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Abstract. In this paper we investigate existence and continuous dependence on a func-
tional parameter of Duffing’s type equation with Dirichlet boundary value conditions.
The method applied relies on variational investigation of auxiliary problems and then
in order to prove existence, the Banach fixed point theorem is applied. Uniqueness of
solutions is also examined.
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1 Introduction

We investigate the classical variational problem for a Duffing type equation. It concerns a non-
linear second order differential equation used to model certain damped and driven oscillators,
firstly introduced in [4] by Georg Duffing who was inspired by joint works of O. von Mar-
tienssen and J. Biermanns. Variational approach was found successful in proving existence of
solution to this problem. The classical variational problem for a Duffing type equation with
Dirichlet boundary condition yields whether there exists a function x ∈ H1

0 (0, 1), such that

d2

dt2 x(t) + r(t)
d
dt

x(t) + G(t, x(t), u(t)) = 0.

Here r ∈ C1 (0, 1) stands for the friction term, and G is a nonlinear term, satisfying some suit-
able assumptions. In fact G can correspond to a restoring force for a string in string-damper
system. The Duffing’s equation was also found applicable for some problems concerning cur-
rent and flux, thus r and G may as well corresponds to its coefficients. The equation is well
known for its chaotical behaviour, well described by Holmes [6, 7, 9, 10, 11] and jointly by
Holmes and Moon [18, 8]. Recently in [1, 2, 5, 20] some variational approaches were used
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in order to receive the existence results for both periodic and Dirichlet type boundary con-
ditions. See for example in [1, 2, 12, 20], where variational approaches are applied such as
a direct method, mountain geometry, a min-max theorem due to Manashevich. We note also
paper [16] where the topological method is used.

Since a Duffing equation serves a mechanical model, it is also important to know whether
the solution, once its existence is proved, depends continuously on a functional parameter
and also whether this solution is unique. Into the classical variational problem we introduce
a control function u ∈ H1

0 (0, 1) with only function G depending on it. Thus it is of interest to
know the conditions which guarantee

a) the existence of solutions,

b) their uniqueness,

c) dependence of solutions on parameters.

This is sometimes known as Hadamard’s programme and problems satisfying all three condi-
tions are called well-posed. The question of continuous dependence on parameters has a great
impact on future applications of any model since it is desirable to know whether the solution
to the small deviation from the model would return, in a continuous way, to the solution of
the original model. In our investigations we base somehow on [15] however, we use much
simpler approach. As concerns the existence of solutions we use generalization of our earlier
result [14].

We consider the problem in the following form,
d2

dt2 x(t) + r(t)
d
dt

x(t) + g(t, x(t), u(t))− f (t, x(t)) = 0, a.e. t ∈ (0, 1),

x(0) = x(1) = 0.
(DEq)

under the assumptions that r ∈ L∞ (0, 1) and some further requirements on f and g. We
introduce u ∈ Lq (0, 1) to be the functional parameter. Solutions to the above problem are
investigated in H1

0 (0, 1) and these are understood as the weak solutions. We examine problem
(DEq) by a kind of a two step method. It can be described as follows. At first we substitute
h := dx(t)

dt and we consider an auxiliary problem of a form
d2

dt2 x(t) + r(t)h(t) + g(t, x(t), u(t))− f (t, x(t)) = 0, a.e. t ∈ (0, 1),

x(0) = x(1) = 0.
(AuxEq)

Once the auxiliary problem is solved, we apply the Banach fixed point theorem using condi-
tion (H5) to obtain solutions of (DEq). By the fundamental lemma of calculus of variations
any weak solutions x to (DEq) is a classical one i.e.

x ∈ H1
0 (0, 1) ∩W2,1 (0, 1) .

Moreover, the functions g, G : [0, 1] × R × R → R and f , F : [0, 1] × R → R will be
Carathéodory functions, satisfying the conditions below:

F(t, x) =
x∫

0

f (t, s) ds,

∀d > 0 ∃ fd ∈ L1 (0, 1) ∀x ∈ [−d, d], | f (t, x)| ≤ fd(t),

(H1)
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and we assume p ∈ (1, 2), q ∈ (1,+∞), s ∈ (1, q) are such that for all x, u ∈ R and a.e.
t ∈ (0, 1)

G(t, x, u) =
x∫

0

g(t, s, u)ds,

|g(t, x, u)| ≤ |x|p−1 a(t) |u(t)|s , a ∈ L
q

q−s (0, 1) ,

|G(t, x, u)| ≤
(
|x|p a(t)

p
+ b(t)

)
|u(t)|s , b ∈ L

q
q−s (0, 1) .

(H2)

In case a, b ∈ L∞ (0, 1) in the (H2) it is possible to assume that s ∈ (1, q]. We shall consider
two versions of additional assumptions that will produce different results.

1. Convex version: for a.e. t ∈ [0, 1] a function

R 3 x 7→ F(t, x) (H3)

is convex and f (t, 0) ∈ L1 (0, 1).

2. Bounded version: there exist constants A ∈ R \ {0} , B, C ∈ R such that

F(t, x) ≥ A |x|2 + B |x|+ C, |A| < 1
2

(H4)

for all x ∈ R, for a.e. t ∈ [0, 1].

In order to obtain limit solution we assume that for any u ∈ Lq (0, 1) there exists a constant
L(u) < 1 such that

1∫
0

(g(t, x(t), u(t))− f (t, x(t))− g(t, y(t), u(t)) + f (t, y(t))) (x(t)− y(t)) dt

≤ L(u) ‖x− y‖2
H1

0(0,1) ,
‖r‖L∞(0,1)

1− L(u)
< 1,

(H5)

for any x,y ∈ H1
0 (0, 1), x 6= y. To obtain continuous dependence on the functional parameter

we consider the following (stronger) version of assumptions. Assume there exists d∗ ∈ (0, 1)
such

F(t, x) =
x∫

0

f (t, s) ds,

∃ f̄ ∈ L1 (0, 1) ∃M>0 ∀|x| > M, | f (t, x)| ≤ f̄ (t)
(

1 + |x|d∗
)

,

∃ fM ∈ L1 (0, 1) ∀x ∈ [−M, M], | f (t, x)| ≤ fM(t).

(H1c)

2 Preliminaries

In this paper we use several well known facts.

Lemma 2.1 ([14]). Let 1 ≤ p < q, x ∈ Lq (0, 1) , f ∈ L
q

q−p (0, 1). Then

1∫
0

|x(t)|p| f (t)| dt ≤ ‖x‖p
Lq(0,1) · ‖ f ‖

L
q

q−p (0,1)
.
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Lemma 2.2 ([14]). Let 1 ≤ p < q and x ∈ Lq (0, 1). Then

‖x‖Lp(0,1) ≤ ‖x‖Lq(0,1) .

Theorem 2.3 ([19, Thm. 6.18]). Let x be a µ-measurable function defined on Ω with µ(Ω) < ∞. If
for every p ∈ [1, ∞), x ∈ Lp (Ω) and sup

1≤p<∞
‖x‖Lp(Ω) < ∞ then x ∈ L∞ (Ω) and

‖x‖L∞(0,1) = lim
p→∞
‖x‖Lp(Ω) .

We shall also require Poincaré and Sobolev type inequality in the following form.

Lemma 2.4 (Poincaré inequality [3, Prop. 8.13, p. 218]). Let x ∈ H1
0 (0, 1). Then

‖x‖L2(0,1) ≤
∥∥∥∥dx

dt

∥∥∥∥
L2(0,1)

.

Lemma 2.5 (Sobolev type inequality [3, Prop. 8.13, p. 218]). Let x ∈ H1
0 (0, 1). Then

‖x‖L∞(0,1) ≤
∥∥∥∥dx

dt

∥∥∥∥
L2(0,1)

.

The inequalities are proved in [14].
Since the Poincaré inequality holds we shall use the following norm on H1

0 (0, 1):

‖x‖2
H1

0(0,1) :=
1∫

0

(
dx
dt

(t)
)2

dt.

Lemma 2.6 (Fundamental lemma of calculus of variations [17, Lemma 1.1, p. 31, sec. 1.3]). Let
v ∈ L2 (I, R), I = [0, 1], w ∈ L1 (I, R) be such functions that∫

I

v(x)h′(x) dx = −
∫
I

w(x)h(x) dx,

for any h ∈ H1
0 (I). Then there exists a constant c ∈ R such that

v(x) =
x∫

0

w(s) ds + c,

for almost every x ∈ I.

Theorem 2.7 ([17]). Let E be reflexive Banach space and functional f : E→ R is s.w.l.s.c. and coercive
then there exists a function that minimizes f .

Theorem 2.8 (Krasnoselskii’s theorem [13]). Let Ω ⊂ R be an interval and let f : Ω×R→ R be
a Carathéodory function. If for any convergent sequence (xn)n∈N ⊂ L2 (Ω) there exists a subsequence
(xni)i∈N and a function h ∈ Lp (Ω), 1 ≤ p < ∞, such that

| f (t, xni(t))| ≤ h(t),

for all i ∈N and t ∈ Ω a.e., then the Nemytskii’s operator

F : L2 (Ω) 3 (x)→ f (·, x(·)) ∈ Lp (Ω)
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is well-defined and sequentially continuous, that is, if

xn
n→∞−→ x0 in L2 (Ω)

then
F(xn)

n→∞−→ F(x0) in Lp (Ω) .

Theorem 2.9 (Duality pairing convergence [3, prop. 3.5. (iv)]). Let E be a Banach space. If xn ⇀ x
in E and if fn → f strongly in E∗ then

〈 fn, xn〉 → 〈 f , x〉

strongly.

3 Existence result for the auxiliary problem

In order to solve (DEq) we introduce an auxiliary problem
d2

dt2 x(t) + r(t)h(t) + g(t, x(t), u(t))− f (t, x(t)) = 0, a.e. t ∈ (0, 1),

x(0) = x(1) = 0.
(AuxEq)

The above problem is in a variational form. We consider the following functional

Ju(x) =
1∫

0

1
2

(
dx
dt

)2

− r(t)h(t)x(t) + F(t, x(t))− G(t, x(t), u(t)) dt.

We prove that critical points to Ju are the weak solutions to (AuxEq). In order to prove that
problem (AuxEq) has at least one solution it is sufficient to show that:

1. functional Ju is well defined and differentiable in sense of Gâteaux,

2. functional Ju is coercive and sequentially weakly lower semicontinuous,

3. and critical points of Ju are the solutions of (AuxEq).

In the sequel we shall assume u ∈ Lq (0, 1) to be a fixed parameter. In order to simplify proofs
we introduce the following functionals.

J1
u(x) =

1∫
0

1
2

(
dx
dt

)2

dt,

J2
u(x) =

1∫
0

r(t)h(t)x(t) dt,

J3
u(x) =

1∫
0

F(t, x(t)) dt,

J4
u(x) =

1∫
0

G(t, x(t), u(t)) dt.

Then Ju = J1
u − J2

u + J3
u − J4

u.
We start by proving that the functional Ju is well defined and admits a Gâteaux derivative.
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Lemma 3.1. If (H1) and (H2) hold then the functional Ju is well defined for any x ∈ H1
0 (0, 1).

Proof of this fact is elementary.

Lemma 3.2. Assume (H1) holds. Then

lim
λ→0

1∫
0

F(t, x(t) + λv(t))− F(t, x(t))
λ

dt =
1∫

0

lim
λ→0

F(t, x(t) + λv(t))− F(t, x(t))
λ

dt

for every x,v ∈ H1
0 (0, 1).

Lemma 3.3. Assume (H2) holds. Then

lim
λ→0

1∫
0

G(t, x(t) + λv(t), u(t))− G(t, x(t), u(t))
λ

dt

=

1∫
0

lim
λ→0

G(t, x(t) + λv(t), u(t))− G(t, x(t), u(t))
λ

dt

for every x, v ∈ H1
0 (0, 1).

The proof of the above properties follows from Lebesgue’s dominated convergence theo-
rem.

Lemma 3.4. Assume that (H1) and (H2) hold. Then functional Ju is differentiable in sense of Gâteaux
and its derivative is equal to

∂Ju (x; v) =
1∫

0

dx(t)
dt

dv(t)
dt

+ [−r(t)h(t) + f (t, x(t))− g(t, x(t), u(t))] v(t) dt. (3.1)

for all v ∈ H1
0 (0, 1).

Proof for this fact is elementary.
We will now focus on proving that problem of finding critical points of functional Ju is

equivalent to solving problem (AuxEq).

Definition 3.5. Every x ∈ H1
0 (0, 1) which satisfies the equality

∀v ∈ H1
0 (0, 1) ∂Ju (x; v) = 0, (CPP)

shall be called a critical point for Ju.

Definition 3.6. Every x ∈ H1
0 (0, 1) which satisfies the equality

1∫
0

(r(t)h(t) + g(t, x(t), u(t))− f (t, x(t))) v(t)− dx(t)
dt

dv(t)
dt

dt = 0, (WSP)

for all v ∈ H1
0 (0, 1) shall be called a weak solution to (AuxEq).

Lemma 3.7. Assume that (H1) and (H2) hold. Let x ∈ H1
0 (0, 1). Then the following conditions are

equivalent:
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(1) x is a critical point to Ju (x solves (CPP));

(2) x is a weak solution to (AuxEq) (x solves (WSP)).

Proof follows from Lemma (3.4). We also prove that the solution has better regularity than
H1

0 (0, 1).

Lemma 3.8. Let x be a solution to (WSP). If (H1) and (H2) are both satisfied, then this solution is
classical solution to (AuxEq).

The proof follows from the fundamental lemma of calculus of variations.
Finally we prove the existence of critical point.

Lemma 3.9. Assume (H1) and (H2) holds. Then the functional Ju is sequentially weakly lower semi-
continuous.

Proof. It is obvious that

x 7→
1∫

0

1
2

(
d
dt

x(t)
)2

− r(t)h(t)x(t) dt,

is s.w.l.s.c. It is easy to show that −J4
u is s.w.l.s.c. using Lebesgue’s domininated convergence

theorem. We prove that J3
u is s.w.l.s.c. Assume xn ⇀ x in H1

0 (0, 1). We will prove that

lim inf J3
u(xn) ≥ J3

u(x).

We reason by contradiction. Suppose there exists such a subsequence that

lim J3
u (xkn) < J3

u(x).

By the Arzelà–Ascoli theorem this subsequence admits a subsubsequence (xln) convergent
strongly in C (0, 1). Thus it is bounded in C (0, 1) norm. As (H1) holds, we may reason by
using Lebesgue’s dominated convergence theorem to obtain the inequality

J3
u(x) > lim J3

u (xln) = J3
u(x).

Thus it contradicts the supposition. Finally Ju is s.w.l.s.c.

Lemma 3.10. Assume (H1) and (H2) hold. If additionally either (H3) or (H4) holds then Ju is coercive.

Proof. We will prove that functional Ju is bounded from below by a coercive function depend-
ing on ‖x‖H1

0(0,1). Let x ∈ H1
0 (0, 1) be taken arbitrarily. We see that J1

u(x) = 1
2 ‖x‖

2
H1

0(0,1). By
the Cauchy–Schwartz inequality one can prove that

−J2
u(x) =

1∫
0

−r(t)h(t)x(t) dt ≥ −‖r‖L∞(0,1) ‖h‖L2(0,1) ‖x‖H1
0(0,1) .

We can easily calculate that

1∫
0

−G(t, x(t), u(t)) dt ≥
1∫

0

−
(
|x(t)|p a(t)

p
+ b(t)

)
|u(t)|s dt

≥ − 1
p
‖x‖p

H1
0(0,1)

1∫
0

a(t) |u(t)|s dt−
1∫

0

b(t) |u(t)|s dt

≥ − 1
p
‖x‖p

H1
0(0,1)

‖a‖
L

q
q−s (0,1)

‖u‖s
Lq(0,1) − ‖b‖L

q
q−s (0,1)

‖u‖s
Lq(0,1) .
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Assume (H3) holds. Then

F(t, x(t)) ≥ F(t, 0) + f (t, 0)x(t), a.e. t ∈ (0, 1).

Then as we integrate by sides, we obtain

1∫
0

F(t, x(t))dt ≥ −‖F(·, 0)‖L1(0,1) − ‖ f (·, 0)‖L1(0,1) ‖x‖H1
0(0,1) .

Thus if we assume (H3), functional Ju is obviously bounded from below by coercive function.
Now we assume (H4). Then

1∫
0

F(t, x(t)) dt ≥ A ‖x‖2
H1

0(0,1) − |B| ‖x‖H1
0(0,1) − |C| ,

and thus functional is obviously coercive since |A| < 1
2 .

We present the following result.

Theorem 3.11. Assume (H1) and (H2) and either (H3) or (H4) hold. Then there exists at least one
solution to problem (AuxEq).

Proof. By Lemmas 3.9 and 3.10, and reflexivity of H1
0 (0, 1), we see that assumptions of The-

orem 2.7 are satisfied. Then there exists a critical point. By Lemma 3.8 this critical point is
a classical solution to (AuxEq).

4 Iterative scheme

In this section we shall prove that using equation (AuxEq) we may produce the solution of
(DEq). Since we proved that (AuxEq) for each h ∈ L2 (0, 1) admits a classical solution it
somehow define a solution operator Λ. Up to the section end we will assume u ∈ Lq (0, 1) to
be a fixed parameter.

Theorem 4.1. Assume that (H1), (H2) and (H5) are satisfied and either (H3) or (H4) holds then
problem (DEq) has exactly one solution.

Proof. By Theorem (3.11) we know that for any function h ∈ L2 (0, 1) there exists a solution to
problem (AuxEq). This means that for any function v ∈ H1

0 (0, 1) there exists a solution xv to
the following problem,

d2

dt2 x(t) + r(t)
d
dt

v(t) + g(t, x(t), u(t))− f (t, x(t)) = 0, a.e. t ∈ (0, 1),

x(0) = x(1) = 0.
(4.1)

Let Ψ : H1
0 (0, 1) 7→ 2H1

0(0,1) be a multivalued operator which to any v ∈ H1
0 (0, 1) assigns

a set of solutions of (4.1) corresponding to this parameter. Let Λ : H1
0 (0, 1) 7→ H1

0 (0, 1) be
an arbitrarily chosen single valued selection of operator Ψ, i.e. for any v ∈ H1

0 (0, 1) Λv ∈ Ψv.
We prove that Λ is a contraction mapping.
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Let h, v ∈ H1
0 (0, 1). Denote xv := Λv, xh := Λh. Assume xv 6= xh. Otherwise condition for

contraction mappings holds. Equations (4.1) for h and v are multiplied by (xv − xh) and then
integrated with respect to t ∈ [0, 1].

−
1∫

0

d2xh

dt2 (xh(t)− xv(t)) dt =
1∫

0

(
r(t)

dh(t)
dt

+ g(t, xh(t), u(t)− f (t, xh(t))
)
(xh − xv) dt,

−
1∫

0

d2xv

dt2 (xh(t)− xv(t)) dt =
1∫

0

(
r(t)

dv(t)
dt

+ g(t, xv(t), u(t)− f (t, xv(t))
)
(xh − xv) dt.

After subtracting the sides and integrating by parts we get

‖xh − xv‖2
H1

0(0,1) =

1∫
0

(
r(t)

dh(t)
dt

+ g(t, xh(t), u(t))− f (t, xh(t))
)
(xh(t)− xv(t)) dt

−
1∫

0

(
r(t)

dv(t)
dt

+ g(t, xv(t), u(t))− f (t, xv(t))
)
(xh(t)− xv(t)) dt.

By xh 6= xv relation, (H5) and by Theorem 2.5

‖xh − xv‖2
H1

0(0,1) ≤
(
‖r‖L∞(0,1) ‖h− v‖H1

0(0,1) + L ‖xh − xv‖H1
0(0,1)

)
‖xh − xv‖H1

0(0,1) .

Thus
‖xh − xv‖H1

0(0,1) ≤ ‖r‖L∞(0,1) ‖h− v‖H1
0(0,1) + L ‖xh − xv‖H1

0(0,1) .

Finally we get

‖Λh−Λv‖H1
0(0,1) = ‖xh − xv‖H1

0(0,1) ≤
‖r‖L∞(0,1)

1− L
‖h− v‖H1

0(0,1) .

Thus Λ is a contraction mapping. Then the assumptions of Banach’s fixed point theorem are
satisfied and thus Λ admits a single fixed point in H1

0 (0, 1), which is a solution of (DEq).
However, since Λ was chosen arbitrarily we cannot be sure that there exists a unique

solution. We reason by contradiction. Assume that x and y are two distinct solutions of
(DEq). We multiply (DEq) by (x(t)− y(t)) and integrate over [0, 1] interval.

−
1∫

0

d2x
dt2 (x(t)− y(t)) dt =

1∫
0

(
r(t)

dx(t)
dt

+ g(t, x(t), u(t)− f (t, x(t))
)
(x(t)− y(t)) dt,

−
1∫

0

d2y
dt2 (x(t)− y(t)) dt =

1∫
0

(
r(t)

dy(t)
dt

+ g(t, y(t), u(t)− f (t, y(t))
)
(x(t)− y(t)) dt.

Similarly we obtain

‖x− y‖H1
0(0,1) ≤ ‖r‖L∞(0,1) ‖x− y‖H1

0(0,1) + L ‖x− y‖H1
0(0,1) < ‖x− y‖L∞(0,1) .

Thus it contradicts the assumption that there are two distinct solutions.
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We note that however we obtain the uniqueness of the weak solution, the classical one is
also unique since Lemma 3.8 holds in this case as well. We can also prove similar property in
the limit case with p = 2. In fact one can similarly prove that in case (H5) holds, the operator
Λ is actually single-valued.

Lemma 4.2. If 1− ‖u‖s
Lq(0,1) ‖a‖L

q
q−s (0,1)

> 0, (H1), (H2), (H3) and (H5) are satisfied then problem

(DEq) has at least one solution.

Lemma 4.3. If 1− |A| − ‖u‖s
Lq(0,1) ‖a‖L

q
q−s (0,1)

> 0, (H1), (H2), (H4) and (H5) are satisfied then

problem (DEq) has at least one solution.

Proofs follow the steps from proof of Theorem 4.1. In the next section we will investigate
the impact of functional parameter, which until now was considered as fixed.

5 Continuous dependence on functional parameter

We will prove that sequence of solutions corresponding to sequence of parameters is bounded.

Theorem 5.1. Let (uk)k∈N ⊂ Lq (0, 1) be a bounded sequence of functional parameters. Assume
(H1c), (H2), (H5) are satisfied and either (H3) or (H4) holds. Then there exists a sequence (xk)k∈N

of solutions to (DEq), such that each xk corresponds to a parameter uk and that sequence (xk)k∈N is
bounded in H1

0 (0, 1).

Proof. Let (uk)k∈N be a bounded sequence of functional parameters. By Theorem 4.1 for any
uk there exists xk ∈ H1

0 (0, 1) ∩W2,1 (0, 1) being a solution of (DEq). We may equivalently
consider the following problem. For all k ∈N, and for all v ∈ H1

0 (0, 1), we have that:

1∫
0

d2xk(t)
dt2 h(t) +

(
r(t)

dxk

dt
(t) + g(t, xk(t), uk(t))− f (t, xk(t))

)
v(t) dt = 0.

We shall test against v := xk function. Then we have that

1∫
0

d2xk(t)
dt2 xk(t) +

(
r(t)

dxk

dt
(t) + g(t, xk(t), uk(t))− f (t, xk(t))

)
xk(t) dt = 0.

We integrate by parts

1∫
0

(
dxk(t)

dt

)2

dt =
1∫

0

(
r(t)

dxk(t)
dt

+ g(t, xk(t), uk(t))− f (t, xk(t))
)

xk(t) dt.

By Lemma 2.5 we obtain that

‖xk‖2
H1

0(0,1) ≤

 1∫
0

∣∣∣∣r(t)dxk(t)
dt

+ g(t, xk(t), uk(t))− f (t, xk(t))
∣∣∣∣ dt

 ‖xk‖H1
0(0,1) .

If ‖xk‖H1
0(0,1) = 0, the assertion is trivial. We may assume that ‖xk‖H1

0(0,1) > 0. Then:

‖xk‖H1
0(0,1) ≤

1∫
0

∣∣∣∣r(t)dxk(t)
dt

∣∣∣∣ dt +
1∫

0

|g(t, xk(t), uk(t))− f (t, xk(t))| dt.



Well-posed Dirichlet problems pertaining to the Duffing equation 11

Suppose the sequence xk is unbounded in H1
0 (0, 1). By (H1c) and (H2) for sufficiently large k

we obtain

‖xk‖H1
0(0,1)

(
1− ‖r‖L∞(0,1)

)
≤ ‖xk‖

p−1
H1

0(0,1)
‖u‖s

Lq(0,1) ‖a‖L
q

q−s (0,1)
+
∥∥ f̄
∥∥

L1(0,1)

(
1 + ‖xk‖d∗

H1
0(0,1)

)
.

The above is equivalent to

‖xk‖H1
0(0,1)

(
1− ‖r‖L∞(0,1)

)
− ‖xk‖

p−1
H1

0(0,1)
‖u‖s

Lq(0,1) ‖a‖L
q

q−s (0,1)
−
∥∥ f̄
∥∥

L1(0,1) ‖xk‖d∗
H1

0(0,1)

≤
∥∥ f̄
∥∥

L1(0,1) .
(5.1)

Since the left-hand side is a coercive functional, its values would go up to infinity as k → ∞.
This contradicts (5.1).

Now we focus on dependence on functional parameter.

Theorem 5.2. Let (uk) ⊂ Lq (0, 1), k ∈ N be a bounded sequence of functional parameters. Assume
(H1c), (H2), (H5) are satisfied and either (H3) holds or (H4) does. Then there exists a sequence of
solutions xk of (DEq) corresponding to uk. Moreover,

• If uk → u strongly in Lq (0, 1) then (xk) ⇀ x̄ in H1
0 (0, 1) and x is a solution to (DEq)

corresponding to u.

• If g(t, x, u) = g(t, x)u, and if assumption (H2) takes a form

|g(t, x)| ≤ |x|p−1 a(t), a ∈ L
q

q−s (0, 1) , (H2c)

then for any sequence of parameters uk ⇀ u converging weakly in Lq (0, 1) there exists a sequence
of solutions to (DEq) such xk ⇀ x̄ converging weakly in H1

0 (0, 1) and x is a solution to (DEq)
corresponding to u.

Proof. By Theorem 4.1 there exists a sequence of solutions xk of (DEq) corresponding to each
uk. By Theorem 5.1 this sequence is bounded in H1

0 (0, 1). By the Rellich–Kondrachov theorem
this sequence admits a subsequence xnk convergent strongly in L2 (0, 1) and in C ([0, 1]) and
also weakly in H1

0 (0, 1). Let x denote the element such that xnk ⇀ x in H1
0 (0, 1). By the

fundamental lemma of calculus of variations we can use equivalently the weak formulation.
Let v ∈ H1

0 (0, 1). Note that

−
1∫

0

dxnk(t)
dt

dv(t)
dt

dt +
1∫

0

(
r(t)

dxnk(t)
dt

+ g(t, xnk(t), unk(t))− f (t, xnk(t))
)

v(t) dt = 0. (5.2)

Since (xnk) converges weakly in H1
0 (0, 1) then by definition

−
1∫

0

dxnk(t)
dt

dv(t)
dt

dt→ −
1∫

0

dx(t)
dt

dv(t)
dt

dt.

Similarly
1∫

0

r(t)
dxnk(t)

dt
v(t) dt→

1∫
0

r(t)
dx(t)

dt
v(t) dt.
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We use Krasnoselskii’s theorem in order to obtain the convergence of

−
1∫

0

f (t, xnk(t))v(t)dt→ −
1∫

0

f (t, x(t))v(t)dt.

Since (xnk) is bounded then by (H1c) there exist a number d > 0 and a function fd ∈ L1 (0, 1)
such that ‖xnk‖ ≤ d and that

| f (t, xnk(t))| ≤ fd(t).

By Krasnoselskii’s theorem 2.8 we obtain

−
1∫

0

f (t, xnk(t))v(t) dt→ −
1∫

0

f (t, x(t))v(t) dt.

Thus we see that the continuous dependence on functional parameter uk is expressed only by
function g. Assume uk → u strongly in Lq (0, 1). Thus it is bounded in Lq (0, 1). By Lebesgue’s
dominated convergence theorem and since g is Carathéodory function, we have

1∫
0

g(t, xnk(t), unk(t))v(t) dt→
1∫

0

g(t, x(t), u(t))v(t) dt.

By uniqueness in Theorem 4.1 and by the fundamental lemma x is a solution corresponding
to (DEq) to u. Therefore a convergent subsequence is obtained.

We note the following. Since uk → u strongly in Lq (0, 1), then any subsequence of uk is
convergent to the same limit. Let (xsn)n∈N be an arbitrary subsequence of (xn)n∈N. We apply
the above reasoning to xsn which is bounded since (xn) was. Thus xsn admits a subsequence
xksn

convergent to a solution of (DEq) with parameter lim usn = u. By Theorem 4.1 for fixed
u solution is unique. This means that for arbitrary subsequence xsn , there exists a convergent
subsequence, and each of those subsequences share the same limit. Thus (xn) is convergent
strongly in H1

0 (0, 1).
We now consider the second case. Instead of (H2) we assume that g(t, x, u) = g(t, x)u and

|g(t, x)| ≤ |x|p−1 a(t), a ∈ L
q

q−s (0, 1) . (H2c)

We can assume that un ⇀ u in Lq (0, 1). By Theorem 5.1 for each un there exists a solution xn to
(DEq). Moreover the sequence of solutions is bounded in H1

0 (0, 1). Thus it has a convergent
subsequence, weakly in H1

0 (0, 1), strongly both in L2 (0, 1) and C ([0, 1]). Let (xnk)n∈N be
a selected subsequence convergent to x. We proceed as in the previous part of the proof,
except for the convergence of the term

1∫
0

g(t, xnk(t))unk(t)v(t) dt→
1∫

0

g(t, x(t))u(t)v(t) dt. (5.3)

By Krasnoselskii’s theorem 2.8 we know that

g(t, xnk(t))v(t)→ g(t, x(t))v(t)

in L
q

q−1 (0, 1). By Theorem 2.9 we got (5.3).
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6 Example

Example 6.1. The above schema can be applied for the following equation

d2x
dt2 (t) + 0.25 · e− t2

2
dx
dt

(t) +
1
4

x(t)
1 + x(t)2 arcsin t · un(t)−

1
2

e−tx(t) = t + 1, (6.1)

where

un(t) =

{
1, t ∈ [0, 1

n ]

0, t ∈ ( 1
n , 1]

is a control function.
Indeed. (H1) is confirmed since

F(·, x) :=
1
2

e−(·)x2 ∈ L1 (0, 1) ,

and for any d > 0 and x ∈ [−d, d] we have that

f (t, x) =
1
2

e−tx ≤ 1
2

e−td ∈ L1 (0, 1) ,

(H2) is satisfied since

G(t, x, u) :=
1
4

x
1 + x2 arcsin t · u ≤

∣∣∣ x
1

∣∣∣ (1
4

arcsin t · u
)

and 1
4 arcsin t · u(t) ∈ L∞ (0, 1).

Also (H3) is satisfied since F(·, x) := 1
2 e−(·)x2 is convex with respect to its second variable.

We can observe for f that

| f (t, x)− f (t, y)| =
∣∣∣∣12 e−t(x− y)

∣∣∣∣ .

After integrating both sides with respect to t ∈ [0, 1], and knowing that

(x(t)− y(t)) ≤ ‖x− y‖L∞(0,1) ≤ ‖x− y‖H1
0(0,1) ,

we obtain:

1∫
0

| f (t, x)− f (t, y)| dt ≤ ‖x− y‖H1
0(0,1)

1∫
0

1
2

e−t dt =
e− 1

2e
‖x− y‖H1

0(0,1) .

Then for g we see that

|g(t, x, u)− g(t, y, u)| =
∣∣∣∣14 x

1 + x2 arcsin t · u− 1
4

y
1 + y2 arcsin t · u

∣∣∣∣
=

1
4
|arcsin t · u|

∣∣∣∣ x
1 + x2 −

y
1 + y2

∣∣∣∣
≤ 1

4
|arcsin t · u| |x− y| |1− xy|

(1 + x2) · (1 + y2)

≤ 1
4
· | arcsin t · u||x− y| ≤ π

8
|x− y|.
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Similarly we obtain

1∫
0

|g(t, x, u)− g(t, y, u)|dt ≤ π

8
‖x− y‖H1

0(0,1)

which jointly implies that

1∫
0

(g(t, x, u)− f (t, x)− g(t, y) + f (t, y)) (x− y) dt

≤ ‖x− y‖H1
0(0,1)

( 1∫
0

|g(t, x, u)− g(t, y, u)| dt +
1∫

0

| f (t, x)− f (t, y)| dt

)

≤ π

8
‖x− y‖2

H1
0(0,1) +

e− 1
2e
‖x− y‖2

H1
0(0,1) ≤ L ‖x− y‖2

H1
0(0,1)

with L = 0.71 < 1. Since ‖r‖L∞(0,1) = ‖0.25 · e−t2/2‖L∞(0,1) = 0.25 and
‖r‖L∞(0,1)

1−L = 0.25
1−0.71 <

0.87 < 1 then by Proposition 4.2 we conclude that problem (6.1) has at least one solution to
each un. Then the solution to u such that un → u is xn ⇀ x. Thus x is a solution to

d2x
dt2 (t) + 0.25 · e− t2

2
dx
dt

(t)− 1
2

e−tx(t) = t + 1.
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