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Abstract. In this paper, by applying the coincidence degree theory which was first intro-
duced by Mawhin, we obtain an existence result for the fractional three-point boundary
value problems in Rn, where the dimension of the kernel of fractional differential op-
erator with the boundary conditions can take any value in {1, 2, . . . , n}. This is our
novelty. Several examples are presented to illustrate the result.
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1 Introduction

In this paper, we are concerned with the existence of solutions for the following fractional
three-point boundary value problems (BVPs) at resonance in Rn:Dα

0+x(t) = f (t, x(t), Dα−1
0+ x(t)), 1 < α ≤ 2, t ∈ (0, 1),

x(0) = θ, Dα−1
0+ x(1) = ADα−1

0+ x(ξ),
(1.1)

where Dα
0+ and Iα

0+ are the Riemann–Liouville differentiation and integration; θ is the zero
vector in Rn; A is a square matrix of order n satisfying rank(I − A) < n; ξ ∈ (0, 1) is a fixed
constant; f : [0, 1]×Rn ×Rn → Rn is a Carathéodory function, that is,

(i) for each (u, v) ∈ Rn ×Rn, t 7→ f (t, u, v) is measurable on [0, 1];

(ii) for a.e. t ∈ [0, 1], (u, v) 7→ f (t, u, v) is continuous on Rn ×Rn;

(iii) for every compact set Ω ⊆ Rn ×Rn, the function ϕΩ(t) = sup{| f (t, u, v)| : (u, v) ∈ Ω}
∈ L1[0, 1], where |x| = max{|xi|, i = 1, 2, . . . , n}, the norm of x = (x1, x2, . . . , xn)> in Rn.

BCorresponding author. Email: hczhou@amss.ac.cn
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The system (1.1) is said to be at resonance in Rn if det(I− A) = 0, i.e., dim ker(I− A) ≥ 1,
otherwise, it is said to be non-resonant. In the past three decades, many authors investigated
the existence of solutions for the fractional differential equations with the boundary value
conditions. The attempts on det(I − A) 6= 0, non-resonance case, for fractional differential
equations are available in [1–3, 10, 11, 17, 21–23], and the attempts on det(I − A) = 0 and
n ≤ 2, resonance case, can be found in [4–6, 8, 9, 13, 14, 18–20], and the references therein.
However, to the best of our knowledge, almost all results derived in these papers are for the
case n = 1 with dim ker L = 0 or 1 and for the case n = 2 with dim ker L = 2. It is still open
for the case n ≥ 3. So we study this issue in this paper.

For instance, when n = 1, consider the following problems
Dα

0+u(t) = f (t, u(t), Dα−1
0+ u(t)), 0 < t < 1,

I2−α
0+ u(t)|t=0 = 0, Dα−1

0+ u (1) =
m−2
∑

i=1
βiDα−1

0+ u (ξi)
(1.2)

where 1 < α ≤ 2, ξi ∈ (0, 1), βi ∈ R i = 1, 2, . . . , m − 2, 0 < ξ1 < ξ2 < · · · < ξi < 1,
f : [0, 1]×R×R→ R is a continuous function. It follows from the argument above that (1.2)
is resonant when ∑m−2

i=1 βi = 1 and it is non-resonant when ∑m−2
i=1 βi 6= 1.

Further, in order to apply the coincidence degree theory of Mawhin [15], we suppose
additionally that A satisfies rank(I − A) < n and one of the following conditions

(a1) A is idempotent, that is, A2 = A, or;

(a2) A2 = I, where I stands for the identity matrix of size n.

It is also obvious that dim ker(I− A) can take any value in {1, 2 . . . , n} for suitable A, which is
surely generalize the previous efforts. However, we point out that without the above assump-
tions, it will be difficult to construct the projector Q as (3.1) below. This is the reason why
we only choose the two special cases of A. Removing such an assumption, for the general A
satisfying rank(I − A) < n, the problem (1.1) may be a challenging problem, which is also an
issue of our further research.

In particular, when A = I, it is clear that A satisfies (a1) and (a2). It is also obvious that
det(I − A) = 0, so under this boundary condition, the system (1.1) is at resonance. Besides,
ker L = {(c1, c2, . . . , cn)>tα−1 : ci ∈ R, i = 1, 2, . . . , n} and dim ker L = n, where L is defined by
(2.2) below. For A = 0, it is clear that det(I − A) = 1, ker L = {0}, so, in this case, the system
(1.1) is non-resonant.

In paper[16], the authors investigated the following second differential system{
u′′(t) = f (t, u(t), u′(t)), 0 < t < 1,

u′(0) = θ, u(1) = Au(η),
(1.3)

where f : [0, 1]×Rn ×Rn → Rn is a Carathéodory function and the square matrix A satisfies
the condition (a1) or (a2). Therefore, it is more natural to ask whether there exists a solution
when the order of the derivative is fractional. In this paper, we offer an answer by considering
the system (1.1).

The goal of this paper is to study the existence of solutions for the fractional differential
equations with boundary value conditions when n ≥ 3. The layout of this paper will be as
follows: in Section 2, we give some necessary background and some preparations for our
consideration. The statement and the proof of our main result will be given in Section 3 by
the coincidence degree theory of Mawhin [15]. In Section 4, we present several examples to
illustrate the main result.
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2 Background materials and preliminaries

In this section, we introduce some necessary definitions and lemmas which will be used later.
For more details, we refer the reader to [7, 12, 15], and the references therein.

Definition 2.1 ([12]). The fractional integral of order α > 0 of a function x : (0, ∞) → R is
given by

Iα
0+x(t) =

1
Γ(α)

∫ t

0
(t− s)α−1x(s) ds,

provided the right-hand side is pointwise defined on (0, ∞).

Remark 2.2. The notation Iα
0+x(t)|t=0 means that the limit is taken at almost all points of the

right-sided neighborhood (0, ε) (ε > 0) of 0 as follows:

Iα
0+x(t)|t=0 = lim

t→0+
Iα
0+x(t).

Generally, Iα
0+x(t)|t=0 is not necessarily zero. For instance, let α ∈ (0, 1), x(t) = t−α. Then

Iα
0+ t−α|t=0 = lim

t→0+

1
Γ(α)

∫ t

0
(t− s)α−1s−α ds = lim

t→0+
Γ(1− α) = Γ(1− α).

Definition 2.3 ([12]). The fractional derivative of order α > 0 of a function x : (0, ∞) → R is
given by

Dα
0+x(t) =

1
Γ(n− α)

(
d
dt

)n ∫ t

0

x(s)
(t− s)α−n+1 ds,

where n = [α] + 1, provided the right-hand side is pointwise defined on (0, ∞).

Lemma 2.4 ([12]). Assume that x ∈ C(0,+∞) ∩ Lloc(0,+∞) with a fractional derivative of order
α > 0 that belongs to C(0,+∞) ∩ Lloc(0,+∞). Then

Iα
0+Dα

0+x(t) = x(t) + c1tα−1 + c2tα−2 + · · ·+ cntα−N ,

for some ci ∈ R, i = 1, . . . , N, where N is the smallest integer greater than or equal to α.

For any x(t) = (x1(t), x2(t), . . . , xn(t))> ∈ Rn, the fractional derivative of order α > 0 of x
is defined by

Dα
0+x(t) = (Dα

0+x1(t), Dα
0+x2(t), . . . , Dα

0+xn(t))> ∈ Rn.

The following definitions and coincidence degree theory are fundamental in the proof of our
main result. One can refer to [7, 15].

Definition 2.5. Let X and Y be normed spaces. A linear operator L : dom(L) ⊂ X → Y is said
to be a Fredholm operator of index zero provided that

(i) im L is a closed subset of Y, and

(ii) dim ker L = codim im L < +∞.

It follows from Definition 2.5 that there exist continuous projectors P : X → X and Q : Y →
Y such that

im P = ker L, ker Q = im L, X = ker L⊕ ker P, Y = im L⊕ im Q
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and the mapping L|dom L∩kerP : dom L ∩ ker P → im L is invertible. We denote the inverse
of L|dom L∩ker P by KP : im L → dom L ∩ ker P. The generalized inverse of L denoted by
KP,Q : Y → dom L ∩ ker P is defined by KP,Q = KP(I − Q). Furthermore, for every isomor-
phism J : im Q → ker L, we can obtain that the mapping KP,Q + JQ : Y → dom L is also an
isomorphism and for all x ∈ dom L, we know that

(KP,Q + JQ)−1x = (L + J−1P)x. (2.1)

Definition 2.6. Let L be a Fredholm operator of index zero, let Ω ⊆ X be a bounded subset
and dom L ∩Ω 6= ∅. Then the operator N : Ω→ Y is called to be L-compact in Ω if

(i) the mapping QN : Ω→ Y is continuous and QN(Ω) ⊆ Y is bounded, and

(ii) the mapping KP,QN : Ω→ X is completely continuous.

Assume that L is defined in Definition 2.6 and N : Ω→ Y is L-compact. For any x ∈ Ω, by
(2.1), we shall see that

Lx = (KP,Q + JQ)−1x− J−1Px = (KP,Q + JQ)−1
[

Ix− KP,Q J−1Px− JQJ−1Px
]

= (KP,Q + JQ)−1(Ix− Px).

Then we can equivalently transform the existence problem of the equation Lx = Nx, x ∈ Ω
into a fixed point problem of the operator P + (KP,Q + JQ)N in Ω.

This can be guaranteed by the following lemma, which is also the main tool in this paper.

Lemma 2.7 ([15]). Let Ω ⊂ X be bounded, L be a Fredholm mapping of index zero and N be L-compact
on Ω. Suppose that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ ((dom L \ ker L) ∩ ∂Ω)× (0, 1);

(ii) Nx /∈ im L for every x ∈ kerL ∩ ∂Ω;

(iii) deg(JQN|ker L∩∂Ω, Ω∩ ker L, 0) 6= 0, with Q : Y → Y a continuous projector such that ker Q =

im L and J : im Q→ ker L is an isomorphism.

Then the equation Lx = Nx has at least one solution in dom L ∩Ω.

In this paper, we utilize spaces X, Y introduced as

X =
{

x(t) ∈ Rn : x(t) = Iα−1
0+ u(t), u ∈ C([0, 1], Rn), t ∈ [0, 1]

}
with the norm ‖x‖ = max{‖x‖∞, ‖Dα−1

0+ x‖∞} and Y = L1([0, 1], Rn) with the norm ‖y‖1 =∫ 1
0 |y(s)| ds, respectively, where ‖ · ‖∞ represents the sup-norm.

We have the following compactness criterion on subset F of X (see, e.g., [19]).

Lemma 2.8. F ⊂ X is a sequentially compact set if and only if F is uniformly bounded and equicon-
tinuous which are understood in the following sense:

(1) there exists an M > 0 such that for every x ∈ F, ‖x‖ ≤ M;

(2) for any given ε > 0, there exists a δ > 0 such that

|x(t1)− x(t2)| < ε, |Dα−1
0+ x(t1)− Dα−1

0+ x(t2)| < ε, for t1, t2 ∈ [0, 1], |t1 − t2| < δ, ∀x ∈ F.
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Now we define the linear operator L : dom L ⊆ X → Y by

Lx := Dα
0+x, (2.2)

where dom L =
{

x ∈ X : Dα
0+x ∈ Y, x(0) = θ, Dα−1

0+ x(1) = ADα−1
0+ x(ξ)

}
. Define N : X → Y

by
Nx(t) := f (t, x(t), Dα−1

0+ x(t)), t ∈ [0, 1]. (2.3)

Then the problem can be equivalently rewritten as Lx = Nx.

Lemma 2.9. The operator L defined above is a Fredholm operator of index zero.

Proof. For any x ∈ dom L, by Lemma 2.4 and x(0) = θ, we obtain

x(t) = Iα
0+Lx(t) + ctα−1, c ∈ Rn, t ∈ [0, 1], (2.4)

which, together with Dα−1
0+ x(1) = ADα−1

0+ x(ξ), yields

ker L = {x ∈ X : x(t) = ctα−1, t ∈ [0, 1], c ∈ ker(I − A)} w ker(I − A)tα−1. (2.5)

Now we claim that
im L = {y ∈ Y : g(y) ∈ im(I − A)}, (2.6)

where g : Y → Rn is a continuous linear operator defined by

g(y) :=
A

Γ(α)

∫ ξ

0
y(s) ds− I

Γ(α)

∫ 1

0
y(s) ds. (2.7)

Actually, for any y ∈ im L, there exists a function x ∈ dom L such that y = Lx. It follows from
(2.4) that x(t) = Iα

0+y(t) + ctα−1. Together with Dα−1
0+ x(1) = ADα−1

0+ x(ξ), we obtain

A
Γ(α)

∫ ξ

0
y(s) ds− I

Γ(α)

∫ 1

0
y(s) ds = (I − A)c, c ∈ Rn,

which means that g(y) ∈ im(I − A).
On the other hand, for any y ∈ Y satisfying g(y) ∈ im(I − A), there exists a constant

c∗ such that g(y) = (I − A)c∗. Let x∗(t) = Iα
0+y(t) + c∗tα−1. A straightforward computation

shows that x∗(0) = θ and Dα−1
0+ x∗(1) = ADα−1

0+ x∗(ξ). Hence, x∗ ∈ dom L and y(t) = Dα
0+x∗(t),

which implies that y ∈ im L.
Next, we set ρA = k(I − A), where

k =

{
1, if the hypothesis (a1) holds, i.e., A2 = A;
1
2 , if the hypothesis (a2) holds, i.e., A2 = I.

(2.8)

For A2 = A, we have

ρ2
A = (I − A)2 = I − 2A + A2 = I − A = ρA,

(I − ρA)(ξ
α A− I) = A(ξα A− I) = ξα A2 − A = (ξα − 1)A = (ξα − 1)(I − ρA).

(2.9)

For A2 = I, we have

ρ2
A =

1
4
(I − A)2 =

1
4
(I − 2A + A2) =

1
2
(I − A) = ρA,

(I − ρA)(ξ
α A− I) =

1
2
(I + A)(ξα A− I)

=
1
2
[ξα − I + ξα A2 − A] =

1
2
(ξα − 1)(I + A) = (ξα − 1)(I − ρA).

(2.10)
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It follows from (2.9) and (2.10) that ρA satisfies the following properties

ρ2
A = ρA, (I − ρA)(ξ

α A− I) = (ξα − 1)(I − ρA). (2.11)

Furthermore, we note that if y = ctα−1, c ∈ Rn, then

g(y) =
A

Γ(α)

∫ ξ

0
y(s) ds− I

Γ(α)

∫ 1

0
y(s) ds =

(ξα A− I)c
Γ(α + 1)

. (2.12)

Define the continuous linear mapping Q : Y → Y by

Qy(t) :=
Γ(α + 1)

ξα − 1
(I − ρA)g(y)tα−1, t ∈ [0, 1], y ∈ Y. (2.13)

By (2.11), it is easy to verify Q2y = Qy, that is, Q is a projection operator. The equality
ker Q = im L follows from the trivial fact that

y ∈ ker Q⇔ g(y) ∈ ker(I − ρA)⇔ g(y) ∈ im ρA ⇔ g(y) ∈ im(I − A)⇔ y ∈ im L.

Therefore, we get Y = ker Q⊕ im Q = im L⊕ im Q.
Finally, we shall prove that im Q = ker L. Indeed, for any z ∈ im Q, let z = Qy, y ∈ Y. By

(2.11), we have

k(I − A)z(t) = ρAz(t) = ρAQy(t) =
Γ(α + 1)

ξα − 1
ρA(I − ρA)g(y)tα−1 = θ,

which implies z ∈ ker L. Conversely, for each z ∈ ker L, there exists a constant c∗ ∈ ker(I− A)

such that z = c∗tα−1 for t ∈ [0, 1]. By (2.11) and (2.12), we derive

Qz(t) =
Γ(α + 1)

ξα − 1
(I − ρA)g(c∗tα−1)tα−1 = c∗tα−1 = z(t), t ∈ [0, 1],

which implies that z ∈ im Q. Hence we know that im Q = ker L. Then the operator L is a
Fredholm operator of index zero. The proof is complete.

Define the operator P : X → X as follows:

Px(t) =
1

Γ(α)
(I − ρA)Dα−1

0+ x(0)tα−1. (2.14)

Lemma 2.10. The mapping P : X → X defined as above is a continuous projector such that

im P = ker L, X = ker L⊕ ker P

and the linear operator KP : im L→ dom L ∩ ker P can be written as

KPy(t) = Iα
0+y(t),

also
KP = (L|dom L∩ker P)

−1 and ‖KPy‖ ≤ 1/Γ(α)‖y‖1.
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Proof. The continuity of P is obvious. By the first identity of (2.11), we have (I − ρA)
2 =

(I − ρA), which implies that the mapping P is a projector. Moreover, if v ∈ im P, there exists
an x ∈ X such that v = Px. By the first identity of (2.11) again, we see that

1
Γ(α)

(I − A)(I − ρA)Dα−1
0+ x(0) =

1
kΓ(α)

ρA(I − ρA)Dα−1
0+ x(0) = 0,

which gives us v ∈ ker L. Conversely, if v ∈ ker L, then v(t) = c∗tα−1 for some c∗ ∈ ker(I− A),
and we deduce that

Pv(t) =
1

Γ(α)
(I − ρA)Dα−1

0+ v(0)tα−1 = (I − ρA)c∗tα−1 = c∗tα−1 = v(t), t ∈ [0, 1],

which gives us v ∈ im P. Thus, we get that ker L = im P and consequently X = ker L⊕ ker P.
Moreover, let y ∈ im L. There exists x ∈ dom L such that y = Lx, and we obtain

KPy(t) = x(t) + ctα−1,

where c ∈ Rn satisfies c = Ac. It is easy to see that KPy ∈ dom L and KPy ∈ ker P. Therefore,
KP is well defined. Further, for y ∈ im L, we have

L(KPy(t)) = Dα
0+(KPy(t)) = y(t)

and for x ∈ dom L ∩ ker P, we obtain that

KP(Lx(t)) = x(t) + c1tα−1 + c2tα−1,

for some c1, c2 ∈ Rn. In view of x ∈ dom L ∩ ker P, we know that c1 = c2 = 0. Therefore,
(KPL)x(t) = x(t). This shows that KP = (L|domL∩kerP)

−1. Finally, by the definition of KP, we
derive

‖Dα−1
0+ KPy‖∞ =

∥∥∥∥∫ t

0
y(s) ds

∥∥∥∥
∞
≤ ‖y‖1 (2.15)

and

‖KPy‖∞ =

∥∥∥∥ 1
Γ(α)

∫ t

0
(t− s)α−1y(s) ds

∥∥∥∥
∞
≤ 1

Γ(α)
‖y‖1. (2.16)

It follows from (2.15) and (2.16) that

‖KPy‖ = max{‖Dα−1
0+ KPy‖∞, ‖KPy‖∞} ≤ max

{
‖y‖1,

1
Γ(α)

‖y‖1

}
=

1
Γ(α)

‖y‖1. (2.17)

Then Lemma 2.10 is proved.

Remark 2.11. The constant 1
Γ(α) in (2.16) is sharp, and its value can not be improved. Actually,

one can prove the following proposition.

Proposition 2.12. Let α ∈ (1, 2] and define the linear mapping T : L1[0, 1]→ C[0, 1] by

(Ty)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s) ds.

Then ‖T‖ = 1
Γ(α) .
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Proof. Indeed, from ‖(Ty)(t)‖∞ ≤ 1
Γ(α)‖y‖1, we have

‖T‖ ≤ 1
Γ(α)

. (2.18)

On the other hand, for ε ∈ (0, 1), let

y(t) =


1
ε

, 0 ≤ t ≤ ε,

0, ε < t ≤ 1.

A direct computation shows that ‖y‖1 = 1, and

|Ty(1)| = 1
Γ(α)

[1− δ(ε)],

where δ(ε) = 1− 1−(1−ε)α

αε > 0. It is easy to verify that δ is an increasing function with respect
to ε and limε→0 δ(ε) = 0. Thus, ‖T‖ ≥ 1

Γ(α) [1− 2δ(ε)]. As ε was chosen arbitrarily, we have

‖T‖ ≥ 1
Γ(α) . This together with (2.18) leads to conclusion.

Lemma 2.13. Let f be a Carathéodory function. Then N defined by (2.3) is L-compact.

Proof. Let Ω be a bounded subset in X. By the hypothesis (iii) on the function f , there exists
a function ϕΩ(t) ∈ L1[0, 1] such that for all x ∈ Ω,

| f (t, x(t), Dα−1
0+ x(t))| ≤ ϕΩ(t), a.e. t ∈ [0, 1], (2.19)

which, along with (2.7) and (2.13), implies

‖Qy‖1 =

∣∣∣∣Γ(α + 1)
ξα − 1

(I − ρA)g(y)
∣∣∣∣ ∫ 1

0
sα−1 ds

≤ (‖A‖+ 1)‖I − ρA‖
|1− ξα| ‖ϕΩ‖1 < ∞.

(2.20)

This shows that QN(Ω) ⊆ Y is bounded. The continuity of QN follows from the hypothesis
on f and the Lebesgue dominated convergence theorem.

Next, we shall show that KP,QN is completely continuous. First, for any x ∈ Ω, we have

KP,QNx(t) = KP(I −Q)Nx(t) = KPNx(t)− KPQNx(t)

= Iα
0+Nx(t)− Γ(α + 1)

ξα − 1
(I − ρA)g(Nx(t))Iα

0+tα−1.

By Lemma 2.8, it is easy to know that KP,QN is continuous.
From (2.19) and (2.7), we derive that

|g(Nx(t))| =
∣∣∣∣ A
Γ(α)

∫ ξ

0
f (s, x(s), Dα−1

0+ x(s)) ds− I
Γ(α)

∫ 1

0
f (s, x(s), Dα−1

0+ x(s)) ds
∣∣∣∣

≤ ‖A‖+ 1
Γ(α)

‖ϕΩ‖1.

(2.21)
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From (2.21), we obtain

‖KP,QNx‖ = Iα
0+Nx(t)− Γ(α + 1)

ξα − 1
(I − ρA)g(Nx(t))Iα

0+tα−1

≤ ‖ϕΩ‖1 +
Γ(α + 1)‖I − ρA‖

Γ(α)|ξα − 1| |g(Nx(t))|
∫ t

0
(t− s)α−1sα−1 ds

≤ ‖ϕΩ‖1 +
Γ(α + 1)‖I − ρA‖(‖A‖+ 1)

Γ(2α)|ξα − 1| ‖ϕΩ‖1 < ∞,

which shows that KP,QNΩ is uniformly bounded in X. Noting that

bp − ap ≤ (b− a)p for any b ≥ a > 0, 0 < p ≤ 1, (2.22)

for any t1, t2 ∈ [0, 1] with t1 < t2, we shall see that

|KP,QNx(t2)− KP,QNx(t1)|

=
1

Γ(α)

∣∣∣∣∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]Nx(s) ds +

∫ t2

t1

(t2 − s)α−1Nx(s) ds

−Γ(α + 1)
ξα − 1

(I − ρA)g(Nx(t))[Iα
0+tα−1

2 − Iα
0+tα−1

1 ]

∣∣∣∣
≤ 1

Γ(α)

∫ t1

0
(t2 − t1)

α−1ϕΩ(s) ds +
1

Γ(α)

∫ t2

t1

ϕΩ(s) ds

+
Γ(α + 1)‖I − ρA‖(‖A‖+ 1)

Γ(2α)|ξα − 1| ‖ϕΩ‖1|t2α−1
2 − t2α−1

1 |

→ 0 as t2 → t1

and∣∣∣Dα−1
0+ KP,QNx(t2)− Dα−1

0+ KP,QNx(t1)
∣∣∣ = ∣∣∣∣∫ t2

t1

Nx(s) ds
∣∣∣∣ ≤ ∫ t2

t1

ϕΩ(s) ds→ 0 as t2 → t1.

Then we get that KP,QNΩ is equicontinuous in X. By Lemma (2.8), KP,QNΩ ⊆ X is relatively
compact. Thus we can conclude that the operator N is L-compact continuous in Ω. The proof
is complete.

3 Main result

In this section, we shall present and prove our main result.

Theorem 3.1. Let f be a Carathéodory function and the following conditions hold:

(H1) There exist three nonnegative functions a, b, c ∈ L1[0, 1] such that

| f (t, u, v)| ≤ a(t)|u|+ b(t)|v|+ c(t), for all t ∈ [0, 1], u, v ∈ Rn

(H2) There exists a constant A1 > 0 such that for x ∈ dom L, if |Dα−1
0+ x(t)| > A1 for all t ∈ [0, 1],

then ∫ 1

ξ
f (s, x(s), Dα−1

0+ x(s)) ds /∈ im(I − A).
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(H3) There exists a constant A2 > 0 such that for any e ∈ Rn satisfying e = Ae and
min1≤i≤n{|ei|} > A2, either

〈e, QNe〉 ≤ 0, min
1≤i≤n

{|ei|} > A2,

or else
〈e, QNe〉 ≥ 0, min

1≤i≤n
{|ei|} > A2,

where 〈·, ·〉 is the scalar product in Rn.

Then the BVPs (1.1) have at least one solution in space X provided that

(‖I − ρA‖+ 1)(‖a‖1 + ‖b‖1) < Γ(α). (3.1)

Proof. We shall construct an open bounded subset Ω in X satisfying all assumption of Lemma
2.7. Let

Ω1 = {x ∈ dom L\ ker L : Lx = λNx for some λ ∈ [0, 1]} . (3.2)

For any x ∈ Ω1, x /∈ kerL, we get that λ 6= 0. Since Nx ∈ im L = ker Q, by the definition of
im L, we have g(Nx) ∈ im(I − A), where

g(Nx) =
A

Γ(α)

∫ ξ

0
f (s, x(s), Dα−1

0+ x(s)) ds− I
Γ(α)

∫ 1

0
f (s, x(s), Dα−1

0+ x(s)) ds.

Hence ∫ 1

ξ
f (s, x(s), Dα−1

0+ x(s)) ds

= −Γ(α)g(Nx)− (A− I)
∫ ξ

0
f (s, x(s), Dα−1

0+ x(s)) ds ∈ im(I − A).

(3.3)

It follows from hypothesis (H2) and (3.3) that there exists t0 ∈ [0, 1] such that |Dα−1
0+ x(t0)| ≤

A1. Then by Dα−1
0+ x(0) = Dα−1

0+ x(t0)−
∫ t

0 Dα
0+x(s) ds, we deduce that

|Dα−1
0+ x(0)| ≤ A1 + ‖Dα

0+x‖1 = A1 + ‖Lx‖1 ≤ A1 + ‖Nx‖1,

which implies

‖Px‖ =
∥∥∥∥ 1

Γ(α)
(I − ρA)Dα−1

0+ x(0)tα−1
∥∥∥∥ ≤ ‖I − ρA‖

Γ(α)
(A1 + ‖Nx‖1). (3.4)

Further, again for x ∈ Ω1, since im P = ker L, X = ker L⊕ ker P, we have (I − P)x ∈ dom L ∩
ker P and LPx = θ. Then

‖(I − P)x‖ = ‖KPL(I − P)x‖ ≤ ‖KPLx‖ ≤ 1
Γ(α)

‖Lx‖1 ≤
1

Γ(α)
‖Nx‖1. (3.5)

From (3.4) and (3.5), we can conclude that

‖x‖ = ‖Px + (I − P)x‖ ≤ ‖Px‖+ ‖(I − P)x‖ ≤ ‖I − ρA‖
Γ(α)

A1 +
‖I − ρA‖+ 1

Γ(α)
‖Nx‖1. (3.6)

Moreover, by the definition of N and the hypothesis (H1), we see that

‖Nx‖1 =
∫ 1

0
| f (s, x(s), Dα−1

0+ x(s))| dt ≤ ‖a‖1‖x‖∞ + ‖b‖1‖Dα−1
0+ x‖∞ + ‖c‖1. (3.7)
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Then

‖x‖ ≤ ‖I − ρA‖
Γ(α)

A1 +
‖I − ρA‖+ 1

Γ(α)
(‖a‖1‖x‖∞ + ‖b‖1‖Dα−1

0+ x‖∞ + ‖c‖1). (3.8)

From (3.8) and ‖x‖∞ ≤ ‖x‖, we derive

‖x‖∞ ≤
‖I−ρA‖

Γ(α) A1 +
‖I−ρA‖+1

Γ(α) (‖b‖1‖Dα−1
0+ x‖∞ + ‖c‖1)

1− ‖I−ρA‖+1
Γ(α) ‖a‖1

, (3.9)

which, together with ‖Dα−1
0+ x‖∞ ≤ ‖x‖, (3.8) and (3.9), gives us

‖Dα−1
0+ x‖∞ ≤

‖I−ρA‖
Γ(α) A1 +

‖I−ρA‖+1
Γ(α) ‖c‖1

1− ‖I−ρA‖+1
Γ(α) (‖a‖1 + ‖b‖1))

=
‖I − ρA‖A1 + (‖I − ρA‖+ 1)‖c‖1

Γ(α)− (‖I − ρA‖+ 1)(‖a‖1 + ‖b‖1)
. (3.10)

It follows from (3.9) and (3.10) that Ω1 is bounded.
Let

Ω2 = {x ∈ ker L : Nx ∈ im L} . (3.11)

For any x ∈ Ω2, it follows from x ∈ ker L that x = etα−1 for some e ∈ ker(I− A), and it follows
from Nx ∈ im L that g(Nx) ∈ im(I− A). By a similar argument as above, by hypothesis (H2),
we arrive at |Dα−1

0+ x(t0)| = |e|Γ(α) ≤ A1. Thus we get that

‖x‖ ≤ |e|Γ(α) ≤ A1.

That is, Ω2 is bounded in X. If the first part of (H3) holds, denote

Ω3 = {x ∈ ker L : −λx + (1− λ)QNx = θ, t ∈ [0, 1]},

then for any x ∈ Ω3, we know that

x = etα−1 with e ∈ ker(I − A) and λx = (1− λ)QNx.

If λ = 0, we have Nx ∈ ker Q = im L, then x ∈ Ω2, by the argument above, we get that
‖x‖ ≤ A1. Moreover, if λ ∈ (0, 1] and if |e| > A2, by the hypothesis (H3), we deduce that

0 < λ|e|2 = λ〈e, e〉 = (1− λ)〈e, QNe〉 ≤ 0,

which is a contradiction. Then ‖x‖ = ‖etα−1‖ ≤ max{|e|, Γ(α)|e|}. That is to say, Ω3 is
bounded. If other part of (H3) holds, we take

Ω3 = {x ∈ ker L : λx + (1− λ)QNx = θ, t ∈ [0, 1]}.

By using the same arguments as above, we can conclude that Ω3 is also bounded.
In the sequel, we will show that all conditions of Lemma 2.7 are satisfied.
Assume that Ω is a bounded open subset of X such that ∪3

i=1Ωi ⊆ Ω. It follows from
Lemmas 2.9 and 2.13 that L is a Fredholm operator of index zero and N is L-compact on Ω.
By the definition of Ω and the argument above, in order to complete the theorem, we only
need to prove that the condition (iii) of Lemma 2.7 is also satisfied. For this purpose, let

H(x, λ) = ±λx + (1− λ)QNx, (3.12)



12 F. D. Ge and H. C. Zhou

where we let the isomorphism J : im Q → ker L be the identical operator. Since Ω3 ⊆ Ω,
H(x, λ) 6= 0 for (x, λ) ∈ ker L ∩ ∂Ω × [0, 1], then by the homotopy property of degree, we
obtain

deg (JQN|kerL∩∂Ω, Ω ∩ ker L, 0)

= deg (H (·, 0) , Ω ∩ ker L, 0)

= deg (H (·, 1) , Ω ∩ ker L, 0)

= deg (±Id, Ω ∩ ker L, 0) = ±1 6= 0.

(3.13)

Thus (H3) of Lemma 2.7 is fulfilled and Theorem 3.1 is proved. The proof is complete.

4 Examples

In this section, we shall present three examples to illustrate our main result in R3 with
dim ker L = 1, dim ker L = 2, dim ker L = 3, respectively, which surely generalize the pre-
vious results [4–6, 8, 9, 13, 14, 18–20], where the dimension of dim ker L is only 1 or 2.

Example 4.1. Let us consider the following system with dim ker L = 1 in R3.

D
3
2
0+x1(t) =

1
148

(
4t

1
2 x3(t) +

1√
π

D
1
2
0+x1(t)− 4

)
, t ∈ (0, 1),

D
3
2
0+x2(t) =

1
148

(
t−

1
2 x2(t) +

2√
π

D
1
2
0+x1(t)

)
, t ∈ (0, 1),

D
3
2
0+x3(t) =

4t + 1
148

, t ∈ (0, 1),

x1(0) = x2(0) = x3(0) = 0,

D
1
2
0+x1(1) = −3D

1
2
0+x1

(
1
2

)
+ 3D

1
2
0+x2

(
1
2

)
− 3D

1
2
0+x3

(
1
2

)
,

D
1
2
0+x2(1) = −5D

1
2
0+x1

(
1
2

)
+ 5D

1
2
0+x2

(
1
2

)
− 5D

1
2
0+x3

(
1
2

)
,

D
1
2
0+x3(1) = −D

1
2
0+x1

(
1
2

)
+ D

1
2
0+x2

(
1
2

)
− D

1
2
0+x3

(
1
2

)
.

(4.1)

Let α = 3/2, ξ = 1/2 and

A =

 −3 3 −3
−5 5 −5
−1 1 −1

 . (4.2)

It is clear that A2 = A and dim ker(I − A) = 1. Define the function f : [0, 1]×R3 ×R3 → R3

by

f (t, u, v) =
1

148


4t

1
2 x3 +

1√
π

y1 − 4

t−
1
2 x2 +

2√
π

y1

4t + 1

 (4.3)
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for all t ∈ [0, 1] and u = (x1, x2, x3), v = (y1, y2, y3) ∈ R3. Then problem (4.1) has one solution
if and only if problem (1.1), with A and f defined by (4.2), (4.3), has one solution. Hence we
need only to verify that the conditions of Theorem 3.1 are satisfied.

Check (H1) of Theorem 3.1: for some r∈R, where |u|= |(u1, u2, u3)|=max{|u1|, |u2|, |u3|}
let Ω = {(u, v) ∈ R3×R3 : |u| ≤ r, |v| ≤ r} and let ϕΩ(t) = 1

148

(
4rt

1
2 + rt−

1
2 + 3√

π
r + 4t + 4

)
∈

L1[0, 1]. Since ‖A‖ = max{∑n
j=1 |aij|, j = 1, 2, . . . , n} = 15, let

a(t) =
1

148
(4t

1
2 + t−

1
2 ), b(t) =

3
148
√

π
, c(t) =

4t + 4
148

. (4.4)

It is easy to see that (H1) of Theorem 3.1 and the condition (‖I− ρA‖+ 1)(‖a‖1 + ‖b‖1) < Γ(α)
hold.

Check (H2) of Theorem 3.1: noting that for any x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3, we
have

f3(t, x1, x2, x3, y1, y2, y3) =
4t + 1

148
≥ 1

148
> 0.

This together with im(I − A) = {τ(1, 0, 0) + ζ(0, 1, 0) : τ, ζ ∈ R} yields

∫ 1

1
2

f (s, x(s), D
1
2
0+x(s)) ds /∈ im(I − A).

Check (H3) of Theorem 3.1: for any y ∈ L1([0, 1], R3), by (2.13), we have ρA = I − A and

Qy(t) =
Γ(α + 1)

ξα − 1
(I − ρA)g(y)tα−1 =

3
√

π√
2− 4

Ag(y)tα−1, (4.5)

where

g(y) =
2A√

π

∫ 1/2

0
y(s) ds− 2I√

π

∫ 1

0
y(s) ds.

For any e ∈ R3 satisfying e = Ae, e can be written as

e = σ(3, 5, 1)>, for σ ∈ R.

By (2.3), we have

N
(

et
1
2

)
(t) =

1
148

(4σt + 1.5σ− 4, 8σ, 4t + 1)> (4.6)

and

g(N(etα−1)(t)) =
A

148
√

π
(2.5σ− 4, 8σ, 2)> − I

148
√

π
(7σ− 8, 16σ, 6)> . (4.7)

It follows from (4.5), (4.6) and (4.7) that

Q
(

Net
1
2

)
=

3
√

π√
2− 4

Ag
(

Net
1
2

)
t

1
2 =

3t
1
2

148(
√

2− 4)
(−10.5σ,−17.5σ,−3.5σ)>

and 〈
e, QNet

1
2

〉
= − 367.5

148(
√

2− 4)
σ2t

1
2 ≥ 0.

Therefore, (4.1) admits at least one solution.
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Example 4.2. Consider the following system with dim ker L = 2 in R3.

D
3
2
0+x1(t) =


1
36

, |D1/2
0+ x1 (t) | < 1;

D
1
2
0+x1 (t) +

[
D1/2

0+ x1 (t)
]−1
− 1

36
, |D1/2

0+ x1 (t) | ≥ 1,

D
3
2
0+x2(t) =

|x2(t)|+ |x3(t)|
36

,

D
3
2
0+x3(t) = −

x3(t)
36

,

x1(0) = x2(0) = x3(0) = 0,

D
1
2
0+x1(1) = D

1
2
0+x1

(
1
2

)
,

D
1
2
0+x2(1) = −D

1
2
0+x2

(
1
2

)
+ 2D

1
2
0+x3

(
1
2

)
,

D
1
2
0+x3(1) = D

1
2
0+x3

(
1
2

)
.

(4.8)

Let α = 3/2, ξ = 1/2, for all t ∈ [0, 1], u = (x1, x2, x3), v = (y1, y2, y3) ∈ R3,

f (t, u, v) =
1
36



{
1, |y1| < 1;

y1 + 1/y1 − 1, |y1| ≥ 1

|x2|+ |x3|

−x3

 (4.9)

and

A =

 1 0 0
0 −1 2
0 0 1

 . (4.10)

It is not difficult to see that A2 = I and dim ker(I − A) = 2. Then problem (4.8), with A and
f defined by (4.10) and (4.9), has one solution if and only if problem (1.1) has one solution.

Check (H1) of Theorem 3.1: for some r ∈ R, Ω = {(u, v) ∈ R3 ×R3 : |u| ≤ r, |v| ≤ r}, let
ϕΩ(t) = 1

12 r + 1
36r +

1
36 ∈ L1[0, 1]. Since ‖A‖ = 3, let

a(t) =
1
18

, b(t) =
1
36

, c(t) =
1
36

. (4.11)

One can see that the condition (H1) of Theorem 3.1 is satisfied.
Check (H2) of Theorem 3.1: it follows from the definition of f that | f1| > 1

36 > 0. This
together with im(I−A) = {σ0(0, 0, 1) : σ0 ∈ R} implies that the condition (H2) of Theorem 3.1
is satisfied.

Check (H3) of Theorem 3.1: since dim ker(I − A) = 2, for any e ∈ R3 satisfying e = Ae, e
can be written as

e = σ1(1, 0, 0)T + σ2(0, 1, 1)T, for σi ∈ R, i = 1, 2.

For any y ∈ L1([0, 1], R3), by (2.13) and ρA = 1
2 (I − A), we have

Qy(t) =
Γ(α + 1)

ξα − 1
(I − ρA)g(y)tα−1 =

3
√

π√
2− 4

I + A
2

g(y)tα−1, (4.12)
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where

g(y) =
2A√

π

∫ 1/2

0
y(s) ds− 2I√

π

∫ 1

0
y(s) ds.

By (2.3), we have

N
(

et
1
2

)
(t) =


1
36

(
1, 2|σ2|t

1
2 ,−σ2t

1
2

)>
, |σ1| < 1,

1
36

(
σ1 +

1
σ1
− 1, 2|σ2|t

1
2 ,−σ2t

1
2

)>
, |σ1| ≥ 1.

(4.13)

Let A2 = 1, for min{|σ1|, |σ2|, |σ3|} > 1, it follows from (4.12) and (4.13) that

Q
(

Net
1
2

)
=

3
√

π√
2− 4

I + A
2

g
(

Net
1
2

)
t

1
2 =

t
1
2

8
√

2− 32

(
σ1 +

1
σ1
− 1,

4−
√

2
6

σ2,
4−
√

2
6

σ2

)>
and 〈

e, QNet
1
2

〉
=

t
1
2

8
√

2− 32

[
(σ3 − 1/2)2 + 3/4 +

4−
√

2
3

σ2
2

]
< 0.

Therefore, (4.8) admits at least one solution.

Example 4.3. Consider the following system with dim ker L = 3 in R3.

D
3
2
0+x1(t) =

x2(t)
8 ,

D
3
2
0+x2(t) = −

x1(t)
8

,

D
3
2
0+x3(t) =


1
8 , |D1/2

0+ x3 (t) | < 1;

D
1
2
0+

x3(t)+[D1/2
0+

x3(t)]
−1−1

8 , |D1/2
0+ x3 (t) | ≥ 1,

x1(0) = x2(0) = x3(0) = 0,

D
1
2
0+x1(1) = D

1
2
0+x1

(
1
2

)
, D

1
2
0+x2(1) = D

1
2
0+x2

(
1
2

)
, D

1
2
0+x3(1) = D

1
2
0+x3

(
1
2

)
.

(4.14)

Let α = 3/2, ξ = 1/2, and A = I. It is clear that dim ker(I − A) = 3. Then problem (4.1) has
one solution if and only if problem (1.1) has one solution.

Check (H1) of Theorem 3.1: for some r ∈ R, Ω = {(u, v) ∈ R3 ×R3 : |u| ≤ r, |v| ≤ r}, let
ϕΩ(t) = 3

8 r + 1
8r +

1
8 ∈ L1[0, 1]. Since ‖A‖ = 1, let

a(t) =
1
8

, b(t) = 0, c(t) =
r
8
+

1
8r

+
1
8

. (4.15)

One can see that the condition (H1) of Theorem 3.1 is satisfied.
Check (H2) of Theorem 3.1: corresponding to the system (1.1), we get that

f3(t, x1, x2, x3, y1, y2, y3) =

{
1
8 , |y3| < 1;

y3+1/y3−1
8 , |y3| ≥ 1

and | f3| > 0 for any (x1, x2, x3), (y1, y2, y3) ∈ R3. This together with im(I − A) = {(0, 0, 0)}
implies that the condition (H2) of Theorem 3.1 is satisfied.
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Check (H3) of Theorem 3.1: since dim ker(I − A) = 3, for any e ∈ R3 satisfying e = Ae, e
can be written as

e = σ1(1, 0, 0)T + σ2(0, 1, 0)T + σ3(0, 0, 1)T, for σi ∈ R, i = 1, 2, 3.

For any y ∈ L1([0, 1], R3), by (2.13), we have ρA = θ3×3 and

Qy(t) =
Γ(α + 1)

ξα − 1
(I − ρA)g(y)tα−1 =

3
√

π√
2− 4

g(y)tα−1, (4.16)

where

g(y) =
2A√

π

∫ 1/2

0
y(s) ds− 2I√

π

∫ 1

0
y(s) ds =

2I√
π

∫ 1

1
2

y(s) ds.

By (2.3), we have

N(et
1
2 )(t) =


1
8

(
σ2t

1
2 ,−σ1t

1
2 , 1
)>

, |σ3| < 1,

1
8

(
σ2t

1
2 ,−σ1t

1
2 , σ3 +

1
σ3
− 1
)>

, |σ3| ≥ 1.
(4.17)

Let A2 = 1, for min{|σ1|, |σ2|, |σ3|} > 1, it follows from (4.16) and (4.17) that

Q
(

Net
1
2

)
=

3
√

π√
2− 4

Ag
(

Net
1
2

)
t

1
2 =

3t
1
2

8
√

2− 32

(
4−
√

2
3

σ2,

√
2− 4
3

σ1, σ3 +
1
σ3
− 1

)>
and 〈

e, QNet
1
2

〉
=

3t
1
2

8
√

2− 32

[
(σ3 − 1/2)2 + 3/4

]
< 0.

Therefore, (4.14) admits at least one solution.

5 Concluding remarks

In this paper, we consider fractional BVPs at resonance in Rn. The dimension of the kernel of
fractional differential operator with the boundary conditions can take any value in {1, 2 . . . , n},
which generalizes the existing literature [4–6, 8, 9, 13, 14, 18–20], where the dim ker L = 1 for
n = 1, or dim ker L = 2 for n = 2. The illustrative examples validate the applicability of
Theorem (2.7). Note that only the two particular cases: A2 = A, A2 = I are considered. For
the general A satisfying rank(I − A) < n, the system is still resonant. However, we do not
know for the system if there are solutions for (1.1) due to some difficulty in constructing the
projector Q. We shall investigate this problem in our forthcoming paper. Finally, our result
can also be easily generalized to other fractional BVPs, for instance,Dα

0+x(t) = f (t, x(t), Dα−1
0+ x(t)), 1 < α ≤ 2, t ∈ (0, 1),

I2−α
0+ x(t)|t=0 = θ, x(1) = Ax(ξ),

(5.1)

where the matrix A satisfies rank(I − Aξα−1) < n which means this system is resonant. Par-
ticularly, when α = 2, the system (1.1) and (5.1) become a system of second order differential
equations, which can be regarded as a generalization of the results in [16], where a system of
second order differential equations was considered.
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