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1 Introduction

In this article, we are interested in the following non-local fractional equations:{
(−∆)su = f (x, u), in Ω,

u = 0, in RN\Ω,
(1.1)

where s ∈ (0, 1) is a fixed parameter, Ω is a bounded domain in RN with smooth boundary
∂Ω, N > 2s and (−∆)s is the fractional Laplace operator.

In recent years, many papers are devoted to the study of non-local fractional Laplacian
with superlinear and subcritical or critical growth (see [2,4,13,14,16,17] and references therein).
Particularly, in [8], Fiscella et al. studied equations (1.1) with asymptotically linear right-hand
side and obtained some existence results by using saddle point theorem; in [9], Iannizzotto
et al. also studied fractional p-Laplacian equations with asymptotically p-linear and obtained
two nontrivial solutions by the use of the mountain pass theorem.

There are many interesting problems in the standard framework of the Laplacian (or higher
order Laplacian), widely studied in the literature. A natural question is whether or not the
existence results of multiple solutions obtained in the classical context can be extended to the
non-local framework of the fractional Laplacian operator. Chang et al. [7] showed the existence
of three nontrivial solutions for asymptotically linear Dirichlet problem via the mountain pass
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theorem and Morse theory. In [11] Qian et al. did similar work for fourth-order asymptotically
linear elliptic problem.

Motivated by their work, we study the following non-local problem with homogeneous
Dirichlet boundary conditions investigated by Servadei et al. [15] and the related works [12,
14]: {

−Lku = f (x, u), in Ω,

u = 0, in RN\Ω,
(1.2)

where Lk is the integro-differential operator defined as follows:

Lku(x) =
∫

RN
(u(x + y) + u(x− y)− 2u(x))K(y)dy, x ∈ RN , (1.3)

with the kernel K : RN\0→ (0,+∞) such that

(B1) mK ∈ L1(RN), where m(x) = min{|x|2, 1},

(B2) there exists θ > 0 such that K(x) ≥ θ|x|−(N+2s) for any x ∈ RN\{0},

(B3) K(x) = K(−x) for any x ∈ RN\{0}.

For narrative convenience, in this paper, we only consider the particular case of problem
(1.2), i.e., we let K be given by the singular kernel K(x) = |x|−(N+2s) which leads to the
fractional Laplace operator −(−∆)s, which, up to normalization factors, may be defined as

− (−∆)su(x) =
∫

RN

u(x + y) + u(x− y)− 2u(x)
|y|N+2s dy, x ∈ RN . (1.4)

Obviously, the corresponding fractional equation in the above model (1.2) changes problem
(1.1). In fact, our methods and results in this paper also adapt for the general problem (1.2).

Let f (x, 0) = 0 and F(x, t) =
∫ t

0 f (x, s)ds. Moreover, suppose that the non-linearity f satisfy
the following conditions:

( f1) f ∈ C1(Ω̄×R, R), f (x, 0) = 0, f (x, t)t ≥ 0 for all x ∈ Ω, t ∈ R,

( f2) f ′ is subcritical in t, i.e. there is a constant p ∈ (2, 2∗), 2∗ = 2N
N−2s such that

lim
t→∞

ft(x, t)
|t|p−1 = 0 uniformly for x ∈ Ω̄,

( f3) lim
|t|→0

f (x,t)
t = f0, lim

|t|→∞

f (x,t)
t = l uniformly for x ∈ Ω, where f0 and l are constants;

( f4) lim
|t|→∞

[ f (x, t)t− 2F(x, t)] = −∞.

Now, we give our main results.

Theorem 1.1. Assume conditions ( f1)–( f3) hold, f0 < λ1 and l ∈ (λk, λk+1) for some k ≥ 2, then
problem (1.1) has at least three nontrivial solutions.

Theorem 1.2. Assume conditions ( f1)–( f4) hold, f0 < λ1 and l = λk for some k ≥ 2, then problem
(1.1) has at least three nontrivial solutions.
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Here, 0 < λ1 < λ2 < · · · < λk < · · · are the eigenvalues of (−∆)s with homogeneous
Dirichlet boundary data and φ1(x) > 0 be the eigenfunction corresponding to λ1.

In view of the condition ( f3), problem (1.1) is called asymptotically linear at both zero and
infinity, which means that usual Ambrosetti–Rabinowitz condition (see [1]) is not satisfied.
This will bring some difficulty if the mountain pass theorem is used to seek nontrivial solu-
tions of problem (1.1). For the standard Laplacian Dirichlet problem, Zhou [18] have overcome
it by using some monotonicity condition. Novelties of our this paper are as following.

We consider multiple solutions of problem (1.1) in the cases of resonance and non-
resonance by using the mountain pass theorem and Morse theory. First, we use the trun-
cated technique and the mountain pass theorem to obtain a positive solution and a negative
solution of problem (1.1) under our more general conditions ( f1), ( f2) and ( f3) with respect
to the conditions (H1) and (H3) in [18]. In the course of proving the existence of a positive
solution and a negative solution, the monotonicity condition (H2) of [18] on the nonlinear
term f is not necessary, this point is very important because we can directly prove existence of
positive solution and negative solution by using Rabinowitz’s mountain pass theorem. That
is, the proof of our compact condition is more simple than that in [18]. Furthermore, we
can obtain a nontrivial solution when the nonlinear term f is resonant or non-resonant at the
infinity by using Morse theory.

The paper is organized as follows. In Section 2, we present some necessary preliminary
knowledge about the working space. In Section 3, we prove some lemmas in order to prove
our main results. In Section 4, we give the proofs for our main results.

2 Preliminaries

In this section, we give some preliminary results which will be used in the sequel. We briefly
recall the related definitions and notes for functional space X0 introduced in [15].

The functional space X denotes the linear space of Lebesgue measurable functions from
RN to R such that the restriction to Ω of any function g in X belongs to L2(Ω) and the map
(x, y) 7−→ (g(x)− g(y))

√
K(x− y) is in L2(RN ×RN)\(CΩ×CΩ), dxdy) (here CΩ = RN\Ω).

Also, we denote by X0 the following linear subspace of X

X0 := {g ∈ X : g = 0 a.e. in RN\Ω}.

Note that X and X0 are non-empty, since C2
0(Ω) ⊆ X0 by [15]. Moreover, the space X is

endowed with the norm defined as

‖g‖X = |g|L2(Ω) +

(∫
Q
|g(x)− g(y)|2K(x− y)dxdy

) 1
2

, (2.1)

where Q = (RN×RN)\O andO = (CΩ)× (CΩ) ⊂ RN×RN . We equip X0 with the following
norm

‖g‖X0 =

(∫
Q
|g(x)− g(y)|2K(x− y)dxdy

) 1
2

, (2.2)

which is equivalent to the usual one defined in (2.1) (see [14]). It is easy to see that (X0, ‖ · ‖X0)

is a Hilbert space with scalar product

〈u, v〉X0 =
∫

Q
(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy. (2.3)
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Denote by Hs(Ω) the usual fractional Sobolev space with respect to the Gagliardo norm

‖g‖Hs(Ω) = |g|L2(Ω) +

(∫
Ω×Ω

|g(x)− g(y)|2
|x− y|N+2s dxdy

) 1
2

. (2.4)

Now, we give a basic fact which will be used later.

Lemma 2.1 ([14]). The embedding j : X0 ↪→ Lv(Ω) is continuous for any v ∈ [1, 2∗], while it is
compact whenever v ∈ [1, 2∗).

Next, we state some propositions for the operator (−∆)s. Let λ1 < λ2 ≤ λ3 ≤ · · · ≤
λk ≤ · · · be the sequence of the eigenvalues of (−∆)s (see [8]) and φk be the k-th eigenfunction
corresponding to the eigenvalues λk. Moreover, we will set

Pk+1 = {u ∈ X0 : 〈u, φj〉X0 = 0, ∀j = 1, 2, . . . , k}

and
Hk = span{φ1, . . . , φk}.

Proposition 2.2 ([8]). The following inequality holds true

‖u‖2
X0
≤ λk|u|2L2(Ω)

for all u ∈ Hk and k ∈ N.

Proposition 2.3 ([8]). The following inequality holds true

‖u‖2
X0
≥ λk+1|u|2L2(Ω)

for all u ∈ Pk+1 and any k ∈ N.

Next, we recall some definitions for compactness condition and a version of the mountain
pass theorem.

Definition 2.4. Let (X0, ‖ · ‖X0) be a real Banach space with its dual space (X∗0 , ‖ · ‖X∗0 ) and
J ∈ C1(X0, R). For c ∈ R, we say that J satisfies the (PS)c condition if for any sequence
{xn} ⊂ X0 with

J (xn)→ c, DJ (xn)→ 0 in X∗0 ,

there is a subsequence {xnk} such that {xnk} converges strongly in X0. Also, we say that J
satisfy the (C)c condition stated in [5] if for any sequence {xn} ⊂ X0 with

J (xn)→ c, ‖DJ (xn)‖X∗0 (1 + ‖xn‖X0)→ 0,

there is subsequence {xnk} such that {xnk} converges strongly in X0.

3 Some lemmas

First, we observe that problem (1.1) has a variational structure, indeed it is the Euler–Lagrange
equation of the functional J : X0 → R defined as follows:

J (u) =
1
2

∫
RN×RN

|u(x)− u(y)|2K(x− y)dxdy−
∫

Ω
F(x, u(x))dx.
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It is well know that the functional J is Fréchet differentiable in X0 and for any ϕ ∈ X0

〈J ′(u), ϕ〉 =
∫

RN×RN
(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dxdy−

∫
Ω

f (x, u(x))ϕ(x)dx.

Thus, critical points of J are solutions of problem (1.1).
Consider the following problem{

(−∆)su = f+(x, u), in Ω;

u = 0, in RN\Ω,

where

f+(x, t) =

{
f (x, t), t > 0,

0, t ≤ 0.

Define a functional J+ : X0 → R by

J+(u) =
1
2

∫
RN×RN

|u(x)− u(y)|2K(x− y)dxdy−
∫

Ω
F(x, u(x))dx,

where F+(x, t) =
∫ t

0 f+(x, s)ds, then J+ ∈ C2−0(X0, R).

Lemma 3.1. J+ satisfies the (PS) condition.

Proof. Let {un} ⊂ X0 be a sequence such that |J ′+(un)| ≤ c, 〈J ′+(un), ϕ〉 → 0 as n → ∞. Note
that

〈J ′+(un), ϕ〉 =
∫

RN×RN
(un(x)− un(y))(ϕ(x)− ϕ(y))K(x− y)dxdy−

∫
Ω

f+(x, un)ϕdx

= o(‖ϕ‖X0)
(3.1)

for all ϕ ∈ X0. Assume that |un|L2(Ω) is bounded, taking ϕ = un in (3.1). By ( f3), there
exists c > 0 such that | f+(x, un(x))| ≤ c|un(x)|, a.e. x ∈ Ω. So un is bounded in X0. If
|un|L2(Ω) → +∞, as n → ∞, set vn = un

|un|L2(Ω)
, then |vn|L2(Ω) = 1. Taking ϕ = vn in (3.1), it

follows that ‖vn‖X0 is bounded. Without loss of generality, we assume that vn ⇀ v in X0, then
vn → v in L2(Ω). Hence, vn → v a.e. in Ω. Dividing both sides of (3.1) by |un|L2(Ω), we get

∫
RN×RN

(vn(x)− vn(y))(ϕ(x)− ϕ(y))K(x− y)dxdy−
∫

Ω

f+(x, un)

|un|L2(Ω)
ϕdx

= o

(
‖ϕ‖X0

|un|L2(Ω)

)
, ∀ϕ ∈ X0.

(3.2)

Then for a.e. x ∈ Ω, we deduce that f+(x,un)
|un|L2(Ω)

→ lv+ as n → ∞, where v+ = max{v, 0}. In fact,

when v(x) > 0, by ( f3) we have

un(x) = vn(x)|un|L2(Ω) → +∞

and
f+(x, un)

|un|L2(Ω)
=

f+(x, un)

un
vn → lv.
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When v(x) = 0, we have
f+(x, un)

|un|L2(Ω)
≤ c|vn| −→ 0.

When v(x) < 0, we have
un(x) = vn(x)|un|L2(Ω) −→ −∞

and
f+(x, un)

|un|L2(Ω)
= 0.

Since f+(x,un)
|un|L2(Ω)

≤ c|vn|, by (3.2) and the Lebesgue dominated convergence theorem, we arrive at∫
RN×RN

(v(x)− v(y))(ϕ(x)− ϕ(y))K(x− y)dxdy−
∫

Ω
lv+ϕdx = 0, for any ϕ ∈ X0. (3.3)

From the strong maximum principle (see [9]) we deduce that v > 0. Choosing ϕ = φ1 in (3.3),
we obtain

l
∫

Ω
vφ1dx = λ1

∫
Ω

vφ1dx.

This is a contradiction.

Lemma 3.2. Let φ1 be the eigenfunction corresponding to λ1 with ‖φ1‖ = 1. If f0 < λ1 < l, then

(a) there exist ρ, β > 0 such that J+(u) ≥ β for all u ∈ X0 with ‖u‖ = ρ;

(b) J+(tφ1) = −∞ as t→ +∞.

Proof. By ( f1) and ( f3), if l ∈ (λ1,+∞), for any ε > 0, there exist A = A(ε) ≥ 0 and B = B(ε)
such that for all (x, s) ∈ Ω×R,

F+(x, s) ≤ 1
2
( f0 + ε)s2 + Asp+1, (3.4)

F+(x, s) ≥ 1
2
(l − ε)s2 − B, (3.5)

where p ∈ (1, N+s
N−s ).

Choose ε > 0 such that f0 + ε < λ1. By (3.4) and Lemma 2.1, we get

J+(u) =
1
2
‖u‖2

X0
−
∫

Ω
F(x, u)dx

≥ 1
2
‖u‖2

X0
− 1

2

∫
Ω
[( f0 + ε)u2 + A|u|p+1]dx

=
1
2

(
1− f0 + ε

λ1

)
‖u‖2

X0
− c‖u‖p+1

X0
.

So, part (a) holds if we choose ‖u‖X0 = ρ > 0 small enough.
On the other hand, if l ∈ (λ1,+∞), take ε > 0 such that l − ε > λ1. By (3.5), we have

J+(u) ≤
1
2
‖u‖2

X0
− l − ε

2
|u|2L2(Ω) + B|Ω|.

Since l − ε > λ1 and ‖φ1‖X0 = 1, it is easy to see that

J+(tφ1) ≤
1
2

(
1− l − ε

λ1

)
t2 + B|Ω| → −∞ as t→ +∞

and part (b) is proved.
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Lemma 3.3. Let X0 = Hk ⊕Pk+1. If f satisfies ( f1), ( f3) and ( f4) then

(i) the functional J is coercive on Pk+1, that is

J (u)→ +∞ as ‖u‖X0 → +∞, u ∈ Pk+1

and bounded from below on Pk+1,

(ii) the functional J is anti-coercive on Hk.

Proof. For u ∈ Pk+1, by ( f3), for any ε > 0, there exists B1 = B1(ε) such that for all (x, s) ∈
Ω×R,

F(x, s) ≤ 1
2
(l + ε)s2 + B1. (3.6)

So, from Proposition 2.3 we have

J (u) =
1
2
‖u‖2

X0
−
∫

Ω
F(x, u)dx

≥ 1
2
‖u‖2

X0
− 1

2
(l + ε)|u|2L2(Ω) − B1|Ω|

≥ 1
2

(
1− l + ε

λk+1

)
‖u‖2

X0
− B1|Ω|.

Choose ε > 0 such that l + ε < λk+1. This proves (i).
(ii) We firstly consider the case l = λk.
Write G(x, t) = F(x, t)− 1

2 λkt2, g(x, t) = f (x, t)− λkt. Then ( f3) and ( f4) imply that

lim
|t|→∞

[g(x, t)t− 2G(x, t)] = −∞ (3.7)

and

lim
|t|→∞

2G(x, t)
t2 = 0. (3.8)

It follows from (3.7) that for every M > 0, there exists a constant T > 0 such that

g(x, t)t− 2G(x, t) ≤ −M, ∀t ∈ R, |t| ≥ T, a.e. x ∈ Ω. (3.9)

For τ > 0, we have
d

dτ

G(x, τ)

τ2 =
g(x, τ)τ − 2G(x, τ)

τ3 . (3.10)

Integrating (3.10) over [t, s] ⊂ [T,+∞), we deduce that

G(x, s)
s2 − G(x, t)

t2 ≤ M
2
(

1
s2 −

1
t2 ). (3.11)

Letting s → +∞ and using (3.8), we see that G(x, t) ≥ M
2 , for t ∈ R, t ≥ T, a.e. x ∈ Ω. A

similar argument shows that G(x, t) ≥ M
2 , for t ∈ R, t ≤ −T, a.e. x ∈ Ω. Hence

lim
|t|→∞

G(x, t)→ +∞, a.e. x ∈ Ω. (3.12)
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By (3.12) and Proposition 2.2, we get

J (v) =
1
2
‖v‖2

X0
−
∫

Ω
F(x, v)dx

=
1
2
‖v‖2

X0
− 1

2
λk

∫
Ω

v2dx−
∫

Ω
G(x, v)dx

≤ −δ‖v−‖2
X0
−
∫

Ω
G(x, v)dx → −∞

for v ∈ V with ‖v‖X0 → +∞, where v− ∈ Hk−1.
In the case of λk < l < λk+1, we needn’t the assumption ( f4) and it is easy to see that the

conclusion also holds .

Lemma 3.4. If λk < l < λk+1, then J satisfies the (PS) condition.

Proof. Let {un} ⊂ X0 be a sequence such that |J (un)| ≤ c, 〈J ′(un), ϕ〉 → 0. Since

〈J ′(un), ϕ〉 =
∫

RN×RN
(un(x)− un(y))(ϕ(x)− ϕ(y))K(x− y)dxdy−

∫
Ω

f (x, un)ϕdx

= o(‖ϕ‖X0). (3.13)

for all ϕ ∈ X0. If |un|L2(Ω) is bounded, we can take ϕ = un. By ( f3), there exists a constant
c > 0 such that | f (x, un(x))| ≤ c|un(x)|, a.e. x ∈ Ω. So un is bounded in X0. If |un|L2(Ω) → +∞,
as n→ ∞, set vn = un

|un|L2(Ω)
, then |vn|L2(Ω) = 1. Taking ϕ = vn in (3.13), it follows that ‖vn‖X0 is

bounded. Without loss of generality, we assume vn ⇀ v in X0, then vn → v in L2(Ω). Hence,
vn → v a.e. in Ω. Dividing both sides of (3.13) by |un|L2(Ω), we get

∫
RN×RN

(vn(x)− vn(y))(ϕ(x)− ϕ(y))K(x− y)dxdy−
∫

Ω

f (x, un)

|un|L2(Ω)
ϕdx

= o

(
‖ϕ‖X0

|un|L2(Ω)

)
, ∀ϕ ∈ X0. (3.14)

Then for a.e. x ∈ Ω, we have f (x,un)
|un|L2(Ω)

→ lv as n→ ∞. In fact, if v(x) 6= 0, by ( f3), we have

|un(x)| = |vn(x)||un|L2(Ω) → +∞

and
f (x, un)

|un|L2(Ω)
=

f (x, un)

un
vn → lv.

If v(x) = 0, we have
| f (x, un)|
|un|L2(Ω)

≤ c|vn| −→ 0.

Since | f (x,un)|
|un|L2(Ω)

≤ c|vn|, by (3.14) and the Lebesgue dominated convergence theorem, we

arrive at∫
RN×RN

(v(x)− v(y))(ϕ(x)− ϕ(y))K(x− y)dxdy−
∫

Ω
lvϕdx = 0, for any ϕ ∈ X0.

Obviously v 6= 0, hence, l is an eigenvalue of (−∆)s. This contradicts our assumption.
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Lemma 3.5. Suppose l = λk and f satisfies ( f4). Then the functional J satisfies the (C) condition.

Proof. Suppose un ∈ X0 satisfies

J (un)→ c ∈ R, (1 + ‖un‖)‖J ′(un)‖ → 0 as n→ ∞. (3.15)

In view of ( f3), it suffices to prove that un is bounded in X0. Similar to the proof of Lemma 3.4,
we have∫

RN×RN
(v(x)− v(y))(ϕ(x)− ϕ(y))K(x− y)dxdy−

∫
Ω

lvϕdx = 0, for any ϕ ∈ X0. (3.16)

Therefore v 6= 0 is an eigenfunction of λk, then |un(x)| → ∞ for a.e. x ∈ Ω0 (Ω0 ⊂ Ω) with
positive measure. It follows from ( f4) that

lim
n→+∞

[ f (x, un(x))un(x)− 2F(x, un(x))] = −∞

holds uniformly in x ∈ Ω0, which implies that∫
Ω
( f (x, un)un − 2F(x, un))dx → −∞ as n→ ∞. (3.17)

On the other hand, (3.15) implies that

2J (un)− 〈J ′(un), un〉 → 2c as n→ ∞.

Thus ∫
Ω
( f (x, un)un − 2F(x, un))dx → 2c as n→ ∞,

which contradicts (3.17). Hence un is bounded.

It is well known that critical groups and Morse theory are the main tools in solving elliptic
partial differential equation. Let us recall some results which will be used later. We refer the
readers to the book [6] for more information on Morse theory.

Let X be a Hilbert space and J ∈ C1(X, R) be a functional satisfying the (PS) condition
or (C) condition, and Hq(X, Y) be the q-th singular relative homology group with integer
coefficients. Let u0 be an isolated critical point of J with J (u0) = c, c ∈ R, and U be a
neighborhood of u0. The group

Cq(J , u0) := Hq(J c ∩U,J c ∩U\{u0}), q ∈ Z

is said to be the q-th critical group of J at u0, where J c = {u ∈ X : J (u) ≤ c}.
Let K := {u ∈ X : J ′(u) = 0} be the set of critical points of J and a < infJ (K), the

critical groups of J at infinity are formally defined by (see [3])

Cq(J , ∞) := Hq(X,J a), q ∈ Z.

The following result comes from [3, 6] and will be used to prove the results in this paper.

Proposition 3.6 ([3]). Assume that X = V ⊕W, J is bounded from below on W and J (u) → −∞
as ‖u‖ → ∞ with u ∈ V. Then

Ck(J , ∞) � 0, if k = dim V < ∞. (3.18)
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4 Proof of the main results

Proof of Theorem 1.1. By Lemmas 3.1, 3.2 and the mountain pass theorem, the functional J+
has a critical point u1 satisfying J+(u1) ≥ β. Since J+(0) = 0, u1 6= 0 and by the maximum
principle (see [9]), we get u1 > 0. Hence u1 is a positive solution of the problem (1.1) and
satisfies

C1(J+, u1) 6= 0, u1 > 0. (4.1)

By ( f2), the functional J is C2. Using the results in [6, 10], we obtain

Cq(J , u1) = Cq(JC0
d(Ω), u1) = Cq(J+|C0

d(Ω), u1) = Cq(J+, u1) = δq1Z. (4.2)

Here

C0
d(Ω) = {u ∈ C0(Ω) : ud−γ ∈ C0(Ω)},

where d(x) = dist(x, ∂Ω) for all x ∈ Ω and 0 < γ < 1. More detailed topology knowledge
will be seen in [9] and we omit it.

Similarly, we can obtain another negative critical point u2 of J satisfying

Cq(J , u2) = δq,1Z. (4.3)

Since f0 < λ1, the zero function is a local minimizer of J , then

Cq(J , 0) = δq,0Z. (4.4)

On the other hand, by Lemmas 3.3, 3.4 and Proposition 3.6, we have

Ck(J , ∞) � 0. (4.5)

Hence J has a critical point u3 satisfying

Ck(J , u3) � 0. (4.6)

Since k ≥ 2, it follows from (4.2)–(4.6) that u1, u2 and u3 are three different nontrivial solutions
of the problem (1.1).

Proof of Theorem 1.2. By Lemmas 3.3, 3.5 and Proposition 3.6, we can prove the conclusion
(4.5). The other proof is similar to that of Theorem 1.1.
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