T2

) ∫
RN
|∇un|2 dx

∫
RN
∇(un − u) · ∇(un − u) dx

− bψ

(
‖un‖2

T2

) ∫
RN
|∇un|2 dx

∫
RN
∇u · ∇(un − u) dx + λ

∫
RN

f (un)(un − u) dx

≤
(
(JT

λ )
′(un), un − u

)
−
[

1 +
b

2T2 ψ′
(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2
]
(u, un − u)

− bψ

(
‖un‖2

T2

) ∫
RN
|∇un|2 dx

∫
RN
∇u · ∇(un − u) dx + λ

∫
RN

f (un)(un − u) dx.
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Firstly, it is clear to know that ((JT
λ )
′(un), un − u) → 0; secondly, since un ⇀ u in H, then

we have [
1 +

b
2T2 ψ′

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2
]
(u, un − u)→ 0;

thirdly, by the fact that the imbedding H ↪→ H̃ is continuous (see [6, p. 2287]), where H̃ ={
u ∈ L2(RN) : ∇u ∈ [L2(RN)]N

}
is endowed with the norm ‖u‖H̃ = (

∫
RN |∇u|2 dx)

1
2 , we have

un ⇀ u in H̃ and this implies

bψ

(
‖un‖2

T2

) ∫
RN
|∇un|2 dx

∫
RN
∇u · ∇(un − u) dx → 0.

Finally, from (H1) and (H2), it follows that for any ε > 0, there exists a constant Cε > 0
such that for all t ∈ R+, one has

f (t) ≤ εt + Cε|t|p.

Then, we obtain∣∣∣∣∫RN
f (un)(un − u) dx

∣∣∣∣ ≤ ∫RN
| f (un)||(un − u)| dx

≤ ε|un|L2 |un − u|L2 + Cε

∫
RN
|un|p|un − u| dx

≤ ε‖un‖‖un − u‖+ Cε|un|pLp+1 |un − u|Lp+1

→ 0.

Therefore, we can get[
1 +

b
2T2 ψ′

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2
]
(un − u, un − u)→ 0,

which implies that un → u in H.

From Lemmas 2.1–2.4, we obtain the following result.

Lemma 2.5. Let 8bT2 ≤ 1, then for almost every λ ∈ I, there exists uλ ∈ H\{0} such that
(JT

λ )
′(uλ) = 0 and JT

λ (uλ) = cλ.

Lemma 2.6. Let N ≥ 5. If u ∈ H is a critical point of JT
λ (u), namely, u a weak solution of(

1 +
b

2T2 ψ′
(
‖u‖2

T2

)(∫
RN
|∇u|2 dx

)2
)

Lu− bψ

(
‖u‖2

T2

) ∫
RN
|∇u|2 dx ∆u = λ f (u),

where Lu = ∆2u− a∆u + cu, then the following Pohozaev identity holds:

λN
∫

RN
F(u) dx =

b(N − 2)
2

ψ

(
‖u‖2

T2

)(∫
RN
|∇u|2 dx

)2

+

(
1
2
+

b
4T2 ψ′

(
‖u‖2

T2

))
×

×
[
(N − 4)

∫
RN
|∆u|2 dx + a(N − 2)

∫
RN
|∇u|2 dx + cN

∫
RN
|u|2 dx

]
.
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Proof. Let T(t) : H→ H be a family of transformations such that

T(t)u(x) = u
( x

t

)
, t > 0,

and consequently
T(1) = id.

If u ∈ H is a critical point of JT
λ , then we have

JT
λ (T(t)u) =

tN−4

2

∫
RN
|∆u|2 dx +

atN−2

2

∫
RN
|∇u|2 dx +

ctN

2

∫
RN
|u|2 dx

+
bt2N−4

4
ψ

(∫
RN tN−4|∆u|2 + atN−2|∇u|2 + ctN |u|2 dx

T2

)(∫
RN
|∇u|2 dx

)2

− λtN
∫

RN
F(u) dx

and

0 =
∂

∂t
JT
λ (T(t)u)|t=1

=
N − 4

2

∫
RN
|∆u|2 dx +

a(N − 2)
2

∫
RN
|∇u|2 dx +

cN
2

∫
RN
|u|2 dx

+
b(2N − 4)

4
ψ

(
‖u‖2

T2

)(∫
RN
|∇u|2 dx

)2

+
b

4T2 ψ′
(
‖u‖2

T2

)(∫
RN
|∇u|2 dx

)2

×

×
(
(N − 4)

∫
RN
|∆u|2 dx + a(N − 2)

∫
RN
|∇u|2 dx + cN

∫
RN
|u|2 dx

)
− λN

∫
RN

F(u) dx.

Then, if N ≥ 5, the Pohozaev identity of the fourth order elliptic equation:(
1 +

b
2T2 ψ′

(
‖u‖2

T2

)(∫
RN
|∇u|2 dx

)2
) [

∆2u− a∆u + cu
]

− bψ

(
‖u‖2

T2

) ∫
RN
|∇u|2 dx∆u = λ f (u),

takes the form

λN
∫

RN
F(u) dx =

(
1
2
+

b
4T2 ψ′

(
‖u‖2

T2

))
×

×
[
(N − 4)

∫
RN
|∆u|2 dx + a(N − 2)

∫
RN
|∇u|2 dx + cN

∫
RN
|u|2 dx

]
+

b(2N − 4)
4

ψ

(
‖u‖2

T2

)(∫
RN
|∇u|2 dx

)2

.

Lemma 2.7. Let un be a critical point of JT
λn

at level cλn . Then for T > 0 sufficiently large, there exists
b∗ = b∗(T) with 8b∗T2 ≤ 1 such that for any b ∈ [0, b∗), up to a subsequence, ‖un‖ < T.
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Proof. According to Lemma 2.5, there exists a sequence {λn} ⊂ I with λn → 1−, and {un} ⊂ H
such that

JT
λn
(un) = cλn ,

(
JT
λn

)′
(un) = 0.

Firstly, since (JT
λn
)′(un) = 0, from Lemma 2.6, it follows that

λnN
∫

RN
F(un) dx

=
b(2N − 4)

4
ψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

+

(
1
2
+

b
4T2 ψ′

(
‖un‖2

T2

))
×

×
[
(N − 4)

∫
RN
|∆un|2 dx + a(N − 2)

∫
RN
|∇un|2 dx + cN

∫
RN
|un|2 dx

]
.

(2.2)

Secondly, using JT
λn
(un) = cλn , we have that

N
2
‖un‖2 +

Nb
4

ψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

− λnN
∫

RN
F(un) dx = cλn N (2.3)

Finally, from (2.2) and (2.3), we have(
2
∫

RN
|∆un|2 dx + a

∫
RN
|∇un|2 dx

)
≤
(

2 +
b

T2 ψ′
(
‖un‖2

T2

)) ∫
RN
|∆u|2 dx + a

(
1 +

b
2T2 ψ′

(
‖un‖2

T2

)) ∫
RN
|∇u|2 dx

=
N
2
‖un‖2 +

Nb
4T2 ψ′

(
‖un‖2

T2

)
‖un‖2 +

b(2N − 4)
4

ψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

− λnN
∫

RN
F(un) dx

=
N
2
‖un‖2 +

Nb
4T2 ψ′

(
‖un‖2

T2

)
‖un‖2 +

b(2N − 4)
4

ψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

+ cλn N − N
2
‖un‖2 − Nb

4
ψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

= cλn N +
Nb
4T2 ψ′

(
‖un‖2

T2

)
‖un‖2 +

b(N − 4)
4

ψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

.

Now we show some estimates on the right-hand side.

cλn ≤ max
t

JT
λn
(tφ)

≤ max
t

1
2
‖tφ‖2 +

b
4

ψ

(
‖tφ‖2

T2

)(∫
RN
|∇tφ)|2 dx

)2

− λ
∫

RN
F(tφ) dx

≤ 1
2

t2 − λ
∫

RN
C1t2φ2 dx + C3

≤ max
t

1
2

t2 − λC1t2
∫

B(0,R)
φ2 dx + C3 + max

t

b
4

ψ

(
t2

T2

)( ∫
RN
|∇φ| dx

)2

t4

≤ max
t

1
2

t2 − δC1t2
∫

B(0,R)
φ2 dx + C3 + max

t

b
4

ψ

(
t2

T2

)
t4.
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Since ψ
(

t2

T2

)
= 0 for t2 ≥ 2T2, we can obtain

cλn ≤ C3 + bT4,

Nb
4T2 ψ′

(
‖u‖2

T2

)
‖u‖2 ≤ Nb,

b(N − 4)
4

ψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

≤ b(N − 4)T4.

Then we have

2
∫

RN
|∆un|2 dx + a

∫
RN
|∇un|2 dx ≤ C3 + bT4 + b(N − 4)T4 + Nb.

Finally, we show that there exists T > 0 such that ‖un‖ ≤ T. On the contrary, there exists
no subsequence of {un} which is uniformly bounded by T, namely, ‖un‖ > T. By (H1) and
(H2), we have

‖un‖2 +
b

2T2 ψ′
(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

‖un‖2 + bψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

= λn

∫
RN

f (un)un dx

≤ ε|un|2L2 + Cε|un|2
∗

L2∗ .

Furthermore, we have

(1− ε)‖un‖2 ≤ Cε|un|2
∗

L2∗ −
b

2T2 ψ′
(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

‖un‖2

≤ C4|∇un|2
∗

L2 + 8bT2

≤ C4

(
C3 + bT4 + b(N − 4)T4 + Nb

a

) 2∗
2

+ 8bT2.

Then we get the following inequality

T < ‖un‖ ≤ C5

(
C3 + bT4 + b(N − 4)T4 + Nb

) 2∗
2
+ 8bT2.

However, this inequality in not true for sufficiently large T with 8bT2 < 1, and this implies
the conclusion.

Proof of Theorem 1.1. Let T and b∗ = 1
8T2 be defined as in Lemma 2.7, and un be a critical point

for JT
λn

at level cλn . Then from Lemma 2.7, we know that ‖un‖ ≤ T. So

JT
λn
(un) =

1
2
‖un‖2 +

b
4

ψ

(
‖un‖2

T2

)(∫
RN
|∇un|2 dx

)2

− λn

∫
RN

F(un) dx

=
1
2
‖un‖2 +

b
4

(∫
RN
|∇un|2 dx

)2

− λn

∫
RN

F(un) dx.

Since λn → 1, we have(
J′(un), v

)
=
(
(JT

λn
)′(un), v

)
+ (λn − 1)

∫
RN

f (un)v dx, v ∈ H,
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which implies that J′(un)→ 0. Then combining with the boundedness of {un}, we show that
{un} also is a (PS)-sequence of J. By Lemma 2.4, {un} has a convergent subsequence {unk}
with unk → u. Consequently, J′(u) = 0. According to Lemma 2.3, we have

J(u) = lim
k→∞

J(unk) = lim
k→∞

JT
λnk

(unk) ≥ c > 0,

and u is a positive solution of (1.1) by (H1). The proof is completed.
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