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Abstract. We study the oscillation of a fourth order nonlinear differential equation
with a middle term. Using a certain energy function, we describe the properties of
oscillatory solutions. The paper extends oscillation criteria stated for equations with
the operator x(4) + x′′ and completes the results stated for super-linear and sub-linear
case. Oscillation results are new also for the linear equation.
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1 Introduction

Consider the fourth order nonlinear differential equation

x(4)(t) + q(t)x′′(t) + r(t) f (x(t)) = 0 (1.1)

under the following assumptions:

(i) q ∈ C(R+), q(t) > 0 for large t, r ∈ C(R+), r(t) > 0 for large t and R+ = [0, ∞);

(ii) f ∈ C(R) satisfies f (u)u > 0 for u 6= 0 and either

| f (u)| ≥ |u| for u ∈ R (1.2)

or there exists 0 < λ < 1 such that

| f (u)| ≥ |u|λ for u ∈ R , (1.3)

where R = (−∞, ∞).

A special case of (1.1) is the equation

x(4)(t) + q(t)x′′(t) + r(t)|x(t)|λ sgn x(t) = 0 , (1.4)
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where λ ≤ 1.
By a solution of (1.1) we mean a function x ∈ C4[0, ∞), which satisfies (1.1) on [0, ∞). A

solution is said to be nonoscillatory if x(t) 6= 0 for large t, otherwise is said to be oscillatory. A
solution is said to be proper if it is nontrivial in any neighbourhood of infinity. Equation (1.1)
is oscillatory if all its solutions are oscillatory.

The oscillatory behavior of fourth order differential equations enjoys a great deal of inter-
est, see [1–4,6,10] and references contained therein. The important role in the investigation of
(1.1) is played by the fact whether the associated second order linear equation

h′′(t) + q(t)h(t) = 0 (1.5)

is oscillatory or nonoscillatory. For example, if (1.5) is nonoscillatory, then (1.4) can be written
as a two-term equation, see [3], or as a four-dimensional Emden–Fowler differential system,
see [10], and oscillation criteria for (1.4) can be obtained by this approach.

If (1.5) is oscillatory and λ ≥ 1, then (1.1) and (1.4) have been investigated in [3]. Here
conditions determining that all nonoscillatory solutions are vanishing at infinity have been
given, and the oscillation theorem for (1.4) has been proved in the case λ > 1.

The natural problem is to study oscillation of (1.1) and (1.4) when λ ≤ 1. If λ = 1 and
q(t) ≡ 1, then (1.4) is the linear equation

x(4)(t) + x′′(t) + r(t)x(t) = 0 (1.6)

and the following well-known result holds, see, e.g., [8, Corollary 1.3].

Theorem A. Let (1.2) hold. If either

lim inf
t→∞

t
∫ ∞

t
r(s) ds >

1
4

or lim sup
t→∞

t
∫ ∞

t
r(s) ds > 1,

then (1.6) is oscillatory.

If λ < 1 and (1.5) is oscillatory, the following oscillation criterion for (1.4) has been proved
in [4, Theorem 2].

Theorem B. Let λ < 1 and (1.5) be oscillatory. Assume that

q(t) ≥ q0 > 0, q′(t) ≤ 0, q′′(t) ≥ 0 for large t, (1.7)

and
lim
t→∞

t2(λ−1)r(t) = ∞. (1.8)

Then (1.4) is oscillatory.

Motivated by these results, we study oscillation of (1.1), and properties of zeros of oscil-
latory solutions. We allow that the function q can tend to zero or to infinity as t → ∞ and
both cases that the corresponding second order equation (1.5) is nonoscillatory/oscillatory are
considered. Our approach is based on a suitable energy function for (1.1) and a comparison
method for (1.1) and (1.4). Our results are applicable to the equation

x(4)(t) + kx′′(t) + r(t) f (x(t)) = 0 , (k > 0) , (1.9)

studied in [7]. If f is a locally Lipschitz function, then this equation is known as the Swift–
Hohenberg equation.
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2 Classification of solutions

We start with the possible types of nonoscillatory solutions of (1.1). Due to the sign-condition
on f , we can focus on eventually positive solutions of (1.1).

To this aim, a function g, defined in a neighborhood of infinity, is said to change its sign,
if there exists a sequence {tk} → ∞ such that g(tk)g(tk+1) < 0.

Lemma 2.1. Every eventually positive solution x of (1.1) is one of the following type:
Type (a): x(t) > 0, x′(t) > 0, x′′(t) ≤ 0 for large t,
Type (b): x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) > 0 for large t,
Type (c): x′′ changes sign.

Moreover, if (1.5) is nonoscillatory, then x is of Type (a) or (b), and if (1.5) is oscillatory, then x is of
Type (a) or (c).

Proof. From Theorem 2 and Theorem 2’ in [3] it follows that if (1.5) is nonoscillatory, then every
eventually positive solution x satisfies x′(t) > 0 and x′′ is of one sign for large t, whereby if
(1.5) is oscillatory, then every eventually positive solution x satisfies either x′′(t) ≤ 0 or x′′

changes sign.
Assume that x(t) > 0 and x′′(t) ≤ 0 for large t. If x′(t) ≤ 0, then x is nonincreasing and

concave, which is a contradiction with the positivity of x.
Assume that x(t) > 0, x′(t) > 0 and x′′(t) > 0 for large t. Then x(4)(t) < 0 and so x′′′ is

of one sign for large t. If x′′′(t) ≤ 0, then x′′ is positive nonincreasing and concave function,
which is a contradiction with the positivity of x′′.

Finally, if (1.5) is oscillatory, then the last conclusion follows from Theorem 2, part (b)
in [3].

In the sequel, we consider equation (1.4) with λ ≤ 1.

Lemma 2.2. Let (1.5) be nonoscillatory. If there exists λ ≤ 1 such that

∫ ∞

0
t2λr(t) dt = ∞ , (2.1)

then (1.4) has no solution of Type (b).

Proof. Let (1.5) be nonoscillatory and (2.1) hold for λ ≤ 1. Assume that (1.4) has a solution x
of Type (b), i.e., there exists t0 ≥ 0 such that x(t) > 0, x′(t) > 0, x′′(t) > 0 and x′′′(t) > 0 for
t ≥ t0. Then from (1.4), x(4)(t) < 0 for t ≥ t0. Thus there exists t1 ≥ t0 such that x′′′ is positive
and decreasing for t ≥ t1 and there exist C > 0 and t2 ≥ t1 such that x′′(t) ≥ C and x(t) ≥ Ct2

for t ≥ t2. From here, integrating (1.4) from t2 to t, we get

x′′′(t2)− x′′′(t) ≥ −
∫ t

t2

x(4)(s) ds =
∫ t

t2

(
q(s)x′′(s) + r(s)xλ(s)

)
ds

≥ Cλ
∫ t

t2

r(s)s2λ ds .

Letting t→ ∞, we get a contradiction to the boundedness of x′′′.
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3 Oscillation theorems

In this section we state two oscillation theorems for (1.1).

Theorem 3.1. Let (1.2) hold. Assume that

lim
t→∞

r(t)
q(t)

= ∞ , (3.1)

q2(t) ≤ 4r(t) for large t , (3.2)

and, in addition if (1.5) is nonoscillatory, that∫ ∞

0
t2r(t) dt = ∞ . (3.3)

Then (1.1) is oscillatory.

To prove this result, we introduce the following energy function used for (1.4) in [4].

Definition 3.2. Let x be a solution (possibly oscillatory or nonoscillatory) of (1.1). Define the
function F as

F(t) = −x′′′(t) x(t) + x′(t) x′′(t), t ∈ R+ .

Lemma 3.3. Let (1.2) hold and x be a proper solution of (1.1). If (3.2) holds, then the function F is
nondecreasing for large t, and (1.1) has no solutions of Type (c).

Proof. Let x be a proper solution of (3.6). We have

F′(t) = r(t)x(t) f (x(t)) + q(t)x′′(t)x(t) +
(
x′′(t)

)2 . (3.4)

If x(t) 6= 0, then by (1.2) and (3.2)

F′(t) =
(√

r(t)
√

f (x(t))x(t) sgn x(t) +
q(t)

2
√

r(t)
x′′(t)

√
x(t)/ f (x(t))

)2

+
(
x′′(t)

)2
(

1− q2(t)
4r(t)

x(t)
f (x(t))

)
≥ 0 .

If x(t̄) = 0 at some t̄ > 0, then F′(t) ≥ 0 in a neighbourhood of t̄. By (3.4), F′ is continuous for
t > 0 and thus F′(t) ≥ 0 for large t and we get the monotonicity of F for large t.

Let x(t) > 0 for t ≥ T1 ≥ 0 and by contradiction, suppose that x is of Type (c), i.e., x′′

changes sign. Let {tk}∞
k=1 and {τk}∞

k=1, T1 ≤ tk < τk < tk+1, k = 1, 2, . . . be sequences of zeros
of x′′ tending to ∞ such that

x′′(t) > 0 on (tk, τk), k = 1, 2, . . . (3.5)

Then (1.4) implies x(4)(t) < 0 on [tk, τk] and, hence, x′′′ is decreasing. According to (3.5) and
the fact that x′′(tk) = x′′(τk) = 0, numbers ξk ∈ (tk, τk) exist such that x′′′(ξk) = 0, k = 1, 2, . . .
From this and from the fact that x′′′ is decreasing, we have

x′′′(tk) > 0 and x′′′(τk) < 0 , k = 1, 2, . . .

Hence,

F(tk) = −x′′′(tk) x(tk) < 0, F(τk) = −x′′′(τk) x(τk) > 0, k = 1, 2, . . .

In view of the monotonicity of F, we get a contradiction. Thus x′′ does not change sign and
this proves the lemma.
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Proof of Theorem 3.1. Step 1. We prove first the statement for the linear equation

x(4)(t) + q(t)x′′(t) + r(t)x(t) = 0 . (3.6)

Let T > 0 be such that (3.2) holds for t ≥ T. Without loss of generality, consider a solution x of
(3.6) such that x(t) > 0 for t ≥ T. Using Lemma 3.3, the function F is nondecreasing for large
t, and in view of Lemmas 2.1, 2.2 and 3.3, x is of Type (a), i.e., x′(t) > 0, x′′(t) ≤ 0. Then either
x′′′ oscillates or x′′′(t) > 0 for large t; observe that the case x′′′(t) < 0 for large t is impossible
as x′ would change sign. Consider a sequence {tk} such that t1 ≥ T, limt→∞ tk = ∞ and
x′′′(tk) = 0 in case x′′′ oscillates; otherwise it can be arbitrary. In both cases we have F(tk) < 0
for k = 1, 2, . . . . According to Lemma 3.3, F is nondecreasing, so F(t) < 0 for t ≥ t1. Define
the function

Z(t) = −x′′(t) x(t) +
(
x′(t)

)2

for t ≥ t1 ≥ T. Then Z′(t) = F(t) < 0 and taking into account that x′′(t) ≤ 0, we have
Z(t) ≥ 0. Thus,

0 ≤ −x′′(t) x(t) ≤ Z(t1) , x(t) ≥ K ,

for t ≥ t1 and K = x(t1). Hence, there exists a constant M > 0 such that
∣∣x′′(t)∣∣ ≤ M for

t ≥ t1. From this and (3.6),

x(4)(t) = −q(t)x′′(t)− r(t)x(t) ≤ Mq(t)− Kr(t)

for t ≥ t1 and (3.1) implies the existence of τ ≥ t1 such that

x(4)(t) ≤ −Cr(t) < 0 for t ≥ τ and C = Kλ/2 . (3.7)

Since x′′′ is decreasing for t ≥ τ, there exists τ1 ≥ τ such that x′′′(t) > 0 for t ≥ τ1 . From this
and the fact that x′(t) > 0 and x′′(t) ≤ 0, we have limt→∞ x(j)(t) = 0 for j = 2, 3. Therefore,∣∣x(j)(t)

∣∣ = ∫ ∞

t

∣∣x(j+1)(s)
∣∣ ds , j = 2, 3 ,

and using (3.7), for t ≥ τ1 we have

x′′′(t) =
∫ ∞

t

∣∣x(4)(s)∣∣ ds ≥ C
∫ ∞

t
r(s) ds ,

so r ∈ L1(R+). Proceeding in the same way, |x′′(t)
∣∣ = ∫ ∞

t

∣∣x′′′(s)∣∣ ds, thus

x′(t)− x′(τ1) =
∫ t

τ1

∣∣x′′(s)∣∣ ds ≥ C
∫ t

τ1

s2r(s) ds .

Since x′ is bounded, letting t→ ∞ we get a contradiction to (3.3). Thus, a solution of Type (a)
does not exist and equation (3.6) is oscillatory.

Step 2. Consider nonlinear equation (1.1) and assume, by contradiction, that (1.1) has a
solution x(t) > 0 for t ≥ T. Then y = x is the solution of the linear equation

y(4) + q(t)y′′ + R(t)y = 0 , (3.8)

where

R(t) =
r(t) f (x(t))

x(t)
.



6 M. Bartušek and Z. Došlá

According to (1.2), we have R(t) ≥ r(t) for t ≥ T. Thus, using (3.1), (3.2) and (3.3), we get

4R(t) ≥ q2(t), lim
t→∞

R(t)
q(t)

= ∞ ,
∫ ∞

0
t2R(t) dt = ∞ .

According to the first part of the proof, equation (3.8) is oscillatory. This is a contradiction to
the fact that x is a nonoscillatory solution.

Our next result extends Theorem A to (1.1).

Theorem 3.4. Let (1.3) hold. If (1.7) and (1.8) hold, then (1.1) is oscillatory.

Proof. Assume, by contradiction, that (1.1) has a solution x(t) > 0 for t ≥ T. Since (1.7) holds,
(1.5) is oscillatory, and by Lemma 2.1, x is of Type (a) or (c). Moreover, y = x is a solution of
the equation

y(4) + q(t)y′′ + R(t)|y(t)|λ sgn y(t) = 0 (3.9)

for t ≥ T, where

R(t) =
r(t) f (x(t))

xλ(t)
≥ r(t) .

From here and (1.8) we have
lim
t→∞

t2(λ−1)R(t) = ∞ .

Applying Theorem A to (3.9), the oscillation of (3.9) follows. This is a contradiction to the fact
that x is a nonoscillatory solution.

The following examples illustrate our results.

Example 3.5. Consider the equation

x(4)(t) +
c
t2 x′′(t) +

1
t2−ε

f (x(t)) = 0 (t ≥ 1), (3.10)

where c > 0, ε > 0, and

f (u) =

{
4
π arctan u for |u| ≤ 1 ,

u for |u| > 1 .

By Theorem 3.1, (3.10) is oscillatory.

Example 3.6. Consider the equation

x(4)(t) +
(

1 +
1
t

)
x′′(t) + t ln(t + 1) f (x(t)) = 0 , (t ≥ 1), (3.11)

where

f (u) =

{√
u for |u| ≤ 1 ,

u for |u| > 1.

By Theorem 3.4, (3.11) is oscillatory.
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4 Existence and zeros of oscillatory solutions

We start with the existence of oscillatory solutions for (1.4).

Proposition 4.1. Assume (1.2) and

lim sup
u→∞

f (u)
u

< ∞ . (4.1)

If (1.5) is oscillatory and
q2(t) ≤ 4r(t) for t ∈ R+ , (4.2)

then (1.1) has proper oscillatory solutions.

Proof. According to [8, Theorem 11.5], all solutions of (1.1) are defined on R+. By Lemmas 2.1
and 3.3, we have that any solution of (1.4) is either proper oscillatory, or trivial in a neighbour-
hood of infinity, or of Type (a).

Consider the function F from Definition 3.2. If x is of type Type (a), then F(t) < 0 for large
t, and by Lemma 3.3, F(t) < 0 for t ∈ R+. If x(t) ≡ 0 for large t, then F(t) ≡ 0 for large t.
Hence, any solution of (1.1) with the initial condition F(0) > 0 is proper oscillatory.

In the sequel, we describe zeros of proper oscillatory solutions x of (1.1) and of their
derivatives. As a motivation, consider equation (1.1) with q(t) ≡ 0. Then any oscillatory
solution has the following properties in the neighbourhood of infinity: any zero of x and x′ is
simple (i.e. is not double or triple), and zeros of x and x′ separate each other, i.e., between two
zeros of x [x′] there exists exactly one zero of x′ [x]. Here we prove that the same properties
remain to hold for (1.1).

Theorem 4.2. Assume (1.2) and (3.2). Then for any proper oscillatory solution x of (1.1) there exists
T > 0 such that all zeros of x and x′ are simple, and between two zeros of x [x′] there exists exactly
one zero of x′ [x] on [T, ∞).

Proof. Let x be a proper solution of (1.1) such that x(tk) = 0, where {tk}∞
k=1 tends to infinity.

By Lemma 3.3, the function F is nondecreasing for t ≥ T.
If F(t) ≡ 0 for large t, then Z(t) ≡ 0 for t ≥ T1 > T and from the definition of Z we have

x′′(t)x(t) ≥ 0 and

0 ≡ F′(t) = r(t)x(t) f (x(t)) + q(t)x′′(t)x(t) +
(
x′′(t)

)2 ≥ r(t)x(t) f (x(t)) ≥ 0 .

Since r(t) > 0 and f (u)u > 0 for u 6= 0, we get x(t) ≡ 0 for large t, which is a contradiction to
the fact that x is proper.

Define the function
Z(t) = −x′′(t) x(t) +

(
x′(t)

)2

for t ≥ t1 ≥ T. Then Z′(t) = F(t) and Z(tk) ≥ 0. If F(t) > 0 ( F(t) < 0) for large t, then Z is
increasing (decreasing) and taking into account that Z(tk) ≥ 0, we have

Z(t) > 0 for t ≥ T1 > T . (4.3)

If τ ≥ T1 is such that x′(τ) = 0, then, from (4.3), x′′(τ)x(τ) < 0, and so τ is a simple zero
of x′.

If τ1 ≥ T1 is such that x(τ1) = 0, then again from (4.3) we have x′(τ1) 6= 0 and τ1 is a
simple zero of x.
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Let τ2, τ3, where T1 ≤ τ2 < τ3 be two successive zeros of x′ such that x′(t) > 0 on (τ2, τ3).
Then, from (4.3), we have

x′′(τ2)x(τ2) < 0 and x′′(τ3)x(τ3) < 0 .

Since x′′(τ2) > 0 and x′′(τ3) < 0, we get x(τ2) < 0 and x(τ3) > 0, and x has a zero on (τ2, τ3).
Since x is increasing on (τ2, τ3), x has a simple zero. From above we get that between two
successive zeros of x′ there exists exactly one zero of x.

Let τ4, τ5, where T1 ≤ τ4 < τ5 be two successive zeros of x such that x(t) > 0 on (τ4, τ5).
According to Rolle’s theorem, x′ has a zero τ6 in (τ4, τ5). The fact that τ6 is the only zero of
x′ in (τ4, τ5) follows from the fact that between two zeros of x′ there exists exactly one zero
of x.

Remark 4.3. If (4.2) holds, then Theorem 4.2 is valid with T = 0, i.e., for all zeros of a
proper oscillatory solution. For instance, equations (3.10) with c = 1 and (3.11) have by
Proposition 4.1 and Theorem 4.2 proper oscillatory solutions x such that zeros of x and x′ are
simple and separate each other.

Example 4.4. Consider equation (1.9) where f satisfies (1.2) and (4.1), and r(t) ≥ k2/4 for
t ∈ R+. By Proposition 4.1 and Theorem 4.2, (1.9) has proper oscillatory solutions and zeros
of x and x′ are simple and separate each other.

We conclude this paper with the following open question: Is it possible to relax the assump-
tions (1.7) and (1.8) of Theorem 3.4 in the sub-linear case, i.e., f satisfies (1.3)?
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