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Abstract. We consider the Dirichlet problem for the fractional Langevin equation with
two fractional order derivatives

−0Dα
t (0Dα

t u(t)) = f (t, u(t), 0Dα
t u(t)), t ∈ [0, 1],

u(0) = u(1) = 0.

The existence of a nontrivial solution is stated through an iterative method based on
mountain pass techniques.
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1 Introduction

The Langevin equation was proposed by Langevin [18] in 1908 to give an elaborate description
of Brownian motion. In his work, Newton’s second law was applied to a Brownian particle
to invent the “F = ma” of stochastic physics which is now called “Langevin equation”. On
the other hand, Einstein’s method of studying Brownian motion is based on the Fokker–
Planck equation governing the time evolution of the Brownian particle’s probability density.
Langevin’s approach is more simple than Einstein’s at the cost of forcing into existence new
mathematical objects (Gaussian white noise and the stochastic differential equation) with un-
usual properties. For a long time, the Langevin equation was widely used to describe the
dynamical processes taking place in fluctuating environments [11]. However, for systems in
disordered or fractal medium, some interesting phenomena such as anomalous transport [15]
are observed. In these cases, the ordinary Langevin equation cannot give a correct description
of the dynamics any more. Thus, the generalized Langevin equation (GLE) was introduced
by Kubo [17] in 1966, where a fractional memory kernel was incorporated into the Langevin
equation to describe the fractal and memory properties. The generalization of the Langevin
equation has since become a hot research topic.
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As the intensive development of fractional derivative, a natural generalization of the Lan-
gevin equation is to replace the ordinary derivative by a fractional derivative to yield fractional
Langevin equation (FLE), which can be considered as a particular case of the GLE. FLE was
introduced by Mainardi and collaborators [22, 23] in earlier 1990s. The literature on this
respect is huge, several different types of FLE were studied in [5, 6, 9, 10, 30, 19, 20, 21]. The
usual FLE involving only one fractional order was studied in [9, 21]; the Langevin equation
containing both fractional memory kernel and fractional derivative was studied in [10, 30];
the nonlinear Langevin equation involving two fractional orders was studied in [5, 6, 19, 20].
We focus on a particular case of the last type of FLE proposed first by Lim et al. [19] in 2008:

0Dβ
t (0Dα

t + λ)u(t) = f (t, u(t)).

More precisely, we study the Dirichlet boundary value problem of the Langevin equation with
two fractional orders derivatives given by

−0Dα
t (0Dα

t u(t)) = f (t, u(t), 0Dα
t u(t)), t ∈ [0, 1], (1.1)

u(0) = u(1) = 0,

where 1
2 < α < 1, 0Dα

t u is the Riemann–Liouville fractional derivative and f ∈ C([0, 1]×R×
R, R). In particular, if f (t, u(t), 0Dα

t u(t)) = λ0Dα
t u(t)− g(t, u(t)), we recover a model of the

nonlinear fractional Langevin equation

0Dα
t (0Dα

t + λ)u(t) = g(t, u(t)). (1.2)

In recent years, the boundary value problem of fractional order differential equations have
emerged as an important area of research, since these problems have applications in vari-
ous disciplines of science and engineering such as mechanics, electricity, chemistry, biology,
economics, control theory, signal and image processing, polymer rheology, regular variation
in thermodynamics, biophysics, aerodynamics, viscoelasticity and damping, electrodynamics
of complex medium, wave propagation, and blood flow phenomena [16, 26, 28, 29]. Many
researchers have studied the existence theory for nonlinear fractional differential equations
with a variety of boundary conditions; for instance, see the papers [1, 2, 3, 4, 8, 25, 35] and the
references therein. However, as to the nonlinear Langevin equation involving two different
fractional orders, the research work is still in its infancy and is focused on boundary value
problems. The Dirichlet boundary value problem was studied in [5], while the three-point
boundary value problem was studied in [6], both of them by using fixed point theorem.

It should be noted that critical point theory and variational methods have also turned out
to be very effective tools in determining the existence of solutions for integer and fractional
order differential equations. The idea behind them is trying to find solutions of a given
boundary value problem by looking for critical points of a suitable energy functional defined
on an appropriate function space. In the last 30 years, the critical point theory has become a
wonderful tool in studying the existence of solutions to differential equations with variational
structures, we refer the reader to the books due to Mawhin and Willem [24], Rabinowitz [27],
Schechter [31] and the papers [12, 13, 14, 32, 33, 34, 36].

Motivated by these previous works, we consider the solvability of the Dirichlet problem
(1.1) by using variational methods and iterative technique. For that purpose, we say a function
u ∈ Eα is a weak solution of problem (1.1) if

−
∫ 1

0
(0Dα

t u(t), tDα
1 v(t)) dt−

∫ 1

0
f (t, u(t), 0Dα

t u(t))v(t) dt = 0
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for all v(t) ∈ Eα, (see Section 2 for the definition of Eα).
Since the nonlinearity f depends on the 0Dα

t of the solution, solving (1.1) is not variational.
In fact the well developed critical point theory cannot be applied directly. We follow the ideas
of Xie, Xiao and Luo [36] to overcome this difficulty. That is, we associate to problem (1.1) a
family of fractional differential equations with no dependence on 0Dα

t of the solution. Namely,
for each w ∈ Eα, we consider the problem

−0Dα
t (0Dα

t u(t)) = f (t, u(t), 0Dα
t w(t)), t ∈ [0, 1], (1.3)

u(0) = u(1) = 0.

This problem is variational and we can treat it by variational methods.
Associated to the boundary value problem (1.3), for given w(t) ∈ Eα, we have the func-

tional Iw : Eα → R defined by

Iw(u) = −
1
2

∫ 1

0
(0Dα

t u(t), tDα
1 ϕ(t)) dt−

∫ 1

0
F(t, u(t), 0Dα

1 w(t)) dt, (1.4)

where F(t, x, ξ) =
∫ x

0 f (t, s, ξ) ds. By continuity hypothesis on f we have Iw ∈ C1(Eα, R) and
∀v ∈ Eα

I′w(u)v = − 1
2

∫ 1

0
(0Dα

t u(t), tDα
1 v(t)) + (0Dα

t v(t), tDα
1 u(t)) dt

−
∫ 1

0
f (t, u(t), 0Dα

t w(t))v(t) dt.
(1.5)

Moreover, critical points of Iw are weak solutions of (1.3). Therefore, for each w ∈ Eα, we can
find a solution uw ∈ Eα with some bounds. Next, by iterative methods we can show that there
exists a solution for problem (1.1).

Before stating our results, we make precise assumptions on the nonlinear term f : [0, 1]×
R×R→ R:

(H1) limx→0
f (t,x,ξ)

x = 0 uniformly for t ∈ [0, 1] and ξ ∈ R.

(H2) There are positive constants c and p > 1 such that

| f (t, x, ξ)| ≤ c(1 + |x|p), for all t ∈ [0, 1], x, ξ ∈ R.

(H3) There exist µ > 2 and M ≥ 0 such that

0 < µF(t, x, ξ) ≤ x f (t, x, ξ) for every t ∈ [0, 1], |x| ≥ M, ξ ∈ R,

where
F(t, x, ξ) =

∫ x

0
f (t, s, ξ) ds.

(H4) There exist constants c1, c2 > 0 such that

F(t, x, ξ) ≥ c1|x|µ − c2, for all t ∈ [0, 1], x, ξ ∈ R.

(H5) The function f satisfies the following conditions:

| f (t, x, ξ)− f (t, x1, ξ)| ≤ L1|x− x1|, ∀t ∈ [0, 1], x, x1 ∈ [−ρ1, ρ1], ξ ∈ R

| f (t, x, ξ)− f (t, x, ξ1)| ≤ L2|ξ − ξ1|, ∀t ∈ [0, 1], x ∈ [−ρ1, ρ1], ξ, ξ1 ∈ R

where ρ1 is a positive constant, which is given below.
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Now we are in a position to state our main existence theorem

Theorem 1.1. Assume that (H1)–(H5) hold, and the constant

l :=
L2Γ(α + 1)

| cos(πα)|[Γ(α + 1)]2 − L1

satisfies 0 < l < 1. Then problem (1.1) has one nontrivial solution.

The rest of the paper is organized as follows: in Section 2 we present preliminaries on
fractional calculus and we introduce the functional setting of the problem. In Section 3 we
prove Theorem 1.1.

2 Fractional calculus

In this section we introduce some basic definitions of fractional calculus which are used further
in this paper. For the proof see [16], [26] and [29].

Definition 2.1 (Left and right Riemann–Liouville fractional integral). Let u be a function de-
fined on [a, b]. The left (right) Riemann–Liouville fractional integral of order α > 0 for function
u is defined by

a Iα
t u(t) =

1
Γ(α)

∫ t

a
(t− s)α−1u(s) ds, t ∈ [a, b],

t Iα
b u(t) =

1
Γ(α)

∫ b

t
(s− t)α−1u(s) ds, t ∈ [a, b],

provided in both cases that the right-hand side is pointwise defined on [a, b].

Definition 2.2 (Left and right Riemman–Liouville fractional derivative). Let u be a function
defined on [a, b]. The left and right Riemann–Liouville fractional derivatives of order α > 0
for function u denoted by aDα

t u(t) and tDα
b u(t), respectively, are defined by

aDα
t u(t) =

dn

dtn a In−α
t u(t),

tDα
b u(t) = (−1)n dn

dtn t In−α
b u(t),

where t ∈ [a, b], n− 1 ≤ α < n and n ∈N.

The left and right Caputo fractional derivatives are defined via the above Riemann–
Liouville fractional derivatives [16]. In particular, they are defined for the functions belonging
to the space of absolutely continuous functions.

Definition 2.3. If α ∈ (n− 1, n) and u ∈ ACn[a, b], then the left and right Caputo fractional
derivative of order α for function u denoted by c

aDα
t u(t) and c

t Dα
b u(t), respectively, are defined

by

c
aDα

t u(t) = a In−α
t u(n)(t) =

1
Γ(n− α)

∫ t

a
(t− s)n−α−1un(s) ds,

c
t Dα

b u(t) = (−1)n
t In−α

b u(n)(t) =
(−1)n

Γ(n− α)

∫ b

t
(s− t)n−α−1u(n)(s) ds
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The Riemann–Liouville fractional derivative and the Caputo fractional derivative are con-
nected with each other by the following relations.

Theorem 2.4. Let n ∈N and n− 1 < α < n. If u is a function defined on [a, b] for which the Caputo
fractional derivatives c

aDα
t u(t) and c

t Dα
b u(t) of order α exists together with the Riemann–Liouville

fractional derivatives aDα
t u(t) and tDα

b u(t), then

c
aDα

t u(t) = aDα
t u(t)−

n−1

∑
k=0

u(k)(a)
Γ(k− α + 1)

(t− a)k−α, t ∈ [a, b],

c
t Dα

b u(t) = tDα
b u(t)−

n−1

∑
k=0

u(k)(b)
Γ(k− α + 1)

(b− t)k−α, t ∈ [a, b].

In particular, when 0 < α < 1, we have

c
aDα

t u(t) = aDα
t u(t)− u(a)

Γ(1− α)
(t− a)−α, t ∈ [a, b] (2.1)

and
c
t Dα

b u(t) = tDα
b u(t)− u(b)

Γ(1− α)
(b− t)−α, t ∈ [a, b]. (2.2)

Now we remember some properties of the Riemann–Liouville fractional integral and deriva-
tive operators.

Theorem 2.5.

a Iα
t (a Iβ

t u(t)) = a Iα+β
t u(t) and

t Iα
b (t Iβ

b u(t)) = t Iα+β
b u(t) ∀α, β > 0,

in any point t ∈ [a, b] for continuous function u and for almost every point in [a, b] if the function
u ∈ L1[a, b].

Theorem 2.6 (Left inverse). Let u ∈ L1[a, b] and α > 0,

aDα
t (a Iα

t u(t)) = u(t), a.e. t ∈ [a, b] and

tDα
b (t Iα

b u(t)) = u(t), a.e. t ∈ [a, b].

Theorem 2.7. For n − 1 ≤ α < n, if the left and right Riemann–Liouville fractional derivatives
aDα

t u(t) and tDα
b u(t) of the function u are integral on [a, b], then

a Iα
t (aDα

t u(t)) = u(t)−
n

∑
k=
[a Ik−α

t u(t)]t=a
(t− a)α−k

Γ(α− k + 1)
,

t Iα
b (tDα

b u(t)) = u(t)−
n

∑
k=1

[t Ik−α
n u(t)]t=b

(−1)n−k(b− t)α−k

Γ(α− k + 1)
,

for t ∈ [a, b].

Theorem 2.8 (Integration by parts).∫ b

a
[a Iα

t u(t)]v(t) dt =
∫ b

a
u(t)t Iα

b v(t) dt, α > 0, (2.3)
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provided that u ∈ Lp[a, b], v ∈ Lq[a, b] and

p ≥ 1, q ≥ 1 and
1
p
+

1
q
< 1 + α or p 6= 1, q 6= 1 and

1
p
+

1
q
= 1 + α.

∫ b

a
[aDα

t u(t)]v(t) dt =
∫ b

a
u(t)tDα

b v(t) dt, 0 < α ≤ 1, (2.4)

provided the boundary conditions

u(a) = u(b) = 0, u′ ∈ L∞[a, b], v ∈ L1[a, b] or

v(a) = v(b) = 0, v′ ∈ L∞[a, b], u ∈ L1[a, b]

are fulfilled.

2.1 Fractional derivative space

In order to establish a variational structure for BVP (1.1), it is necessary to construct appropri-
ate function spaces. For this setting we take some results from [13].

Let us recall that for any fixed t ∈ [0, T] and 1 ≤ p < ∞,

‖u‖Lp[0,t] =

(∫ t

0
|u(s)|p ds

)1/p

,

‖u‖Lp =

(∫ T

0
|u(s)|p ds

)1/p

and

‖u‖∞ = max
t∈[0,T]

|u(t)|.

Definition 2.9. Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative spaces Eα,p
0 are defined

by

Eα,p
0 = {u ∈ Lp[0, T] | 0Dα

t u ∈ Lp[0, T] and u(0) = u(T) = 0}

= C∞
0 [0, T]

‖.‖α,p .

where ‖ · ‖α,p is defined by

‖u‖p
α,p =

∫ T

0
|u(t)|p dt +

∫ T

0
|0Dα

t u(t)|p dt. (2.5)

Remark 2.10. For any u ∈ Eα,p
0 , noting the fact that u(0) = 0, we have c

0Dα
t u(t) = 0Dα

t u(t),
t ∈ [0, T] according to (2.1).

Proposition 2.11 ([13]). Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p
0 is a

reflexive and separable Banach space.

The following result yields the boundedness of the Riemann–Liouville fractional integral
operators from the space Lp[0, T] to the space Lp[0, T], where 1 ≤ p < ∞.

Lemma 2.12 ([13]). Let 0 < α ≤ 1 and 1 ≤ p < ∞. For any u ∈ Lp[0, T] we have

‖0 Iα
ξ u‖Lp[0,t] ≤

tα

Γ(α + 1)
‖u‖Lp[0,t], for ξ ∈ [0, t], t ∈ [0, T]. (2.6)
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Proposition 2.13 ([14]). Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα,p
0 , if α > 1/p we have

0 Iα
t (0Dα

t u(t)) = u(t).

Moreover, Eα,p
0 ∈ C[0, T].

Proposition 2.14 ([14]). Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα,p
0 , if α > 1/p we have

‖u‖Lp ≤ Tα

Γ(α + 1)
‖0Dα

t u‖Lp . (2.7)

If α > 1/p and 1
p +

1
q = 1, then

‖u‖∞ ≤
Tα−1/p

Γ(α)((α− 1)q + 1)1/q ‖0Dα
t u‖Lp . (2.8)

Remark 2.15. Let 1/2 < α ≤ 1, if u ∈ Eα,p
0 , then u ∈ Lq[0, T] for q ∈ [p,+∞]. In fact

∫ T

0
|u(t)|q dt =

∫ T

0
|u(t)|q−p|u(t)|p dt

≤ ‖u‖q−p
∞ ‖u‖p

Lp .

In particular the embedding Eα,p
0 ↪→ Lq[0, T] is continuos for all q ∈ [p,+∞].

According to (2.7), we can consider in Eα,p
0 the following norm

‖u‖α,p = ‖0Dα
t u‖Lp , (2.9)

and (2.9) is equivalent to (2.5).

Proposition 2.16 ([14]). Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p and {uk}⇀ u in Eα,p

0 .
Then uk → u in C[0, T], i.e.

‖uk − u‖∞ → 0, k→ ∞.

We denote by Eα = Eα,2
0 , this is a Hilbert space with respect to the norm ‖u‖α = ‖u‖α,2

given by (2.9).
Now we consider the functional

u→
∫ T

0
(0Dα

t u(t), tDα
Tu(t))

on Eα. The following estimates are useful for our further discussion.

Proposition 2.17 ([13]). If 1/2 < α ≤ 1, then for any u ∈ Eα, we have

| cos(πα)|‖u‖2
α ≤ −

∫ T

0
(0Dα

t u(t), tDα
Tu(t)) dt ≤ 1

| cos(πα)| ‖u‖
2
α (2.10)
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3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we proceed by three steps.

Proof. Step 1: Let w ∈ Eα, we show that Iw has a nontrivial critical point in Eα by the mountain
pass theorem.

Firstly, it follows from (H1) and (H2) that, given ε, with ε ∈ (0, | cos(πα)|[Γ(α + 1)]2),
there exists a positive constant Cε, independent of w, such that

| f (t, x, ξ)| ≤ ε|x|+ Cε|x|p, (3.1)

and
|F(t, x, ξ)| ≤ ε

2
|x|2 + Cε

p + 1
|x|p+1. (3.2)

By (2.10) and (3.2)

Iw(u) = −
1
2

∫ 1

0
(0Dα

t u(t), tDα
1 u(t)) dt−

∫ 1

0
F(t, u(t), 0Dα

t w(t)) dt

≥ | cos(πα)

2
|‖u‖2

α −
ε

2

∫ 1

0
|u(t)|2 dt− Cε

p + 1

∫ 1

0
|u(t)|p+1 dt

≥ | cos(πα)

2
|‖u‖2

α −
ε

2[Γ(α + 1)]2

∫ 1

0
|0Dα

t u(t)|2 dt

− Cε

(p + 1)[Γ(α)
√

Γ(α + 1)]p+1

(∫ 1

0
|0Dα

t u(t)|2 dt
) p+1

2

=

[
| cos(πα)|

2
− ε

2[Γ(α + 1)]2
− Cε

(p + 1)[Γ(α)
√

Γ(α + 1)]p+1
‖u‖p−1

α

]
‖u‖2

α

we can choose ρ > 0 such that

| cos(πα)|
2

− ε

2[Γ(α + 1)]2
>

Cε

(p + 1)[Γ(α)
√

Γ(α + 1)]p+1
ρp−1,

hence, let u ∈ Eα with ‖u‖α = ρ, we know that there exists β > 0, such that for ‖u‖α = ρ,
Iw(u) ≥ β uniformly for w ∈ Eα.

Secondly, for given u ∈ Eα with ‖u‖α = 1, by (2.10) and (H4) we have that for τ > 0,

Iw(τu) = −τ2

2

∫ 1

0
(0Dα

t u(t), tDα
1 u(t)) dt−

∫ 1

0
F(t, τu(t), 0Dα

t w(t)) dt

≤ τ2

2| cos(πα)| ‖u‖
2
α −

∫ 1

0
F(t, τu, 0Dα

t w(t)) dt

≤ τ2

2| cos(πα)| − c1τµ
∫ 1

0
|u(t)|µ dt + c2

Since µ > 2, taking τ large enough and let e = τu, then Iw(e) < 0 with ‖e‖α > ρ.
Thirdly, we show that Iw satisfies the Palais–Smale condition. Let {uk} ∈ Eα such that

|Iw(uk)| ≤ K, lim
k→∞

I′w(uk) = 0, for some K > 0. (3.3)

We have

Iw(uk) = −
1
2

∫ 1

0
(0Dα

t uk(t), tDα
1 uk(t)) dt−

∫ 1

0
F(t, uk(t), 0Dα

t w(t)) dt,
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and

I′w(uk)uk = −
∫ 1

0
(0Dα

t uk(t), tDα
1 uk(t)) dt−

∫ 1

0
f (t, uk(t), 0Dα

t w(t))uk(t) dt.

Then by (3.2) and (H3),

| cos(πα)|
(

1
2
− 1

µ

)
‖uk‖2

α

≤ Iw(uk)−
1
µ

I′w(uk)uk

+
∫
{|uk |>M}

[
F(t, uk(t), 0Dα

t w(t))− uk

µ
f (t, uk(t), 0Dα

t w(t))
]

dt

+
∫
{|uk |≤M}

[
F(t, uk(t), 0Dα

t w(t))− uk

µ
f (t, uk(t), 0Dα

t w(t))
]

dt

≤ Iw(uk)−
1
µ

I′w(uk)uk + c3 (3.4)

≤ K +
1
µ
‖I′w(uk)‖‖uk‖α + c3,

where c3 > 0. Combining with I′w(uk)→ 0, as k→ ∞, we know that {uk} is bounded in Eα.
Since Eα is a reflexive space, we can assume that uk ⇀ u in Eα, according to Proposition

2.16, we have that {uk} is bounded in C([0, 1]) and limk→∞ ‖uk − u‖∞ = 0. By the assumption
(H2), we have∫ 1

0
[ f (t, uk(t), 0Dα

t w(t))− f (t, u(t), 0Dα
t w(t))](uk(t)− u(t)) dt→ 0, k→ ∞

Notice that

[I′w(uk)− I′w(u)](uk − u) = I′w(uk)(uk − u)− I′w(u)(uk − u)

≤ ‖I′w(uk)‖‖uk − u‖α − I′w(u)(uk − u)

→ 0, as k→ ∞

Moreover,

| cos(πα)|‖uk − u‖2
α ≤ −

∫ 1

0
(0Dα

t (uk − u), tDα
1 (uk − u)) dt

=
∫ 1

0
[ f (t, uk, 0Dα

t w(t))− f (t, u(t), 0Dα
t w(t))](uk − u) dt

+ [I′w(uk)− I′w(u)](uk − u),

so ‖uk − u‖α → 0 as k→ ∞. That is, {uk} converges strongly to u in Eα.
Obviously, Iw(0) = 0, therefore, by the mountain pass theorem, Iw has a nontrivial critical

point uw in Eα, with
Iw(uw) = inf

γ∈Γ
max

u∈γ([0,1])
Iw(u) ≥ β > 0,

where Γ = {γ ∈ C([0, 1], Eα) : γ(0) = 0, γ(1) = e}.
Step 2: We construct an iterative sequence {un} and estimate its norm in Eα.

We consider the solutions {un} of the problem

−0Dα
t (0Dα

t un) = f (t, un(t), 0Dα
t un−1(t)), t ∈ [0, 1] (3.5)

un(0) = un(1) = 0,
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starting with an arbitrary u0 ∈ Eα. By iterative technique, we can get a sequence of {un}, the
nontrivial critical point obtained by Step 1.

In the following, we estimate the norm of {un}. Since un is the solution of problem (3.5),
we have

−
∫ 1

0
(0Dα

t un(t), tDα
1 un) dt =

∫ 1

0
f (t, un(t), 0Dα

t un−1(t))un(t) dt. (3.6)

By (3.1), (3.6),

| cos(πα)|‖un(t)‖2
α ≤ −

∫ 1

0
(0Dα

t un(t), tDα
1 un(t)) dt

≤ ε
∫ 1

0
|un(t)|2dt + Cε

∫ 1

0
|un(t)|p+1 dt

≤ ε

[Γ(α + 1)]2
‖un(t)‖2

α +
Cε

[Γ(α)
√

2α− 1]p+1
‖un(t)‖p+1

α ,

that is, (
| cos(πα)| − ε

[Γ(α + 1)]2

)
‖un(t)‖2

α ≤
Cε

[Γ(α)
√

2α− 1]p+1
‖un(t)‖p+1

α ,

and since p + 1 > 2 and un(t) 6= 0, then there exists R1 > 0 such that

‖un(t)‖α ≥ R1 > 0. (3.7)

On the other hand, by mountain pass characterization of the critical level, and (H4), we have

|Iun−1(un)| ≤ max
τ∈[0,∞)

Iun−1(τu)

≤ τ2

2| cos(πα)| − c1τµ
∫ 1

0
|u(t)|µ dt + c2,

Let

H(τ) =
τ2

2| cos(πα)| − c1τµ
∫ 1

0
|u(t)|µ dt + c2, τ ≥ 0,

since µ > 2, then H(τ) can achieve its maximum at some τ0. Hence

|Iun−1(un)| ≤ H(τ0),

by (3.4) and I′un−1
(un)un = 0, we have

| cos(πα)|
(

1
2
− 1

µ

)
‖un‖2

α ≤ Iun−1(un)−
1
µ

I′un−1
(un)un + c3

≤ H(τ0) + c3,

so

‖un‖α ≤
√√√√ H(τ0) + c3

| cos(πα)|
(

1
2 −

1
µ

) =: R2

Step 3: We show that the iterative sequence {un} constructed in Step 2 is convergent to a
nontrivial solution of problem (3.5).

By Step 2, we know 0 < R1 ≤ ‖un‖α ≤ R2, therefore, there exists a positive constant ρ1,
such that

‖un‖∞ ≤ ρ1. (3.8)
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By (1.5), and I′un
(un+1)(un+1 − un) = 0, I′un−1

(un)(un+1 − un) = 0, we obtain

− 1
2

∫ 1

0
(0Dα

t un+1, tDα
1 (un+1 − un)) + (0Dα

t (un+1 − un), tDα
1 un+1) dt

=
∫ 1

0
f (t, un+1, 0Dα

t un)(un+1 − un) dt,

and

− 1
2

∫ 1

0
(0Dα

t un, tDα
1 (un+1 − un)) + (0Dα

t (un+1 − un), tDα
1 un) dt

=
∫ 1

0
f (t, un, 0Dα

t un−1)(un+1 − un) dt,

hence

−
∫ 1

0
(0Dα

t (un+1 − un), tDα
1 (un+1 − un))

=
∫ 1

0
[ f (t, un+1, 0Dα

t un)− f (t, un, 0Dα
t un−1)](un+1 − un) dt,

so we have

| cos(πα)|‖un+1 − un‖2
α

≤
∫ 1

0
[ f (t, un+1, 0Dα

t un)− f (t, un, 0Dα
t un)](un+1 − un) dt

+
∫ 1

0
[ f (t, un, 0Dα

t un)− f (t, un, 0Dα
t un−1)](un+1 − un) dt

≤ L1

∫ 1

0
|un+1 − un|2dt + L2

∫ 1

0
|0Dα

t (un − un−1)||un+1 − un| dt

≤ L1

[Γ(α + 1)]2
‖un+1 − un‖2

α + L2‖0Dα
t (un − un−1)‖L2‖un+1 − un‖L2

≤ L1

[Γ(α + 1)]2
‖un+1 − un‖2

α +
L2

Γ(α + 1)
‖un − un−1‖α‖un+1 − un‖α,

hence (
| cos(πα)| − L1

[Γ(α + 1)]2

)
‖un+1 − un‖α ≤

L2

Γ(α + 1)
‖un − un−1‖α.

Since 0 < l < 1, we know that {un} is a cauchy sequence in Eα, so there exists a u ∈ Eα such
that {un} converges strongly to u in Eα, and by (3.7) we know that u 6= 0.

In order to show that u is a solution of problem (1.1) we need to prove that

−
∫ 1

0
(0Dα

t u(t), tDα
1 v(t)) dt =

∫ 1

0
f (t, u(t), 0Dα

t u(t))v(t) dt, ∀v ∈ Eα.

It suffices to show that∫ 1

0
f (t, un, 0Dα

t un−1)v(t) dt→
∫ 1

0
f (t, u, 0Dα

t u(t))v(t) dt, as n→ ∞.
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Indeed, it follows from the assumption (H5) that∫ 1

0
[ f (t, un(t), 0Dα

t un−1(t))− f (t, u(t), 0Dα
t u(t))]v(t) dt

=
∫ 1

0
[ f (t, un(t), 0Dα

t un−1(t))− f (t, un(t), 0Dα
t u(t))]v(t) dt

+
∫ 1

0
[ f (t, un(t), 0Dα

t u(t))− f (t, u(t), 0Dα
t u(t))]v(t) dt

≤ L1

∫ 1

0
|un(t)− u(t)||v(t)| dt + L2

∫ 1

0
|0Dα

t (un(t)− un−1(t))||v(t)| dt

≤
[

L1

[Γ(α + 1)]2
‖un − u‖α +

L2

Γ(α + 1)
‖un−1 − u‖α

]
‖v‖α

→ 0, n→ ∞.

Therefore, we obtain a nontrivial solution of problem (1.1).
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