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Abstract. This paper presents an analysis on the appearance of limit cycles in planar
Filippov system with two linear subsystems separated by a straight line. Under the
restriction that the orbits with points in the sliding and escaping regions are not con-
sidered, we provide firstly a topologically equivalent canonical form of saddle-focus
dynamic with five parameters by using some convenient transformations of variables
and parameters. Then, based on a very available fourth-order series expansion of the re-
turn map near an invisible parabolic type tangency point, we show that three crossing
limit cycles surrounding the sliding set can be bifurcated from generic codimension-
three singularities of planar discontinuous saddle-focus system. Our work improves
and extends some existing results of other researchers.
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1 Introduction

Piecewise linear systems often appear in the descriptions of many real processes such as dry
friction in mechanical systems or switches in electronic circuits; for instance, see [3,5,7,19,20].
This kind of systems are generally modeled by ordinary differential equations with discon-
tinuous right-hand sides which can exhibit very complicated dynamics and rich bifurcation
phenomenons. The basic methods of qualitative theory are established by Filippov in the
book [8]. Up till now, piecewise linear systems have been developed very fast and a large
number of books and papers have been published on this topic, see for instance [4, 10, 15, 21].

One of the main problems in qualitative theory of piecewise linear systems is the deter-
mination of limit cycles. As we know, the occurrence of limit cycle in smooth systems can
be provided through the analysis of Hopf bifurcation surrounding a singular point, however,
such an approach fails for piecewise linear systems since the basic requirement of smooth-
ness is not fulfilled here. For this reason, many authors have contributed to develop several
valid systematic methods in order to overcome the obstacles in recent years; for instance,
see [1, 2, 6, 9, 11–14, 16–18, 22].
BEmail: llping74@163.com
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The systems being considered in this paper are planar piecewise linear systems with two
linearity regions separated by a straight line, where we will assume that the two linearity
regions in the phase plane are the left and right half planes

Σ− = {(x, y) ∈ R2 | x < 0}), Σ+ = {(x, y) ∈ R2 | x > 0},

and the line is Σ = {(x, y) ∈ R2 | x = 0}, for sake of simplicity. Thus the dynamical systems
have the following form

ẋ = f (x) =

{
f+(x) = ( f+1 (x), f+2 (x))T = A+x + u+, if x ∈ Σ+,

f−(x) = ( f−1 (x), f−2 (x))T = A−x + u−, if x ∈ Σ−,
(1.1)

where x = (x, y)T ∈ R2, A± = (a±ij ) are 2 × 2 real constant matrices and u± = (u±
1 , u±

2 )
T are

real constant vectors in R2. Obviously, type (1.1) can be also rewrited as two linear differential
systems (

ẋ
ẏ

)
=

(
a+11 a+12
a+21 a+22

)(
x
y

)
+

(
u+

1
u+

2

)
, (x, y)T ∈ Σ+, (1.2)

and (
ẋ
ẏ

)
=

(
a−11 a−12
a−21 a−22

)(
x
y

)
+

(
u−

1
u−

2

)
, (x, y)T ∈ Σ−, (1.3)

which are called the right and left subsystems of (1.1), respectively.
The possible existence of limit cycles of system (1.1) has been considered in many papers;

for instance, see [9, 12–14]. Based on the assumption that system (1.1) is a special dynamical
case of focus-focus type, i.e., there is a focus point in each subsystem, the paper [9] provides a
reduced canonical form of (1.1) with five parameters and proves that two crossing limit cycles
can be obtained through a degenerate Hopf bifurcation at infinity and a degenerate pseudo-
Hopf bifurcation at the origin. In [12], the Hopf bifurcation of (1.1) is also studied and the
appearance of two limit cycles is shown near a focus point of three different cases. Note that
at the end of paper [12], the authors conjecture that the maximum number of limit cycles for
this class of piecewise linear differential systems is exactly two.

It is easy to see there are several different dynamical types of system (1.1) from the one
considered in [9] if we vary the type of singular point in one of the linear regions. For
example, the saddle-saddle type and node-node type are studied in [13] and [14], respectively.
In these two cases, the authors prove the existence of at least two nested limit cycles and some
parameter regions where two nested limit cycles exist are given.

In this paper, we are interesting in the saddle-focus case of (1.1); that is, one subsystem is
of saddle type and the other is of focus type. The main purpose of this paper is to investigate
the existence and number of crossing period orbits for the saddle-focus dynamics. Note that
the linear subsystems (1.2) and (1.3) themselves do not have any limit cycles in the regions
Σ+ and Σ−, the necessary condition to obtain it is such orbit intersecting transversally the
line Σ at least twice. Thus the orbits possessing points in sliding and escaping regions are
not needed to study for the existence of crossing limit cycles of (1.1). In the light of the
above considerations, a reduced saddle-focus type canonical form with five parameters will
be induced firstly by some convenient changes of variables and parameters. Then, we prove
that three crossing limit cycles surrounding the sliding set can appear from a codimension-
three local bifurcation. This implies that the conjecture in [12] is not correct.
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2 Preliminary definitions and notations

Due to the discontinuity of the vector field of system (1.1), the usual concepts of flow (or orbit
in phase space) and singularity need to be generalized from the classical smooth ones. In this
section, we will use the techniques and approaches presented by Filippov in [8] to establish
these notations.

Clearly, for any point p(x, y) ∈ Σ±, the local flow of (1.1), denoted by φ(t, p) = φ±(t, p),
can be defined by the vector fields ( f±1 , f±2 ) as usual. In particular, a point p(x, y) satisfying
φ(t, p) = p for all t ∈ R is called a real (virtual) singular point of the right subsystem (1.2) if
this point locates in the region x > 0 (x < 0). A similar definition can be done for the left
subsystem (1.3).

If p(0, y) ∈ Σ satisfying f+1 (p) f−1 (p) > 0, then both vector fields point towards the same
direction from one side of Σ to the other. Thus, the local flow φ(t, p) can be connected by
matching the flows of ( f+1 , f+2 ) and ( f−1 , f−2 ) through the point p. This point is called a
crossing point, and the cross region is defined as follows

Σc = {p ∈ Σ | f+1 (p) f−1 (p) > 0}.

If p(0, y) ∈ Σ satisfying f+1 (p) f−1 (p) < 0, then the local flow φ(t, p) is given by the vector
field

( f 0
1 (p), f 0

2 (p)) =
(

0,
f+1 (p) f−2 (p)− f−1 (p) f+2 (p)

f+1 (p)− f−1 (p)

)
,

which is the linear convex combination of ( f+1 , f+2 ) and ( f−1 , f−2 ) tangent to Σ. Here we speak
of p as a sliding (escaping) point when f+1 (p) < 0 and f−1 (p) > 0 ( f+1 (p) > 0 and f−1 (p) < 0).
The corresponding sliding and escaping regions are denoted by

Σs = {p ∈ Σ | f+1 (p) < 0, f−1 (p) > 0},

and
Σe = {p ∈ Σ | f+1 (p) > 0, f−1 (p) < 0},

respectively.

 p

x

y

o

Figure 2.1: A pseudo-focus point p of system (1.1).

If one of the vectors ( f±1 , f±2 ) is tangent to Σ at a point p(0, y), that is f+1 (p) = 0 or
f−1 (p) = 0, then this point is called a tangency point. Furthermore, we say that the point p is a
visible (invisible) tangency point of (1.2) if the local flow of ( f+1 , f+2 ) passing through p at time
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t = tp remains in the region x > 0 (x < 0). Analogously, an equivalent definition can be given
for the subsystem (1.3).

A point p(0, y) ∈ Σ is called pseudo-focus point (or focus for simplification) if f+1 (p) =

f−1 (p) = 0 and the orbits of (1.1) spiral around p in its neighborhood. In this case, both vector
fields ( f±1 , f±2 ) vanish at the point p (see Figure 2.1). From [6,12], we know that there are four
possible types of focus, denoted by FF, FP, PF and PP, where F stands for the word “focus"
and P the word “parabolic”.

3 Canonical form of the saddle-focus dynamics

The establishment of the canonical form is a very important task in the study of planar piece-
wise linear systems related to complex behavior such as bifurcation and stability of limit
cycles. On this issue one usually needs to adopt the idea of topological equivalence to reduce
the number of parameters of model (1.1). In [9], the Liénard-like canonical form of (1.1) with
seven parameters is obtained by making a continuous piecewise linear change of variables,
which is invariant on the discontinuous line Σ and is homeomorphic in the open half-planes
Σ+ and Σ−.

Denote the traces and determinants of A± by T± and D±, respectively. We now proceed
as in [9, Proposition 3.1], which we repeat here for completeness.

Proposition 3.1. Assume that a+12a−12 > 0 in system (1.1). Then the homeomorphism x̃ = h(x) given
by

x̃ = M−(x) =
[

1 0
−a−11 −a−12

]
x −

[
0

u−
1

]
, if x ∈ Σ− ∪ Σ,

and

x̃ = M+(x) =
a−12

a+12

[
1 0

−a+11 −a+12

]
x −

[
0

u−
1

]
, if x ∈ Σ+,

after dropping tildes, transforms system (1.1) into the canonical forms

ẋ = g(x) =


g−(x) =

[
g−1 (x)
g−2 (x)

]
=

[
0 −1

D− T−

]
x +

[
0

v−2

]
, if x ∈ Σ−,

g+(x) =
[

g+1 (x)
g+2 (x)

]
=

[
0 −1

D+ T+

]
x +

[
v+1
v+2

]
, if x ∈ Σ+,

(3.1)

where

v−2 = a−22u−
1 − a−12u−

2 , v+1 =
a−12

a+12
u+

1 − u−
1 ,

v+2 = −
a−12

a+12
(a+11u+

1 + a+12u+
2 ) + (a+11 + a+22)u

−
1 .

Besides the invariance of the discontinuity line Σ, the crossing, sliding and escaping regions of
system (1.1) are transformed by the homeomorphism h into line and regions of the same type for system
(3.1).

Moreover, there is a topological equivalence between systems (1.1) and (3.1) for all their orbits not
having points in the common with the sliding and escaping regions. However, the homeomorphism h
preserves the attractive or repulsive character of the sliding and escaping regions.
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Remark 3.2. The assumption a+12a−12 > 0 in Proposition 3.1 is a sufficient condition such that
the vector fields of original system (1.1) and induced system (3.1) preserve the same sign of
x-component on the discontinuous line. In fact, by above change x̃ = h(x), we have

g−1 (h(0, y)) = a−12y + u−
1 = f−1 (0, y),

and

g+1 (h(0, y)) = a−12y + u−
1 + v+1 =

a−12

a+12
(a+12y + u+

1 ) =
a−12

a+12
f+1 (0, y).

Remark 3.3. The assumption a+12a−12 > 0 in Proposition 3.1 is also a necessary condition for
the existence of crossing limit cycles of system (1.1). Effectively, if the crossing region of (1.1)
exists with a+12a−12 ≤ 0, then the inequality

f+1 (0, y) f−1 (0, y) = (a+12y + u+
1 )(a−12y + u−

1 ) > 0

implies that the crossing region is an open interval (or a point) of the line Σ; that is, the
x-component of both vector fields ( f+1 , f+2 ) and ( f−1 , f−2 ) has constant sign at the crossing re-
gion, and so elementary qualitative arguments preclude the existence of crossing limit cycles.

Remark 3.4. The forms of the left and right subsystem of (3.1) can be transformed from each
other by the change of variables (x, y) → (x, y − v+1 ). Geometrically, it is enough to translate
vertically the horizontal coordinate axes in the amount v+1 .

x

y

o

(a)

x

y

o

(b)

Figure 3.1: From left to right, phase portraits of the left subsystem of (3.1) when v−2 = 0 and
v−2 > 0, respectively.

In the following, we will deduce the canonical form of saddle-focus dynamics. According
to Remark 3.4, we assume without loss of generality that the left subsystem of (3.1) is of
saddle type and the right one of focus type, that is D− < 0 in Σ− and (T+)2 − 4D+ < 0 in
Σ+, respectively. Thus, the left subsystem of (3.1) has a saddle point at (−v−2 /D−, 0) which is
a real singular point for v−2 < 0, the origin for v−2 = 0 and a virtual singular point for v−2 > 0.
Note that for the last two cases, no orbit of the left subsystem of (3.1) can touch Σ twice in the
half plane x < 0 (see Figure 3.1), i.e., there is not any crossing periodic orbit in system (3.1).
Therefore, from now on we suppose that v−2 < 0.

By a direct computation, the simplified saddle-focus model of system (1.1) is obtained.
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Proposition 3.5. Assume that

T−
√
−D−

= α,
−v−2√
−D−

= k, T+ = 2γ, D+ = γ2 + ω2

with ω > 0 in the canonical form (3.1), and let

β =
γ

ω
, a =

v+1
ω

, b =
v+2
ω

.

Then the changes of variables

(x, t, y) →
(

x√
−D−

,
t√

−D−
, y
)

for the left half plane and

(x, t, y) →
(

x
ω

,
t
ω

, y
)

for the right half plane transform the canonical form (3.1) into the form

ẋ =



[
0 −1
−1 α

]
x +

[
0
−k

]
, if x ∈ Σ−,

[
0 −1

1 + β2 2β

]
x +

[
a
b

]
, if x ∈ Σ+.

(3.2)

Remark 3.6. The assumption v−2 < 0 implies that k > 0 in (3.2). Meanwhile, under the change
of variables and time

(x, y, t) → (x,−y,−t),

as well the change of parameters

(α, β, k, a, b) → (−α,−β, k,−a, b),

the canonical form (3.2) is invariant, so we only need to consider a ≥ 0 in the study of system
(3.2).

As far as the equilibrium and tangency points of (3.2) are considered, the next proposition
is obvious.

Proposition 3.7. For system (3.2) the following statements hold.

(i) The left subsystem of (3.2) has a real saddle point at (−k, 0) and an invisible tangency point at
the origin.

(ii) If a > 0, then the right subsystem of (3.2) has a focus point at
(
− 2aβ+b

1+β2 , a
)

and a tangency
point at (0, a), which are real and visible when 2aβ + b < 0, but virtual and invisible when
2aβ + b > 0, respectively.

(iii) If a = 0, then the origin is a pseudo-focus point of (3.2) with PF-type for b = 0, and PP-type for
b > 0. If a = 0 and b < 0, then the origin is an invisible-visible tangency point behaving as a
regular point.
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4 Limit cycles in saddle-focus canonical form

In this section, the main results about existence and number of crossing period orbits are given
for the saddle-focus dynamics. Clearly, the left half system of (3.2) at the saddle point (−k, 0)
is determined by a matrix (

0 −1
−1 α

)
,

whose corresponding eigenvalues are

λ1 =
α +

√
α2 + 4

2
> 0 and λ2 =

α −
√

α2 + 4
2

< 0.

Generated by the eigenvalues λ1 and λ2 associating with the eigenvectors (1,−λ1)
T and

(1,−λ2)T, the stable and unstable manifolds of the saddle point contain half lines

Ws
− = {(x, y) | y = −λ2(x + k), x ≤ 0}

and

Wu
− = {(x, y) | y = −λ1(x + k), x ≤ 0} ,

which intersect the switched line Σ at the points (0,−kλ2) and (0,−kλ1), respectively. Thus
for any point A = (0, r) ∈ Σ satisfying r > −kλ2 > 0, as time t > 0 increases, the flow φ−(t, A)

will enter the half plane Σ− and not reach Σ again. Similarly, for any point A′ = (0, r′) ∈ Σ
satisfying r′ < −kλ1 < 0, the flow φ−(t, A′) also remains in the half plane Σ− and does not
touch Σ again for t ∈ (−∞, 0). Therefore, it is enough to consider the existence of crossing
period orbits for system (3.2) in a bounded region including the origin.

On the other hand, from the statement (ii) of Proposition 3.7, we know that the focus point
of the right subsystem of (3.2) is real when 2aβ + b < 0. This condition also implies that the
right tangency point (0, a) is visible, namely, the local flow φ+(t) passing through (0, a) at
t = t0 remains in the region x > 0 and spirals around the real focus point as time t increases
or decreases depending on the stability of right focus point. As a result, a sliding periodic
orbit surrounding the real focus point may occur; see [11]. Here we point out that such an
issue is not considered in this paper and will appear elsewhere, and so in the remainder of
this paper we assume 2aβ + b ≥ 0.

Under the above restrictions, we know that both the left tangency point (0, 0) and the right
one (0, a) of (3.2) are invisible. In order to obtain the existence of crossing periodic orbits, it is
very necessary to analyse the return map of (3.2) near these tangency points. For this aim, we
give an important lemma as follows.

Lemma 4.1. Let x = Φ(y) be the solution of initial value problem
dx
dy

= ly(1 + (my + nx) + (my + nx)2 + (my + nx)3 + · · · ),

Φ(−r) = 0,
(4.1)

where l ̸= 0 and r > 0. If there is a point (0, ρ) with ρ > 0 such that Φ(ρ) = 0 and

lΦ(y) < 0 for − r < y < ρ,

then for r > 0 and sufficiently small,

ρ = r − 2
3

mr2 +
4
9

m2r3 −
(

44
135

m3 − 2
15

lmn
)

r4 + o(r4).
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Proof. For 0 < r ≪ 1, the solution x = Φ(y) of initial value problem (4.1) can be written as a
power series expansion with respect to time t, i.e.,

y(t) = t − r, x(t) = a1t + a2t2 + a3t3 + a4t4 + a5t5 + · · · (4.2)

with y(0) = −r and x(0) = 0, where ai are undetermined coefficients for i ∈ Z+. Substituting
(4.2) into the first expression of (4.1) and comparing coefficients of t from t0 to t5, we obtain

a1 = l(−r + mr2 − m2r3 + m3r4 + o(r4)),

a2 =
l
2
(1 − 2mr + (3m2 + ln)r2 − (4m3 + 3lmn)r3 + o(r3)),

a3 =
l
6
(2m − (6m2 + 3ln)r + (12m3 + 14lmn)r2 + o(r2)),

a4 =
l

24
(6m2 + 3ln − (24m3 + 32lmn)r + o(r)),

a5 =
l

120
(24m3 + 32lmn + o(1)).

Denote by t∗ the minimum positive time such that x(t) = 0, then by inverting series (4.2) we
have

t∗ = 2r − 2
3

mr2 +
4
9

m2r3 −
(

44
135

m3 − 2
15

lmn
)

r4 + o(r4),

and so

y(t∗) = r − 2
3

mr2 +
4
9

m2r3 −
(

44
135

m3 − 2
15

lmn
)

r4 + o(r4)

completes the proof.

Theorem 4.2. Assuming a = b = 0 in system (3.2), the following statements hold.

(i) If α = β = 0, then the origin is a nonlinear center.

(ii) If β = 0, then the origin is asymptotically stable for α < 0 and unstable for α > 0.

(iii) If α < 0 < β ≪ 1, then the the origin is unstable and it is surrounded by a stable limit cycle Γs
1.

(iv) If α > 0 and 0 < −β ≪ 1, then the the origin is asymptotically stable and it is surrounded by
an unstable limit cycle Γu

1 .

Proof. (i) It is easy to see when a = b = α = β = 0, the orbits of both the left and the right
subsystem of (3.2) are symmetric with respect to the line y = 0, hence any orbit surrounding
the origin is closed and statement (i) follows.

(ii) From Proposition 3.7 (iii), the origin is a PF-type pseudo-focus point for a = b = 0. It
means stating at any point (0, y0) with 0 < y0 ≪ 1, the orbits of the left subsystem will go into
the zones Σ− in a counterclockwise direction until they reach Σ at a point (0, y1) with y1 < 0
after a time t−. Now we can define a left return map PL as y1 = PL(y0) < 0 with PL(0) = 0.
and a right return map PR as z1 = PR(z0) > 0 with PR(0) = 0 and 0 < −z0 ≪ 1. Subsequently,
the Poincaré map of (3.2) near the origin is constructed by PL and PR as

r̃ = P(σ) = PR(PL(σ)) for 0 < σ ≪ 1 (4.3)

satisfying P(0) = 0. In what follows, we give the detailed calculations for PR and PL.
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Under the condition a = b = 0, the solutions of right subsystem of (3.2) have the forms{
x(t) = eβt[(cos t − β sin t) · x(0)− sin t · y(0)],

y(t) = eβt[(1 + β2) sin t · x(0) + (cos t + β sin t) · y(0)].

Let the initial value y(0) < 0 and denote by t+ the minimum positive time such that x(t+) =
x(0) = 0, then t+ = π. For this case, the right return map PR and its inverse P−1

R are

PR(y(0)) = y(π) = −eβπy(0) > 0,

and
P−1

R (y(π)) = y(0) = −e−βπy(π) < 0, (4.4)

respectively.
In order to determine PL near the origin, we recast the left subsystem of (3.2) as

dx
dy

=
y

k − (αy − x)
=

y
k

(
1 +

αy − x
k

+
(αy − x)2

k2 +
(αy − x)3

k3 + · · ·
)

, for x < 0.

Suppose that x = ΦL(y) is the solution of above equation with initial value ΦL(−r) = 0 for
0 < r ≪ 1, then ΦL(P−1

L (−r)) = 0 with P−1
L (−r) > 0. By Lemma 4.1, we have

P−1
L (−r) = r − 2α

3k
r2 +

4α2

9k2 r3 − 44α3 + 18α

135k3 r4 + o(r4). (4.5)

Now setting y(0) = −r < 0 and y(π) = r̃ > 0, by combining (4.4) and (4.5), we have

P−1(r̃) = P−1
L (P−1

R (r̃)) = P−1
L (−e−βπ r̃)

= e−βπ r̃ − 2α

3k
e−2βπ r̃2 +

4α2

9k2 e−3βπ r̃3 − 44α3 + 18α

135k3 e−4βπ r̃4 + o(r̃4),

which yields

P−1(r̃)− r̃ = (e−βπ − 1)r̃ − 2α

3k
e−2βπ r̃2 + o(r̃2). (4.6)

Therefore by (4.3), we obtain
P(σ) = r̃ < P−1(r̃) = σ

for β = 0 and α < 0, and
P(σ) = r̃ > P−1(r̃) = σ

for β = 0 and α > 0. This completes the proof of statement (ii).
(iii) If α < 0 < β ≪ 1, by (4.6) there exists

r̃∗ = −3kπ

2α
β + o(β) > 0

satisfying P−1(r̃∗)− r̃∗ = 0, which leads to the existence of a limit cycle Γs
1 surrounding the

origin. Moreover, by using (4.6) again,(
dP−1

dr̃

)
r̃=r̃∗

= e−βπ − 4α

3k
e−2βπ r̃∗ + o(r̃∗) = 1 + πβ + o(β) > 1,

so the obtained crossing limit cycle Γs
1 is stable. The statement (iii) holds.

(iv) For α > 0 and 0 < −β ≪ 1, a similar argument as the proof of case (iii) guarantees
the final statement of Theorem 4.2.
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Next, we will study the existence and number of crossing limit cycles for a = 0 and b ̸= 0.
As pointed out in the former part of this section that 2aβ + b ≥ 0 is assumed, it is sufficient to
consider the case a = 0 and b > 0.

Theorem 4.3. Assuming a = 0 and b > 0 in system (3.2), the following statements hold.

(i) If α < 0 < b < − 2kβ
α ≪ 1, then the origin is unstable and it is surrounded by a stable limit cycle

Γs
1, while for α < 0 < − 2kβ

α ≤ b ≪ 1, the origin is asymptotically stable and it is surrounded by
a stable limit cycle Γs

1 and an unstable limit cycle Γu
2 .

(ii) If α > 0 and 0 < b < − 2kβ
α ≪ 1, then the origin is asymptotically stable and it is surrounded by

an unstable limit cycle Γu
1 , while for α > 0 and 0 < − 2kβ

α ≤ b ≪ 1, the origin is unstable and it
is surrounded by an unstable limit cycle Γu

1 and a stable limit cycle Γs
2.

Proof. We only consider statement (i) and similar treatments can be done for statement (ii).
From Proposition 3.7 (iii), the origin is a PP-type pseudo-focus point of (3.2) when a = 0

and b > 0. Note that the left return map PL near the origin does not depend upon the
parameter b, so the expression (4.5) remains unchanged here. To determine the right return
map PR, we rewrite the right subsystem of (3.2) as a power series expansion

dx
dy

=
−y

(1 + β2)x + 2βy + b

= −y
b

(
1 +

(
−2β

b
y − 1 + β2

b
x
)
+

(
−2β

b
y − 1 + β2

b
x
)2

+ · · ·
)

, for x > 0.

Let x = ΦR(y) be the solution of the above equation with initial value ΦR(−r) = 0 for
0 < r ≪ 1, then ΦR(PR(−r)) = 0 with PR(−r) > 0. By Lemma 4.1, it follows that

PR(−r) = r +
4β

3b
r2 +

16β2

9b2 r3 +
316β3 − 36β

135b3 r4 + o(r4). (4.7)

Setting P−1
L (−r) = σ, we can get from (4.5) and (4.7)

P(σ)− σ = PR(−r)− P−1
L (−r)

= V2r2 + V3r3 + V4r4 + o(r4),
(4.8)

where

V2 =
2

3kb
(2kβ + bα), V3 =

4
9k2b2 (4k2β2 − b2α2),

V4 =
2

135k3b3 (158k3β3 − 18k3β + 22α3b3 + 9αb3).

Now, we distinguish two cases to consider.
(a) If α < 0 < b < − 2kβ

α ≪ 1, then V2 > 0. By (4.8) we have P(σ)− σ > 0 for 0 < r ≪ 1,
and so the origin is unstable. Meanwhile, according to the continuous dependence of solution
with respect to parameters, the stable limit cycle Γs

1 obtained in Theorem 4.2 (iii) always
persist for 0 < b ≪ 1.

(b) If α < 0 < − 2kβ
α < b ≪ 1, then V2 < 0. In addition, for α < 0 and b = − 2kβ

α > 0, the
equality V2 = V3 = 0 and the inequality V4 < 0 hold. Thus by (4.8), we have P(σ)− σ < 0 for
α < 0 < − 2kβ

α ≤ b and 0 < r ≪ 1, and so the origin is asymptotically stable. Furthermore,



Three crossing limit cycles in planar piecewise linear systems 11

the fact of case (a) shows that the Poincaré map P changes from unstable to stable under the
transition of parameter b from 0 < b < − 2kβ

α to b ≥ − 2kβ
α , respectively. Therefore a non-

smooth Hopf-like bifurcation must occurs and so the existence of an unstable limit cycle Γu
2

is obtained for α < 0 < − 2kβ
α < b. By applying Theorem 4.2 (iii) again, the conclusion of

Theorem 4.3 (i) is shown directly.

Finally, the existence and number of crossing limit cycles of system (3.2) will be investi-
gated under a > 0 and b > 0. In this case, we have the following result.

Theorem 4.4. Assuming a > 0 and b > 0 in system (3.2), the following statements hold.

(i) If α < 0 < − 2kβ
α < b ≪ 1 and 0 < a ≪ 1, then near the origin system (3.2) has two stable limit

cycles Γs
1 and Γs

3, and an unstable limit cycle Γu
2 .

(ii) If α > 0, 0 < − 2kβ
α < b ≪ 1 and 0 < a ≪ 1, then near the origin system (3.2) has two unstable

limit cycles Γu
1 and Γu

3 , and a stable limit cycle Γs
2.

Proof. In the following, we just prove statement (i) since these arguments are also valid for
case (ii). According to Theorem 4.3 (i), both the stable limit cycle Γs

1 and the unstable limit
cycle Γu

2 always persist for α < 0 < − 2kβ
α < b ≪ 1 and 0 < a ≪ 1. Therefore, it is sufficient to

show the existence of a stable limit cycle Γs
3.

From statement (ii) of Proposition 3.7, the right subsystem of (3.2) has an invisible tan-
gency point at (0, a) when a > 0 and b > 0. Obviously, the right return map PR surrounding
this tangency point is always dependent on parameter a, and here we denote it by PR(y; a)
with y ≤ a.

After making a translation (x̃, ỹ) = (x, y − a), the right subsystem of (3.2) is changed into

˙̃x = −ỹ,
˙̃y = (1 + β2)x̃ + 2βỹ + 2aβ + b.

(4.9)

By the same derivation as for (4.7), the right return map of (4.9) near the origin is

P̃R(−r̃) = r̃ +
4β

3(b + 2aβ)
r̃2 +

16β2

9(b + 2aβ)2 r̃3 +
316β3 − 36β

135(b + 2aβ)3 r̃4 + o(r̃4),

for 0 < r̃ ≪ 1. Thanks to PR(y; a) = P̃R(y − a) + a, we have

PR(y; a) = 2a − y +
4β

3(b + 2aβ)
(a − y)2 +

16β2

9(b + 2aβ)2 (a − y)3

+
316β3 − 36β

135(b + 2aβ)3 (a − y)4 + o((a − y)4),
(4.10)

where 0 < a − y ≪ 1.
Now, it is easy to see that the existence of a crossing limit cycle is equivalent to the existence

of a positive r̄ satisfying PR(−r̄; a) = P−1
L (−r̄), in other words, the existence of zero for the

function
Ψ(r, a) = PR(−r; a)− P−1

L (−r) (4.11)

with respect to variable r. Because of this, we pay our attention to study the existence of zeros
for (4.11) by applying the implicit function theorem.
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From (4.11) we know that Ψ(0, 0) = 0. And for 0 < a, r ≪ 1, by using (4.5) and (4.10),

Ψ(r, a) = 2a +
(

4β

3(b + 2aβ)
(a + r)2 +

2α

3k
r2
)

+

(
16β2

9(b + 2aβ)2 (a + r)3 − 4α2

9k2 r3
)

+

(
316β3 − 36β

135(b + 2aβ)3 (a + r)4 +
44α3 + 18α

135k3 r4
)
+ o((a + r)4, r4),

(4.12)

which results in
∂Ψ
∂a

(0, 0) = 2.

Thus by the implicit function theorem, there exists a smooth function a = δ(r), defined in a
neighborhood of 0 with δ(0) = 0, such that Ψ(r, δ(r)) = 0.

Next, we need to show that δ(r) > 0 for 0 < r ≪ 1. From (4.12), we have

∂Ψ
∂r

(0, 0) = 0,
∂2Ψ
∂r2 (0, 0) =

4
3b

(2kβ + bα),

and so

δ′(0) = −Ψr(0, 0)
Ψa(0, 0)

= 0.

Furthermore, after neglecting some vanishing terms, we have

δ′′(0) = −Ψrr(0, 0)
Ψa(0, 0)

= − 2
3b

(2kβ + bα),

from which δ′′(0) > 0 follows for α < 0 < − 2kβ
α < b ≪ 1. According to the smoothness of

δ(r), we conclude that a = δ(r) > 0 for 0 < r ≪ 1, i.e., the existence of a crossing limit cycle
Γs

3 is proven. It is worthwhile to note that the occurrence of Γs
3 is dependent on the positive

parameter a, however, the other two limit cycles Γs
1 or Γu

2 are not the case. This shows Γs
3 is

different from them.
Finally, for α < 0 < − 2kβ

α < b ≪ 1 we have

∂2Ψ
∂r2 (0, 0) =

4
3b

(2kβ + bα) < 0,

which leads to ∂Ψ
∂r (r, a) < 0 for 0 < a ≪ 1, hence the deduced limit cycle Γs

3 is stable. This
completes the proof of the statement (i).

5 Conclusion

In this paper we have studied the existence and number of limit cycles for planar Filippov
system (1.1), whose right-hand side depends on twelve parameters. By using linear variable
transformations and time rescaling, we have transformed system (1.1) into the topologically
equivalent saddle-focus canonical form (3.2) containing only five parameters. It is proved,
under additional assumptions, that system (3.2) has three limit cycles surrounding the sliding
set. This improves and extends the results and conjecture provided by M. Han and W. Zhang
in [12]. Our proof is based on the change of stability of a singular point and the existence of fix
points of the Poincaré map. To use this method we have deduced a very available fourth-order
series expansion of return map near an invisible parabolic type tangency point. We believe
this expression can be used widely in the analysis of Hopf bifurcation for planar non-smooth
systems.
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